Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_variability.wasp
Title produced by softwareVariability
Date of computationWed, 24 Dec 2008 04:24:46 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Dec/24/t1230117911wx6553gkujjewag.htm/, Retrieved Tue, 12 Nov 2024 22:16:46 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=36460, Retrieved Tue, 12 Nov 2024 22:16:46 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact248
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Variability] [opgave 8, oef 1 -...] [2008-12-24 10:46:02] [c856c407fba4e5cac6611e01b62a9c0b]
- RMPD  [Standard Deviation Plot] [opgave 8, oef 2 -...] [2008-12-24 11:02:43] [c856c407fba4e5cac6611e01b62a9c0b]
- RM      [Standard Deviation-Mean Plot] [opgave 8, oef 2, ...] [2008-12-24 11:17:41] [c856c407fba4e5cac6611e01b62a9c0b]
- RMPD        [Variability] [opgave 8, oef 3 -...] [2008-12-24 11:24:46] [aa953cee67007b6ac752bcbbd195d3a5] [Current]
- RMPD          [Standard Deviation Plot] [opgave 8, oef 3, ...] [2008-12-24 11:27:53] [c856c407fba4e5cac6611e01b62a9c0b]
- RM              [Standard Deviation-Mean Plot] [opgave 8, oef 3, ...] [2008-12-24 11:47:56] [c856c407fba4e5cac6611e01b62a9c0b]
Feedback Forum

Post a new message
Dataseries X:
9,026
9,787
9,536
9,49
9,736
9,694
9,647
9,753
10,07
10,137
9,984
9,732
9,103
9,155
9,308
9,394
9,948
10,177
10,002
9,728
10,002
10,063
10,018
9,96
10,236
10,893
10,756
10,94
10,997
10,827
10,166
10,186
10,457
10,368
10,244
10,511
10,812
10,738
10,171
9,721
9,897
9,828
9,924
10,371
10,846
10,413
10,709
10,662
10,57
10,297
10,635
10,872
10,296
10,383
10,431
10,574
10,653
10,805
10,872
10,625
10,407
10,463
10,556
10,646
10,702
11,353
11,346
11,451
11,964
12,574
13,031
13,812
14,544
14,931
14,886
16,005
17,064
15,168
16,05
15,839
15,137
14,954
15,648
15,305




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=36460&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=36460&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=36460&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Variability - Ungrouped Data
Absolute range8.038
Relative range (unbiased)4.13045282372516
Relative range (biased)4.15526057124111
Variance (unbiased)3.78704679288583
Variance (biased)3.74196290249433
Standard Deviation (unbiased)1.94603360528174
Standard Deviation (biased)1.93441539036845
Coefficient of Variation (unbiased)0.174836062303113
Coefficient of Variation (biased)0.173792255587280
Mean Squared Error (MSE versus 0)127.632643285714
Mean Squared Error (MSE versus Mean)3.74196290249433
Mean Absolute Deviation from Mean (MAD Mean)1.41857709750567
Mean Absolute Deviation from Median (MAD Median)1.19619047619048
Median Absolute Deviation from Mean0.979119047619047
Median Absolute Deviation from Median0.467000000000001
Mean Squared Deviation from Mean3.74196290249433
Mean Squared Deviation from Median4.19169280952381
Interquartile Difference (Weighted Average at Xnp)0.909
Interquartile Difference (Weighted Average at X(n+1)p)0.93975
Interquartile Difference (Empirical Distribution Function)0.909
Interquartile Difference (Empirical Distribution Function - Averaging)0.923499999999999
Interquartile Difference (Empirical Distribution Function - Interpolation)0.90725
Interquartile Difference (Closest Observation)0.909
Interquartile Difference (True Basic - Statistics Graphics Toolkit)0.90725
Interquartile Difference (MS Excel (old versions))0.956
Semi Interquartile Difference (Weighted Average at Xnp)0.4545
Semi Interquartile Difference (Weighted Average at X(n+1)p)0.469875
Semi Interquartile Difference (Empirical Distribution Function)0.4545
Semi Interquartile Difference (Empirical Distribution Function - Averaging)0.461749999999999
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)0.453625
Semi Interquartile Difference (Closest Observation)0.4545
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)0.453625
Semi Interquartile Difference (MS Excel (old versions))0.478
Coefficient of Quartile Variation (Weighted Average at Xnp)0.0435407386118696
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.044928107856144
Coefficient of Quartile Variation (Empirical Distribution Function)0.0435407386118696
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.0441665271766421
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.0434044181846452
Coefficient of Quartile Variation (Closest Observation)0.0435407386118696
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.0434044181846452
Coefficient of Quartile Variation (MS Excel (old versions))0.0456891607723188
Number of all Pairs of Observations3486
Squared Differences between all Pairs of Observations7.57409358577166
Mean Absolute Differences between all Pairs of Observations1.87238267355135
Gini Mean Difference1.87238267355134
Leik Measure of Dispersion0.521763940202268
Index of Diversity0.987735669665451
Index of Qualitative Variation0.999636099420457
Coefficient of Dispersion0.135619225382951
Observations84

\begin{tabular}{lllllllll}
\hline
Variability - Ungrouped Data \tabularnewline
Absolute range & 8.038 \tabularnewline
Relative range (unbiased) & 4.13045282372516 \tabularnewline
Relative range (biased) & 4.15526057124111 \tabularnewline
Variance (unbiased) & 3.78704679288583 \tabularnewline
Variance (biased) & 3.74196290249433 \tabularnewline
Standard Deviation (unbiased) & 1.94603360528174 \tabularnewline
Standard Deviation (biased) & 1.93441539036845 \tabularnewline
Coefficient of Variation (unbiased) & 0.174836062303113 \tabularnewline
Coefficient of Variation (biased) & 0.173792255587280 \tabularnewline
Mean Squared Error (MSE versus 0) & 127.632643285714 \tabularnewline
Mean Squared Error (MSE versus Mean) & 3.74196290249433 \tabularnewline
Mean Absolute Deviation from Mean (MAD Mean) & 1.41857709750567 \tabularnewline
Mean Absolute Deviation from Median (MAD Median) & 1.19619047619048 \tabularnewline
Median Absolute Deviation from Mean & 0.979119047619047 \tabularnewline
Median Absolute Deviation from Median & 0.467000000000001 \tabularnewline
Mean Squared Deviation from Mean & 3.74196290249433 \tabularnewline
Mean Squared Deviation from Median & 4.19169280952381 \tabularnewline
Interquartile Difference (Weighted Average at Xnp) & 0.909 \tabularnewline
Interquartile Difference (Weighted Average at X(n+1)p) & 0.93975 \tabularnewline
Interquartile Difference (Empirical Distribution Function) & 0.909 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Averaging) & 0.923499999999999 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Interpolation) & 0.90725 \tabularnewline
Interquartile Difference (Closest Observation) & 0.909 \tabularnewline
Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 0.90725 \tabularnewline
Interquartile Difference (MS Excel (old versions)) & 0.956 \tabularnewline
Semi Interquartile Difference (Weighted Average at Xnp) & 0.4545 \tabularnewline
Semi Interquartile Difference (Weighted Average at X(n+1)p) & 0.469875 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function) & 0.4545 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Averaging) & 0.461749999999999 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Interpolation) & 0.453625 \tabularnewline
Semi Interquartile Difference (Closest Observation) & 0.4545 \tabularnewline
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 0.453625 \tabularnewline
Semi Interquartile Difference (MS Excel (old versions)) & 0.478 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at Xnp) & 0.0435407386118696 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at X(n+1)p) & 0.044928107856144 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function) & 0.0435407386118696 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging) & 0.0441665271766421 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation) & 0.0434044181846452 \tabularnewline
Coefficient of Quartile Variation (Closest Observation) & 0.0435407386118696 \tabularnewline
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit) & 0.0434044181846452 \tabularnewline
Coefficient of Quartile Variation (MS Excel (old versions)) & 0.0456891607723188 \tabularnewline
Number of all Pairs of Observations & 3486 \tabularnewline
Squared Differences between all Pairs of Observations & 7.57409358577166 \tabularnewline
Mean Absolute Differences between all Pairs of Observations & 1.87238267355135 \tabularnewline
Gini Mean Difference & 1.87238267355134 \tabularnewline
Leik Measure of Dispersion & 0.521763940202268 \tabularnewline
Index of Diversity & 0.987735669665451 \tabularnewline
Index of Qualitative Variation & 0.999636099420457 \tabularnewline
Coefficient of Dispersion & 0.135619225382951 \tabularnewline
Observations & 84 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=36460&T=1

[TABLE]
[ROW][C]Variability - Ungrouped Data[/C][/ROW]
[ROW][C]Absolute range[/C][C]8.038[/C][/ROW]
[ROW][C]Relative range (unbiased)[/C][C]4.13045282372516[/C][/ROW]
[ROW][C]Relative range (biased)[/C][C]4.15526057124111[/C][/ROW]
[ROW][C]Variance (unbiased)[/C][C]3.78704679288583[/C][/ROW]
[ROW][C]Variance (biased)[/C][C]3.74196290249433[/C][/ROW]
[ROW][C]Standard Deviation (unbiased)[/C][C]1.94603360528174[/C][/ROW]
[ROW][C]Standard Deviation (biased)[/C][C]1.93441539036845[/C][/ROW]
[ROW][C]Coefficient of Variation (unbiased)[/C][C]0.174836062303113[/C][/ROW]
[ROW][C]Coefficient of Variation (biased)[/C][C]0.173792255587280[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus 0)[/C][C]127.632643285714[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus Mean)[/C][C]3.74196290249433[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Mean (MAD Mean)[/C][C]1.41857709750567[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Median (MAD Median)[/C][C]1.19619047619048[/C][/ROW]
[ROW][C]Median Absolute Deviation from Mean[/C][C]0.979119047619047[/C][/ROW]
[ROW][C]Median Absolute Deviation from Median[/C][C]0.467000000000001[/C][/ROW]
[ROW][C]Mean Squared Deviation from Mean[/C][C]3.74196290249433[/C][/ROW]
[ROW][C]Mean Squared Deviation from Median[/C][C]4.19169280952381[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at Xnp)[/C][C]0.909[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]0.93975[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function)[/C][C]0.909[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]0.923499999999999[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]0.90725[/C][/ROW]
[ROW][C]Interquartile Difference (Closest Observation)[/C][C]0.909[/C][/ROW]
[ROW][C]Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]0.90725[/C][/ROW]
[ROW][C]Interquartile Difference (MS Excel (old versions))[/C][C]0.956[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at Xnp)[/C][C]0.4545[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]0.469875[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function)[/C][C]0.4545[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]0.461749999999999[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]0.453625[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Closest Observation)[/C][C]0.4545[/C][/ROW]
[ROW][C]Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]0.453625[/C][/ROW]
[ROW][C]Semi Interquartile Difference (MS Excel (old versions))[/C][C]0.478[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at Xnp)[/C][C]0.0435407386118696[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at X(n+1)p)[/C][C]0.044928107856144[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function)[/C][C]0.0435407386118696[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)[/C][C]0.0441665271766421[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)[/C][C]0.0434044181846452[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Closest Observation)[/C][C]0.0435407386118696[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)[/C][C]0.0434044181846452[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (MS Excel (old versions))[/C][C]0.0456891607723188[/C][/ROW]
[ROW][C]Number of all Pairs of Observations[/C][C]3486[/C][/ROW]
[ROW][C]Squared Differences between all Pairs of Observations[/C][C]7.57409358577166[/C][/ROW]
[ROW][C]Mean Absolute Differences between all Pairs of Observations[/C][C]1.87238267355135[/C][/ROW]
[ROW][C]Gini Mean Difference[/C][C]1.87238267355134[/C][/ROW]
[ROW][C]Leik Measure of Dispersion[/C][C]0.521763940202268[/C][/ROW]
[ROW][C]Index of Diversity[/C][C]0.987735669665451[/C][/ROW]
[ROW][C]Index of Qualitative Variation[/C][C]0.999636099420457[/C][/ROW]
[ROW][C]Coefficient of Dispersion[/C][C]0.135619225382951[/C][/ROW]
[ROW][C]Observations[/C][C]84[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=36460&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=36460&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variability - Ungrouped Data
Absolute range8.038
Relative range (unbiased)4.13045282372516
Relative range (biased)4.15526057124111
Variance (unbiased)3.78704679288583
Variance (biased)3.74196290249433
Standard Deviation (unbiased)1.94603360528174
Standard Deviation (biased)1.93441539036845
Coefficient of Variation (unbiased)0.174836062303113
Coefficient of Variation (biased)0.173792255587280
Mean Squared Error (MSE versus 0)127.632643285714
Mean Squared Error (MSE versus Mean)3.74196290249433
Mean Absolute Deviation from Mean (MAD Mean)1.41857709750567
Mean Absolute Deviation from Median (MAD Median)1.19619047619048
Median Absolute Deviation from Mean0.979119047619047
Median Absolute Deviation from Median0.467000000000001
Mean Squared Deviation from Mean3.74196290249433
Mean Squared Deviation from Median4.19169280952381
Interquartile Difference (Weighted Average at Xnp)0.909
Interquartile Difference (Weighted Average at X(n+1)p)0.93975
Interquartile Difference (Empirical Distribution Function)0.909
Interquartile Difference (Empirical Distribution Function - Averaging)0.923499999999999
Interquartile Difference (Empirical Distribution Function - Interpolation)0.90725
Interquartile Difference (Closest Observation)0.909
Interquartile Difference (True Basic - Statistics Graphics Toolkit)0.90725
Interquartile Difference (MS Excel (old versions))0.956
Semi Interquartile Difference (Weighted Average at Xnp)0.4545
Semi Interquartile Difference (Weighted Average at X(n+1)p)0.469875
Semi Interquartile Difference (Empirical Distribution Function)0.4545
Semi Interquartile Difference (Empirical Distribution Function - Averaging)0.461749999999999
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)0.453625
Semi Interquartile Difference (Closest Observation)0.4545
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)0.453625
Semi Interquartile Difference (MS Excel (old versions))0.478
Coefficient of Quartile Variation (Weighted Average at Xnp)0.0435407386118696
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.044928107856144
Coefficient of Quartile Variation (Empirical Distribution Function)0.0435407386118696
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.0441665271766421
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.0434044181846452
Coefficient of Quartile Variation (Closest Observation)0.0435407386118696
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.0434044181846452
Coefficient of Quartile Variation (MS Excel (old versions))0.0456891607723188
Number of all Pairs of Observations3486
Squared Differences between all Pairs of Observations7.57409358577166
Mean Absolute Differences between all Pairs of Observations1.87238267355135
Gini Mean Difference1.87238267355134
Leik Measure of Dispersion0.521763940202268
Index of Diversity0.987735669665451
Index of Qualitative Variation0.999636099420457
Coefficient of Dispersion0.135619225382951
Observations84



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
num <- 50
res <- array(NA,dim=c(num,3))
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
iqd <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
iqdiff <- qvalue3 - qvalue1
return(c(iqdiff,iqdiff/2,iqdiff/(qvalue3 + qvalue1)))
}
range <- max(x) - min(x)
lx <- length(x)
biasf <- (lx-1)/lx
varx <- var(x)
bvarx <- varx*biasf
sdx <- sqrt(varx)
mx <- mean(x)
bsdx <- sqrt(bvarx)
x2 <- x*x
mse0 <- sum(x2)/lx
xmm <- x-mx
xmm2 <- xmm*xmm
msem <- sum(xmm2)/lx
axmm <- abs(x - mx)
medx <- median(x)
axmmed <- abs(x - medx)
xmmed <- x - medx
xmmed2 <- xmmed*xmmed
msemed <- sum(xmmed2)/lx
qarr <- array(NA,dim=c(8,3))
for (j in 1:8) {
qarr[j,] <- iqd(x,j)
}
sdpo <- 0
adpo <- 0
for (i in 1:(lx-1)) {
for (j in (i+1):lx) {
ldi <- x[i]-x[j]
aldi <- abs(ldi)
sdpo = sdpo + ldi * ldi
adpo = adpo + aldi
}
}
denom <- (lx*(lx-1)/2)
sdpo = sdpo / denom
adpo = adpo / denom
gmd <- 0
for (i in 1:lx) {
for (j in 1:lx) {
ldi <- abs(x[i]-x[j])
gmd = gmd + ldi
}
}
gmd <- gmd / (lx*(lx-1))
sumx <- sum(x)
pk <- x / sumx
ck <- cumsum(pk)
dk <- array(NA,dim=lx)
for (i in 1:lx) {
if (ck[i] <= 0.5) dk[i] <- ck[i] else dk[i] <- 1 - ck[i]
}
bigd <- sum(dk) * 2 / (lx-1)
iod <- 1 - sum(pk*pk)
res[1,] <- c('Absolute range','absolute.htm', range)
res[2,] <- c('Relative range (unbiased)','relative.htm', range/sd(x))
res[3,] <- c('Relative range (biased)','relative.htm', range/sqrt(varx*biasf))
res[4,] <- c('Variance (unbiased)','unbiased.htm', varx)
res[5,] <- c('Variance (biased)','biased.htm', bvarx)
res[6,] <- c('Standard Deviation (unbiased)','unbiased1.htm', sdx)
res[7,] <- c('Standard Deviation (biased)','biased1.htm', bsdx)
res[8,] <- c('Coefficient of Variation (unbiased)','variation.htm', sdx/mx)
res[9,] <- c('Coefficient of Variation (biased)','variation.htm', bsdx/mx)
res[10,] <- c('Mean Squared Error (MSE versus 0)','mse.htm', mse0)
res[11,] <- c('Mean Squared Error (MSE versus Mean)','mse.htm', msem)
res[12,] <- c('Mean Absolute Deviation from Mean (MAD Mean)', 'mean2.htm', sum(axmm)/lx)
res[13,] <- c('Mean Absolute Deviation from Median (MAD Median)', 'median1.htm', sum(axmmed)/lx)
res[14,] <- c('Median Absolute Deviation from Mean', 'mean3.htm', median(axmm))
res[15,] <- c('Median Absolute Deviation from Median', 'median2.htm', median(axmmed))
res[16,] <- c('Mean Squared Deviation from Mean', 'mean1.htm', msem)
res[17,] <- c('Mean Squared Deviation from Median', 'median.htm', msemed)
load(file='createtable')
mylink1 <- hyperlink('difference.htm','Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[18,] <- c('', mylink2, qarr[1,1])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[19,] <- c('', mylink2, qarr[2,1])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[20,] <- c('', mylink2, qarr[3,1])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[21,] <- c('', mylink2, qarr[4,1])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[22,] <- c('', mylink2, qarr[5,1])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[23,] <- c('', mylink2, qarr[6,1])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[24,] <- c('', mylink2, qarr[7,1])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[25,] <- c('', mylink2, qarr[8,1])
mylink1 <- hyperlink('deviation.htm','Semi Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[26,] <- c('', mylink2, qarr[1,2])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[27,] <- c('', mylink2, qarr[2,2])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[28,] <- c('', mylink2, qarr[3,2])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[29,] <- c('', mylink2, qarr[4,2])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[30,] <- c('', mylink2, qarr[5,2])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[31,] <- c('', mylink2, qarr[6,2])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[32,] <- c('', mylink2, qarr[7,2])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[33,] <- c('', mylink2, qarr[8,2])
mylink1 <- hyperlink('variation1.htm','Coefficient of Quartile Variation','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[34,] <- c('', mylink2, qarr[1,3])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[35,] <- c('', mylink2, qarr[2,3])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[36,] <- c('', mylink2, qarr[3,3])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[37,] <- c('', mylink2, qarr[4,3])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[38,] <- c('', mylink2, qarr[5,3])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[39,] <- c('', mylink2, qarr[6,3])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[40,] <- c('', mylink2, qarr[7,3])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[41,] <- c('', mylink2, qarr[8,3])
res[42,] <- c('Number of all Pairs of Observations', 'pair_numbers.htm', lx*(lx-1)/2)
res[43,] <- c('Squared Differences between all Pairs of Observations', 'squared_differences.htm', sdpo)
res[44,] <- c('Mean Absolute Differences between all Pairs of Observations', 'mean_abs_differences.htm', adpo)
res[45,] <- c('Gini Mean Difference', 'gini_mean_difference.htm', gmd)
res[46,] <- c('Leik Measure of Dispersion', 'leiks_d.htm', bigd)
res[47,] <- c('Index of Diversity', 'diversity.htm', iod)
res[48,] <- c('Index of Qualitative Variation', 'qualitative_variation.htm', iod*lx/(lx-1))
res[49,] <- c('Coefficient of Dispersion', 'dispersion.htm', sum(axmm)/lx/medx)
res[50,] <- c('Observations', '', lx)
res
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variability - Ungrouped Data',2,TRUE)
a<-table.row.end(a)
for (i in 1:num) {
a<-table.row.start(a)
if (res[i,1] != '') {
a<-table.element(a,hyperlink(res[i,2],res[i,1],''),header=TRUE)
} else {
a<-table.element(a,res[i,2],header=TRUE)
}
a<-table.element(a,res[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')