Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 29 Dec 2009 07:44:45 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Dec/29/t1262097916213vff6f06gdhwe.htm/, Retrieved Wed, 15 Jan 2025 10:14:12 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=71130, Retrieved Wed, 15 Jan 2025 10:14:12 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsPaper
Estimated Impact196
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
- RMPD  [Multiple Regression] [Seatbelt] [2009-11-12 14:03:14] [b98453cac15ba1066b407e146608df68]
-    D    [Multiple Regression] [ws7_2] [2009-11-18 17:59:26] [8b1aef4e7013bd33fbc2a5833375c5f5]
- R PD        [Multiple Regression] [Multiple_Regressi...] [2009-12-29 14:44:45] [5b5bced41faf164488f2c271c918b21f] [Current]
Feedback Forum

Post a new message
Dataseries X:
2529	314
2196	318
3202	320
2718	323
2728	325
2354	327
2697	330
2651	331
2067	332
2641	334
2539	334
2294	334
2712	339
2314	345
3092	346
2677	352
2813	355
2668	358
2939	361
2617	363
2231	364
2481	365
2421	366
2408	370
2560	371
2100	371
3315	372
2801	373
2403	373
3024	374
2507	375
2980	375
2211	376
2471	376
2594	377
2452	377
2232	378
2373	379
3127	380
2802	384
2641	389
2787	390
2619	391
2806	392
2193	393
2323	394
2529	394
2412	395
2262	396
2154	397
3230	398
2295	399
2715	400
2733	400
2317	401
2730	401
1913	406
2390	407
2484	423
1960	427




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=71130&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=71130&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=71130&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 2798.64582612754 -1.29649455104450X[t] + 126.573614428065M1[t] -101.914798649428M2[t] + 865.440994811826M3[t] + 334.730478464959M4[t] + 338.982766477257M5[t] + 393.997858848719M6[t] + 298.931549040599M7[t] + 440.968744681435M8[t] -190.497565126685M9[t] + 148.998929424360M10[t] + 205.866309808120M11[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Y[t] =  +  2798.64582612754 -1.29649455104450X[t] +  126.573614428065M1[t] -101.914798649428M2[t] +  865.440994811826M3[t] +  334.730478464959M4[t] +  338.982766477257M5[t] +  393.997858848719M6[t] +  298.931549040599M7[t] +  440.968744681435M8[t] -190.497565126685M9[t] +  148.998929424360M10[t] +  205.866309808120M11[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=71130&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Y[t] =  +  2798.64582612754 -1.29649455104450X[t] +  126.573614428065M1[t] -101.914798649428M2[t] +  865.440994811826M3[t] +  334.730478464959M4[t] +  338.982766477257M5[t] +  393.997858848719M6[t] +  298.931549040599M7[t] +  440.968744681435M8[t] -190.497565126685M9[t] +  148.998929424360M10[t] +  205.866309808120M11[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=71130&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=71130&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 2798.64582612754 -1.29649455104450X[t] + 126.573614428065M1[t] -101.914798649428M2[t] + 865.440994811826M3[t] + 334.730478464959M4[t] + 338.982766477257M5[t] + 393.997858848719M6[t] + 298.931549040599M7[t] + 440.968744681435M8[t] -190.497565126685M9[t] + 148.998929424360M10[t] + 205.866309808120M11[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)2798.64582612754310.553539.011800
X-1.296494551044500.792395-1.63620.1084840.054242
M1126.573614428065106.0949381.1930.2388490.119424
M2-101.914798649428105.813332-0.96320.3403990.170199
M3865.440994811826105.6850818.188900
M4334.730478464959105.4013083.17580.0026390.001319
M5338.982766477257105.2268583.22140.0023180.001159
M6393.997858848719105.1307453.74770.0004880.000244
M7298.931549040599105.0242612.84630.0065360.003268
M8440.968744681435104.9831214.20040.0001185.9e-05
M9-190.497565126685104.904503-1.81590.0757650.037883
M10148.998929424360104.8691841.42080.1619740.080987
M11205.866309808120104.7915591.96450.0553960.027698

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 2798.64582612754 & 310.55353 & 9.0118 & 0 & 0 \tabularnewline
X & -1.29649455104450 & 0.792395 & -1.6362 & 0.108484 & 0.054242 \tabularnewline
M1 & 126.573614428065 & 106.094938 & 1.193 & 0.238849 & 0.119424 \tabularnewline
M2 & -101.914798649428 & 105.813332 & -0.9632 & 0.340399 & 0.170199 \tabularnewline
M3 & 865.440994811826 & 105.685081 & 8.1889 & 0 & 0 \tabularnewline
M4 & 334.730478464959 & 105.401308 & 3.1758 & 0.002639 & 0.001319 \tabularnewline
M5 & 338.982766477257 & 105.226858 & 3.2214 & 0.002318 & 0.001159 \tabularnewline
M6 & 393.997858848719 & 105.130745 & 3.7477 & 0.000488 & 0.000244 \tabularnewline
M7 & 298.931549040599 & 105.024261 & 2.8463 & 0.006536 & 0.003268 \tabularnewline
M8 & 440.968744681435 & 104.983121 & 4.2004 & 0.000118 & 5.9e-05 \tabularnewline
M9 & -190.497565126685 & 104.904503 & -1.8159 & 0.075765 & 0.037883 \tabularnewline
M10 & 148.998929424360 & 104.869184 & 1.4208 & 0.161974 & 0.080987 \tabularnewline
M11 & 205.866309808120 & 104.791559 & 1.9645 & 0.055396 & 0.027698 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=71130&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]2798.64582612754[/C][C]310.55353[/C][C]9.0118[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]X[/C][C]-1.29649455104450[/C][C]0.792395[/C][C]-1.6362[/C][C]0.108484[/C][C]0.054242[/C][/ROW]
[ROW][C]M1[/C][C]126.573614428065[/C][C]106.094938[/C][C]1.193[/C][C]0.238849[/C][C]0.119424[/C][/ROW]
[ROW][C]M2[/C][C]-101.914798649428[/C][C]105.813332[/C][C]-0.9632[/C][C]0.340399[/C][C]0.170199[/C][/ROW]
[ROW][C]M3[/C][C]865.440994811826[/C][C]105.685081[/C][C]8.1889[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M4[/C][C]334.730478464959[/C][C]105.401308[/C][C]3.1758[/C][C]0.002639[/C][C]0.001319[/C][/ROW]
[ROW][C]M5[/C][C]338.982766477257[/C][C]105.226858[/C][C]3.2214[/C][C]0.002318[/C][C]0.001159[/C][/ROW]
[ROW][C]M6[/C][C]393.997858848719[/C][C]105.130745[/C][C]3.7477[/C][C]0.000488[/C][C]0.000244[/C][/ROW]
[ROW][C]M7[/C][C]298.931549040599[/C][C]105.024261[/C][C]2.8463[/C][C]0.006536[/C][C]0.003268[/C][/ROW]
[ROW][C]M8[/C][C]440.968744681435[/C][C]104.983121[/C][C]4.2004[/C][C]0.000118[/C][C]5.9e-05[/C][/ROW]
[ROW][C]M9[/C][C]-190.497565126685[/C][C]104.904503[/C][C]-1.8159[/C][C]0.075765[/C][C]0.037883[/C][/ROW]
[ROW][C]M10[/C][C]148.998929424360[/C][C]104.869184[/C][C]1.4208[/C][C]0.161974[/C][C]0.080987[/C][/ROW]
[ROW][C]M11[/C][C]205.866309808120[/C][C]104.791559[/C][C]1.9645[/C][C]0.055396[/C][C]0.027698[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=71130&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=71130&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)2798.64582612754310.553539.011800
X-1.296494551044500.792395-1.63620.1084840.054242
M1126.573614428065106.0949381.1930.2388490.119424
M2-101.914798649428105.813332-0.96320.3403990.170199
M3865.440994811826105.6850818.188900
M4334.730478464959105.4013083.17580.0026390.001319
M5338.982766477257105.2268583.22140.0023180.001159
M6393.997858848719105.1307453.74770.0004880.000244
M7298.931549040599105.0242612.84630.0065360.003268
M8440.968744681435104.9831214.20040.0001185.9e-05
M9-190.497565126685104.904503-1.81590.0757650.037883
M10148.998929424360104.8691841.42080.1619740.080987
M11205.866309808120104.7915591.96450.0553960.027698







Multiple Linear Regression - Regression Statistics
Multiple R0.880399109517796
R-squared0.775102592039729
Adjusted R-squared0.717681977241361
F-TEST (value)13.4986815233781
F-TEST (DF numerator)12
F-TEST (DF denominator)47
p-value1.89890325685838e-11
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation165.674653926675
Sum Squared Residuals1290060.27482500

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.880399109517796 \tabularnewline
R-squared & 0.775102592039729 \tabularnewline
Adjusted R-squared & 0.717681977241361 \tabularnewline
F-TEST (value) & 13.4986815233781 \tabularnewline
F-TEST (DF numerator) & 12 \tabularnewline
F-TEST (DF denominator) & 47 \tabularnewline
p-value & 1.89890325685838e-11 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 165.674653926675 \tabularnewline
Sum Squared Residuals & 1290060.27482500 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=71130&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.880399109517796[/C][/ROW]
[ROW][C]R-squared[/C][C]0.775102592039729[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.717681977241361[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]13.4986815233781[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]12[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]47[/C][/ROW]
[ROW][C]p-value[/C][C]1.89890325685838e-11[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]165.674653926675[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]1290060.27482500[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=71130&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=71130&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.880399109517796
R-squared0.775102592039729
Adjusted R-squared0.717681977241361
F-TEST (value)13.4986815233781
F-TEST (DF numerator)12
F-TEST (DF denominator)47
p-value1.89890325685838e-11
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation165.674653926675
Sum Squared Residuals1290060.27482500







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
125292518.1201515276310.8798484723707
221962284.44576024596-88.4457602459581
332023249.20856460512-47.2085646051217
427182714.608564605123.3914353948774
527282716.2678635153311.7321364846685
623542768.68996678470-414.689966784705
726972669.7341733234527.265826676549
826512810.47487441324-159.474874413242
920672177.71207005408-110.712070054078
1026412514.61557550303126.384424496967
1125392571.48295588679-32.4829558867934
1222942365.61664607867-71.6166460786734
1327122485.70778775152226.292212248483
1423142249.4404073677664.5595926322436
1530923215.49970627797-123.499706277965
1626772677.01022262483-0.0102226248318100
1728132677.37302698400135.626973016004
1826682728.49863570232-60.498635702325
1929392629.54284224107309.457157758928
2026172768.98704877982-151.987048779818
2122312136.2242444206594.775755579346
2224812474.424244420656.575755579346
2324212529.99513025337-108.995130253370
2424082318.9428422410789.0571577589282
2525602444.21996211809115.780037881907
2621002215.7315490406-115.731549040599
2733153181.79084795081133.209152049191
2828012649.78383705290151.216162947103
2924032654.03612506519-251.036125065195
3030242707.75472288561316.245277114387
3125072611.39191852645-104.391918526449
3229802753.42911416728226.570885832716
3322112120.6663098081290.33369019188
3424712460.1628043591610.8371956408356
3525942515.7336901918878.2663098081199
3624522309.86738038376142.132619616240
3722322435.14450026078-203.144500260781
3823732205.35959263224167.640407367757
3931273171.41889154245-44.4188915424526
4028022635.52239699141166.477603008592
4126412633.292212248487.70778775151669
4227872687.010810068999.989189931099
4326192590.6480057097428.3519942902633
4428062731.3887067995374.611293200472
4521932098.6259024403694.3740975596365
4623232436.82590244036-113.825902440363
4725292493.6932828241235.3067171758764
4824122286.53047846496125.469521535041
4922622411.80759834198-149.807598341980
5021542182.02269071344-28.0226907134425
5132303148.0819896236581.9180103763483
5222952616.07497872574-321.074978725741
5327152619.0307721869995.9692278130061
5427332674.0458645584658.9541354415439
5523172577.68306019929-260.683060199292
5627302719.7202558401310.2797441598727
5719132081.77147327678-168.771473276785
5823902419.97147327679-29.971473276785
5924842456.0949408438327.9050591561669
6019602245.04265283154-285.042652831535

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 2529 & 2518.12015152763 & 10.8798484723707 \tabularnewline
2 & 2196 & 2284.44576024596 & -88.4457602459581 \tabularnewline
3 & 3202 & 3249.20856460512 & -47.2085646051217 \tabularnewline
4 & 2718 & 2714.60856460512 & 3.3914353948774 \tabularnewline
5 & 2728 & 2716.26786351533 & 11.7321364846685 \tabularnewline
6 & 2354 & 2768.68996678470 & -414.689966784705 \tabularnewline
7 & 2697 & 2669.73417332345 & 27.265826676549 \tabularnewline
8 & 2651 & 2810.47487441324 & -159.474874413242 \tabularnewline
9 & 2067 & 2177.71207005408 & -110.712070054078 \tabularnewline
10 & 2641 & 2514.61557550303 & 126.384424496967 \tabularnewline
11 & 2539 & 2571.48295588679 & -32.4829558867934 \tabularnewline
12 & 2294 & 2365.61664607867 & -71.6166460786734 \tabularnewline
13 & 2712 & 2485.70778775152 & 226.292212248483 \tabularnewline
14 & 2314 & 2249.44040736776 & 64.5595926322436 \tabularnewline
15 & 3092 & 3215.49970627797 & -123.499706277965 \tabularnewline
16 & 2677 & 2677.01022262483 & -0.0102226248318100 \tabularnewline
17 & 2813 & 2677.37302698400 & 135.626973016004 \tabularnewline
18 & 2668 & 2728.49863570232 & -60.498635702325 \tabularnewline
19 & 2939 & 2629.54284224107 & 309.457157758928 \tabularnewline
20 & 2617 & 2768.98704877982 & -151.987048779818 \tabularnewline
21 & 2231 & 2136.22424442065 & 94.775755579346 \tabularnewline
22 & 2481 & 2474.42424442065 & 6.575755579346 \tabularnewline
23 & 2421 & 2529.99513025337 & -108.995130253370 \tabularnewline
24 & 2408 & 2318.94284224107 & 89.0571577589282 \tabularnewline
25 & 2560 & 2444.21996211809 & 115.780037881907 \tabularnewline
26 & 2100 & 2215.7315490406 & -115.731549040599 \tabularnewline
27 & 3315 & 3181.79084795081 & 133.209152049191 \tabularnewline
28 & 2801 & 2649.78383705290 & 151.216162947103 \tabularnewline
29 & 2403 & 2654.03612506519 & -251.036125065195 \tabularnewline
30 & 3024 & 2707.75472288561 & 316.245277114387 \tabularnewline
31 & 2507 & 2611.39191852645 & -104.391918526449 \tabularnewline
32 & 2980 & 2753.42911416728 & 226.570885832716 \tabularnewline
33 & 2211 & 2120.66630980812 & 90.33369019188 \tabularnewline
34 & 2471 & 2460.16280435916 & 10.8371956408356 \tabularnewline
35 & 2594 & 2515.73369019188 & 78.2663098081199 \tabularnewline
36 & 2452 & 2309.86738038376 & 142.132619616240 \tabularnewline
37 & 2232 & 2435.14450026078 & -203.144500260781 \tabularnewline
38 & 2373 & 2205.35959263224 & 167.640407367757 \tabularnewline
39 & 3127 & 3171.41889154245 & -44.4188915424526 \tabularnewline
40 & 2802 & 2635.52239699141 & 166.477603008592 \tabularnewline
41 & 2641 & 2633.29221224848 & 7.70778775151669 \tabularnewline
42 & 2787 & 2687.0108100689 & 99.989189931099 \tabularnewline
43 & 2619 & 2590.64800570974 & 28.3519942902633 \tabularnewline
44 & 2806 & 2731.38870679953 & 74.611293200472 \tabularnewline
45 & 2193 & 2098.62590244036 & 94.3740975596365 \tabularnewline
46 & 2323 & 2436.82590244036 & -113.825902440363 \tabularnewline
47 & 2529 & 2493.69328282412 & 35.3067171758764 \tabularnewline
48 & 2412 & 2286.53047846496 & 125.469521535041 \tabularnewline
49 & 2262 & 2411.80759834198 & -149.807598341980 \tabularnewline
50 & 2154 & 2182.02269071344 & -28.0226907134425 \tabularnewline
51 & 3230 & 3148.08198962365 & 81.9180103763483 \tabularnewline
52 & 2295 & 2616.07497872574 & -321.074978725741 \tabularnewline
53 & 2715 & 2619.03077218699 & 95.9692278130061 \tabularnewline
54 & 2733 & 2674.04586455846 & 58.9541354415439 \tabularnewline
55 & 2317 & 2577.68306019929 & -260.683060199292 \tabularnewline
56 & 2730 & 2719.72025584013 & 10.2797441598727 \tabularnewline
57 & 1913 & 2081.77147327678 & -168.771473276785 \tabularnewline
58 & 2390 & 2419.97147327679 & -29.971473276785 \tabularnewline
59 & 2484 & 2456.09494084383 & 27.9050591561669 \tabularnewline
60 & 1960 & 2245.04265283154 & -285.042652831535 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=71130&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]2529[/C][C]2518.12015152763[/C][C]10.8798484723707[/C][/ROW]
[ROW][C]2[/C][C]2196[/C][C]2284.44576024596[/C][C]-88.4457602459581[/C][/ROW]
[ROW][C]3[/C][C]3202[/C][C]3249.20856460512[/C][C]-47.2085646051217[/C][/ROW]
[ROW][C]4[/C][C]2718[/C][C]2714.60856460512[/C][C]3.3914353948774[/C][/ROW]
[ROW][C]5[/C][C]2728[/C][C]2716.26786351533[/C][C]11.7321364846685[/C][/ROW]
[ROW][C]6[/C][C]2354[/C][C]2768.68996678470[/C][C]-414.689966784705[/C][/ROW]
[ROW][C]7[/C][C]2697[/C][C]2669.73417332345[/C][C]27.265826676549[/C][/ROW]
[ROW][C]8[/C][C]2651[/C][C]2810.47487441324[/C][C]-159.474874413242[/C][/ROW]
[ROW][C]9[/C][C]2067[/C][C]2177.71207005408[/C][C]-110.712070054078[/C][/ROW]
[ROW][C]10[/C][C]2641[/C][C]2514.61557550303[/C][C]126.384424496967[/C][/ROW]
[ROW][C]11[/C][C]2539[/C][C]2571.48295588679[/C][C]-32.4829558867934[/C][/ROW]
[ROW][C]12[/C][C]2294[/C][C]2365.61664607867[/C][C]-71.6166460786734[/C][/ROW]
[ROW][C]13[/C][C]2712[/C][C]2485.70778775152[/C][C]226.292212248483[/C][/ROW]
[ROW][C]14[/C][C]2314[/C][C]2249.44040736776[/C][C]64.5595926322436[/C][/ROW]
[ROW][C]15[/C][C]3092[/C][C]3215.49970627797[/C][C]-123.499706277965[/C][/ROW]
[ROW][C]16[/C][C]2677[/C][C]2677.01022262483[/C][C]-0.0102226248318100[/C][/ROW]
[ROW][C]17[/C][C]2813[/C][C]2677.37302698400[/C][C]135.626973016004[/C][/ROW]
[ROW][C]18[/C][C]2668[/C][C]2728.49863570232[/C][C]-60.498635702325[/C][/ROW]
[ROW][C]19[/C][C]2939[/C][C]2629.54284224107[/C][C]309.457157758928[/C][/ROW]
[ROW][C]20[/C][C]2617[/C][C]2768.98704877982[/C][C]-151.987048779818[/C][/ROW]
[ROW][C]21[/C][C]2231[/C][C]2136.22424442065[/C][C]94.775755579346[/C][/ROW]
[ROW][C]22[/C][C]2481[/C][C]2474.42424442065[/C][C]6.575755579346[/C][/ROW]
[ROW][C]23[/C][C]2421[/C][C]2529.99513025337[/C][C]-108.995130253370[/C][/ROW]
[ROW][C]24[/C][C]2408[/C][C]2318.94284224107[/C][C]89.0571577589282[/C][/ROW]
[ROW][C]25[/C][C]2560[/C][C]2444.21996211809[/C][C]115.780037881907[/C][/ROW]
[ROW][C]26[/C][C]2100[/C][C]2215.7315490406[/C][C]-115.731549040599[/C][/ROW]
[ROW][C]27[/C][C]3315[/C][C]3181.79084795081[/C][C]133.209152049191[/C][/ROW]
[ROW][C]28[/C][C]2801[/C][C]2649.78383705290[/C][C]151.216162947103[/C][/ROW]
[ROW][C]29[/C][C]2403[/C][C]2654.03612506519[/C][C]-251.036125065195[/C][/ROW]
[ROW][C]30[/C][C]3024[/C][C]2707.75472288561[/C][C]316.245277114387[/C][/ROW]
[ROW][C]31[/C][C]2507[/C][C]2611.39191852645[/C][C]-104.391918526449[/C][/ROW]
[ROW][C]32[/C][C]2980[/C][C]2753.42911416728[/C][C]226.570885832716[/C][/ROW]
[ROW][C]33[/C][C]2211[/C][C]2120.66630980812[/C][C]90.33369019188[/C][/ROW]
[ROW][C]34[/C][C]2471[/C][C]2460.16280435916[/C][C]10.8371956408356[/C][/ROW]
[ROW][C]35[/C][C]2594[/C][C]2515.73369019188[/C][C]78.2663098081199[/C][/ROW]
[ROW][C]36[/C][C]2452[/C][C]2309.86738038376[/C][C]142.132619616240[/C][/ROW]
[ROW][C]37[/C][C]2232[/C][C]2435.14450026078[/C][C]-203.144500260781[/C][/ROW]
[ROW][C]38[/C][C]2373[/C][C]2205.35959263224[/C][C]167.640407367757[/C][/ROW]
[ROW][C]39[/C][C]3127[/C][C]3171.41889154245[/C][C]-44.4188915424526[/C][/ROW]
[ROW][C]40[/C][C]2802[/C][C]2635.52239699141[/C][C]166.477603008592[/C][/ROW]
[ROW][C]41[/C][C]2641[/C][C]2633.29221224848[/C][C]7.70778775151669[/C][/ROW]
[ROW][C]42[/C][C]2787[/C][C]2687.0108100689[/C][C]99.989189931099[/C][/ROW]
[ROW][C]43[/C][C]2619[/C][C]2590.64800570974[/C][C]28.3519942902633[/C][/ROW]
[ROW][C]44[/C][C]2806[/C][C]2731.38870679953[/C][C]74.611293200472[/C][/ROW]
[ROW][C]45[/C][C]2193[/C][C]2098.62590244036[/C][C]94.3740975596365[/C][/ROW]
[ROW][C]46[/C][C]2323[/C][C]2436.82590244036[/C][C]-113.825902440363[/C][/ROW]
[ROW][C]47[/C][C]2529[/C][C]2493.69328282412[/C][C]35.3067171758764[/C][/ROW]
[ROW][C]48[/C][C]2412[/C][C]2286.53047846496[/C][C]125.469521535041[/C][/ROW]
[ROW][C]49[/C][C]2262[/C][C]2411.80759834198[/C][C]-149.807598341980[/C][/ROW]
[ROW][C]50[/C][C]2154[/C][C]2182.02269071344[/C][C]-28.0226907134425[/C][/ROW]
[ROW][C]51[/C][C]3230[/C][C]3148.08198962365[/C][C]81.9180103763483[/C][/ROW]
[ROW][C]52[/C][C]2295[/C][C]2616.07497872574[/C][C]-321.074978725741[/C][/ROW]
[ROW][C]53[/C][C]2715[/C][C]2619.03077218699[/C][C]95.9692278130061[/C][/ROW]
[ROW][C]54[/C][C]2733[/C][C]2674.04586455846[/C][C]58.9541354415439[/C][/ROW]
[ROW][C]55[/C][C]2317[/C][C]2577.68306019929[/C][C]-260.683060199292[/C][/ROW]
[ROW][C]56[/C][C]2730[/C][C]2719.72025584013[/C][C]10.2797441598727[/C][/ROW]
[ROW][C]57[/C][C]1913[/C][C]2081.77147327678[/C][C]-168.771473276785[/C][/ROW]
[ROW][C]58[/C][C]2390[/C][C]2419.97147327679[/C][C]-29.971473276785[/C][/ROW]
[ROW][C]59[/C][C]2484[/C][C]2456.09494084383[/C][C]27.9050591561669[/C][/ROW]
[ROW][C]60[/C][C]1960[/C][C]2245.04265283154[/C][C]-285.042652831535[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=71130&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=71130&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
125292518.1201515276310.8798484723707
221962284.44576024596-88.4457602459581
332023249.20856460512-47.2085646051217
427182714.608564605123.3914353948774
527282716.2678635153311.7321364846685
623542768.68996678470-414.689966784705
726972669.7341733234527.265826676549
826512810.47487441324-159.474874413242
920672177.71207005408-110.712070054078
1026412514.61557550303126.384424496967
1125392571.48295588679-32.4829558867934
1222942365.61664607867-71.6166460786734
1327122485.70778775152226.292212248483
1423142249.4404073677664.5595926322436
1530923215.49970627797-123.499706277965
1626772677.01022262483-0.0102226248318100
1728132677.37302698400135.626973016004
1826682728.49863570232-60.498635702325
1929392629.54284224107309.457157758928
2026172768.98704877982-151.987048779818
2122312136.2242444206594.775755579346
2224812474.424244420656.575755579346
2324212529.99513025337-108.995130253370
2424082318.9428422410789.0571577589282
2525602444.21996211809115.780037881907
2621002215.7315490406-115.731549040599
2733153181.79084795081133.209152049191
2828012649.78383705290151.216162947103
2924032654.03612506519-251.036125065195
3030242707.75472288561316.245277114387
3125072611.39191852645-104.391918526449
3229802753.42911416728226.570885832716
3322112120.6663098081290.33369019188
3424712460.1628043591610.8371956408356
3525942515.7336901918878.2663098081199
3624522309.86738038376142.132619616240
3722322435.14450026078-203.144500260781
3823732205.35959263224167.640407367757
3931273171.41889154245-44.4188915424526
4028022635.52239699141166.477603008592
4126412633.292212248487.70778775151669
4227872687.010810068999.989189931099
4326192590.6480057097428.3519942902633
4428062731.3887067995374.611293200472
4521932098.6259024403694.3740975596365
4623232436.82590244036-113.825902440363
4725292493.6932828241235.3067171758764
4824122286.53047846496125.469521535041
4922622411.80759834198-149.807598341980
5021542182.02269071344-28.0226907134425
5132303148.0819896236581.9180103763483
5222952616.07497872574-321.074978725741
5327152619.0307721869995.9692278130061
5427332674.0458645584658.9541354415439
5523172577.68306019929-260.683060199292
5627302719.7202558401310.2797441598727
5719132081.77147327678-168.771473276785
5823902419.97147327679-29.971473276785
5924842456.0949408438327.9050591561669
6019602245.04265283154-285.042652831535







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
160.2250678004114150.4501356008228290.774932199588585
170.1105709077556430.2211418155112870.889429092244357
180.1998673761754300.3997347523508610.80013262382457
190.1834408122488120.3668816244976240.816559187751188
200.2076089090849040.4152178181698090.792391090915096
210.1328267672585000.2656535345170010.8671732327415
220.1919809661598290.3839619323196580.808019033840171
230.2432108452177720.4864216904355440.756789154782228
240.1687958022507530.3375916045015060.831204197749247
250.1736606324429770.3473212648859530.826339367557023
260.2474397813947090.4948795627894170.752560218605291
270.2089800445801830.4179600891603660.791019955419817
280.1654789690685990.3309579381371970.834521030931401
290.6565441006579890.6869117986840220.343455899342011
300.8667211992158980.2665576015682040.133278800784102
310.892244283968820.215511432062360.10775571603118
320.8928206055467960.2143587889064070.107179394453204
330.838031279931280.3239374401374390.161968720068720
340.7806034919466860.4387930161066280.219396508053314
350.73995308482720.5200938303455990.260046915172799
360.6498453163915980.7003093672168040.350154683608402
370.71858122612570.56283754774860.2814187738743
380.634597674668860.730804650662280.36540232533114
390.655104761379250.68979047724150.34489523862075
400.799224500572030.4015509988559390.200775499427969
410.7597637016520910.4804725966958170.240236298347909
420.6395829459247490.7208341081505010.360417054075251
430.6315302613187270.7369394773625450.368469738681272
440.4551566383302790.9103132766605590.544843361669721

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
16 & 0.225067800411415 & 0.450135600822829 & 0.774932199588585 \tabularnewline
17 & 0.110570907755643 & 0.221141815511287 & 0.889429092244357 \tabularnewline
18 & 0.199867376175430 & 0.399734752350861 & 0.80013262382457 \tabularnewline
19 & 0.183440812248812 & 0.366881624497624 & 0.816559187751188 \tabularnewline
20 & 0.207608909084904 & 0.415217818169809 & 0.792391090915096 \tabularnewline
21 & 0.132826767258500 & 0.265653534517001 & 0.8671732327415 \tabularnewline
22 & 0.191980966159829 & 0.383961932319658 & 0.808019033840171 \tabularnewline
23 & 0.243210845217772 & 0.486421690435544 & 0.756789154782228 \tabularnewline
24 & 0.168795802250753 & 0.337591604501506 & 0.831204197749247 \tabularnewline
25 & 0.173660632442977 & 0.347321264885953 & 0.826339367557023 \tabularnewline
26 & 0.247439781394709 & 0.494879562789417 & 0.752560218605291 \tabularnewline
27 & 0.208980044580183 & 0.417960089160366 & 0.791019955419817 \tabularnewline
28 & 0.165478969068599 & 0.330957938137197 & 0.834521030931401 \tabularnewline
29 & 0.656544100657989 & 0.686911798684022 & 0.343455899342011 \tabularnewline
30 & 0.866721199215898 & 0.266557601568204 & 0.133278800784102 \tabularnewline
31 & 0.89224428396882 & 0.21551143206236 & 0.10775571603118 \tabularnewline
32 & 0.892820605546796 & 0.214358788906407 & 0.107179394453204 \tabularnewline
33 & 0.83803127993128 & 0.323937440137439 & 0.161968720068720 \tabularnewline
34 & 0.780603491946686 & 0.438793016106628 & 0.219396508053314 \tabularnewline
35 & 0.7399530848272 & 0.520093830345599 & 0.260046915172799 \tabularnewline
36 & 0.649845316391598 & 0.700309367216804 & 0.350154683608402 \tabularnewline
37 & 0.7185812261257 & 0.5628375477486 & 0.2814187738743 \tabularnewline
38 & 0.63459767466886 & 0.73080465066228 & 0.36540232533114 \tabularnewline
39 & 0.65510476137925 & 0.6897904772415 & 0.34489523862075 \tabularnewline
40 & 0.79922450057203 & 0.401550998855939 & 0.200775499427969 \tabularnewline
41 & 0.759763701652091 & 0.480472596695817 & 0.240236298347909 \tabularnewline
42 & 0.639582945924749 & 0.720834108150501 & 0.360417054075251 \tabularnewline
43 & 0.631530261318727 & 0.736939477362545 & 0.368469738681272 \tabularnewline
44 & 0.455156638330279 & 0.910313276660559 & 0.544843361669721 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=71130&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]16[/C][C]0.225067800411415[/C][C]0.450135600822829[/C][C]0.774932199588585[/C][/ROW]
[ROW][C]17[/C][C]0.110570907755643[/C][C]0.221141815511287[/C][C]0.889429092244357[/C][/ROW]
[ROW][C]18[/C][C]0.199867376175430[/C][C]0.399734752350861[/C][C]0.80013262382457[/C][/ROW]
[ROW][C]19[/C][C]0.183440812248812[/C][C]0.366881624497624[/C][C]0.816559187751188[/C][/ROW]
[ROW][C]20[/C][C]0.207608909084904[/C][C]0.415217818169809[/C][C]0.792391090915096[/C][/ROW]
[ROW][C]21[/C][C]0.132826767258500[/C][C]0.265653534517001[/C][C]0.8671732327415[/C][/ROW]
[ROW][C]22[/C][C]0.191980966159829[/C][C]0.383961932319658[/C][C]0.808019033840171[/C][/ROW]
[ROW][C]23[/C][C]0.243210845217772[/C][C]0.486421690435544[/C][C]0.756789154782228[/C][/ROW]
[ROW][C]24[/C][C]0.168795802250753[/C][C]0.337591604501506[/C][C]0.831204197749247[/C][/ROW]
[ROW][C]25[/C][C]0.173660632442977[/C][C]0.347321264885953[/C][C]0.826339367557023[/C][/ROW]
[ROW][C]26[/C][C]0.247439781394709[/C][C]0.494879562789417[/C][C]0.752560218605291[/C][/ROW]
[ROW][C]27[/C][C]0.208980044580183[/C][C]0.417960089160366[/C][C]0.791019955419817[/C][/ROW]
[ROW][C]28[/C][C]0.165478969068599[/C][C]0.330957938137197[/C][C]0.834521030931401[/C][/ROW]
[ROW][C]29[/C][C]0.656544100657989[/C][C]0.686911798684022[/C][C]0.343455899342011[/C][/ROW]
[ROW][C]30[/C][C]0.866721199215898[/C][C]0.266557601568204[/C][C]0.133278800784102[/C][/ROW]
[ROW][C]31[/C][C]0.89224428396882[/C][C]0.21551143206236[/C][C]0.10775571603118[/C][/ROW]
[ROW][C]32[/C][C]0.892820605546796[/C][C]0.214358788906407[/C][C]0.107179394453204[/C][/ROW]
[ROW][C]33[/C][C]0.83803127993128[/C][C]0.323937440137439[/C][C]0.161968720068720[/C][/ROW]
[ROW][C]34[/C][C]0.780603491946686[/C][C]0.438793016106628[/C][C]0.219396508053314[/C][/ROW]
[ROW][C]35[/C][C]0.7399530848272[/C][C]0.520093830345599[/C][C]0.260046915172799[/C][/ROW]
[ROW][C]36[/C][C]0.649845316391598[/C][C]0.700309367216804[/C][C]0.350154683608402[/C][/ROW]
[ROW][C]37[/C][C]0.7185812261257[/C][C]0.5628375477486[/C][C]0.2814187738743[/C][/ROW]
[ROW][C]38[/C][C]0.63459767466886[/C][C]0.73080465066228[/C][C]0.36540232533114[/C][/ROW]
[ROW][C]39[/C][C]0.65510476137925[/C][C]0.6897904772415[/C][C]0.34489523862075[/C][/ROW]
[ROW][C]40[/C][C]0.79922450057203[/C][C]0.401550998855939[/C][C]0.200775499427969[/C][/ROW]
[ROW][C]41[/C][C]0.759763701652091[/C][C]0.480472596695817[/C][C]0.240236298347909[/C][/ROW]
[ROW][C]42[/C][C]0.639582945924749[/C][C]0.720834108150501[/C][C]0.360417054075251[/C][/ROW]
[ROW][C]43[/C][C]0.631530261318727[/C][C]0.736939477362545[/C][C]0.368469738681272[/C][/ROW]
[ROW][C]44[/C][C]0.455156638330279[/C][C]0.910313276660559[/C][C]0.544843361669721[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=71130&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=71130&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
160.2250678004114150.4501356008228290.774932199588585
170.1105709077556430.2211418155112870.889429092244357
180.1998673761754300.3997347523508610.80013262382457
190.1834408122488120.3668816244976240.816559187751188
200.2076089090849040.4152178181698090.792391090915096
210.1328267672585000.2656535345170010.8671732327415
220.1919809661598290.3839619323196580.808019033840171
230.2432108452177720.4864216904355440.756789154782228
240.1687958022507530.3375916045015060.831204197749247
250.1736606324429770.3473212648859530.826339367557023
260.2474397813947090.4948795627894170.752560218605291
270.2089800445801830.4179600891603660.791019955419817
280.1654789690685990.3309579381371970.834521030931401
290.6565441006579890.6869117986840220.343455899342011
300.8667211992158980.2665576015682040.133278800784102
310.892244283968820.215511432062360.10775571603118
320.8928206055467960.2143587889064070.107179394453204
330.838031279931280.3239374401374390.161968720068720
340.7806034919466860.4387930161066280.219396508053314
350.73995308482720.5200938303455990.260046915172799
360.6498453163915980.7003093672168040.350154683608402
370.71858122612570.56283754774860.2814187738743
380.634597674668860.730804650662280.36540232533114
390.655104761379250.68979047724150.34489523862075
400.799224500572030.4015509988559390.200775499427969
410.7597637016520910.4804725966958170.240236298347909
420.6395829459247490.7208341081505010.360417054075251
430.6315302613187270.7369394773625450.368469738681272
440.4551566383302790.9103132766605590.544843361669721







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level00OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 0 & 0 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=71130&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=71130&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=71130&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level00OK



Parameters (Session):
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}