Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationWed, 03 Jun 2009 11:53:14 -0600
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Jun/03/t1244051852vedsr2277ouwvs2.htm/, Retrieved Tue, 12 Nov 2024 22:17:38 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=41515, Retrieved Tue, 12 Nov 2024 22:17:38 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact203
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [(Partial) Autocorrelation Function] [autocorr - niet w...] [2009-05-13 18:11:28] [74be16979710d4c4e7c6647856088456]
- RMPD  [Bootstrap Plot - Central Tendency] [bootstrap plot - ...] [2009-05-13 18:23:37] [74be16979710d4c4e7c6647856088456]
-   PD    [Bootstrap Plot - Central Tendency] [bootstrap 750 - m...] [2009-05-13 18:33:55] [74be16979710d4c4e7c6647856088456]
- RMPD      [Variability] [variability - max...] [2009-05-22 12:40:32] [74be16979710d4c4e7c6647856088456]
- RMPD          [(Partial) Autocorrelation Function] [Robin Bosmans Dat...] [2009-06-03 17:53:14] [f565a348fef35d164bc634b6b1fffd89] [Current]
Feedback Forum

Post a new message
Dataseries X:
41086
39690
43129
37863
35953
29133
24693
22205
21725
27192
21790
13253
37702
30364
32609
30212
29965
28352
25814
22414
20506
28806
22228
13971
36845
35338
35022
34777
26887
23970
22780
17351
21382
24561
17409
11514
31514
27071
29462
26105
22397
23843
21705
18089
20764
25316
17704
15548
28029
29383
36438
32034
22679
24319
18004
17537
20366
22782
19169
13807
29743
25591
29096
26482
22405
27044
17970
18730
19684
19785
18479
10698




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=41515&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=41515&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=41515&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ 72.249.76.132







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.4995384.23873.3e-05
20.2940862.49540.007437
30.1860061.57830.059439
4-0.025916-0.21990.413283
5-0.117689-0.99860.16066
6-0.219519-1.86270.033294
7-0.186776-1.58480.058692
8-0.100033-0.84880.199402
90.0287850.24420.403868
100.0730490.61980.26866
110.2349241.99340.025004
120.6432675.45830
130.2766412.34740.010829
140.1331651.12990.131125
150.0782980.66440.254283
16-0.092697-0.78660.217061
17-0.124197-1.05380.147738
18-0.205911-1.74720.042432
19-0.200215-1.69890.04683
20-0.093638-0.79450.214744
21-0.010596-0.08990.464304
220.053930.45760.324306
230.234881.9930.025025
240.5403064.58469e-06
250.256742.17850.016322
260.1230121.04380.150037
270.0211490.17950.429042
28-0.115572-0.98070.165021
29-0.138651-1.17650.121637
30-0.231081-1.96080.026887
31-0.210914-1.78970.038857
32-0.114261-0.96950.167761
33-0.071502-0.60670.272975
34-0.041658-0.35350.362382
350.0741010.62880.265746
360.3028742.570.00612
370.1024320.86920.193823
380.0261950.22230.412367
39-0.054585-0.46320.32232
40-0.14598-1.23870.109743
41-0.145596-1.23540.110345
42-0.237249-2.01310.023921
43-0.205485-1.74360.042748
44-0.145312-1.2330.110791
45-0.108272-0.91870.180654
46-0.045215-0.38370.351179
470.0376910.31980.375017
480.2249491.90880.03014

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.499538 & 4.2387 & 3.3e-05 \tabularnewline
2 & 0.294086 & 2.4954 & 0.007437 \tabularnewline
3 & 0.186006 & 1.5783 & 0.059439 \tabularnewline
4 & -0.025916 & -0.2199 & 0.413283 \tabularnewline
5 & -0.117689 & -0.9986 & 0.16066 \tabularnewline
6 & -0.219519 & -1.8627 & 0.033294 \tabularnewline
7 & -0.186776 & -1.5848 & 0.058692 \tabularnewline
8 & -0.100033 & -0.8488 & 0.199402 \tabularnewline
9 & 0.028785 & 0.2442 & 0.403868 \tabularnewline
10 & 0.073049 & 0.6198 & 0.26866 \tabularnewline
11 & 0.234924 & 1.9934 & 0.025004 \tabularnewline
12 & 0.643267 & 5.4583 & 0 \tabularnewline
13 & 0.276641 & 2.3474 & 0.010829 \tabularnewline
14 & 0.133165 & 1.1299 & 0.131125 \tabularnewline
15 & 0.078298 & 0.6644 & 0.254283 \tabularnewline
16 & -0.092697 & -0.7866 & 0.217061 \tabularnewline
17 & -0.124197 & -1.0538 & 0.147738 \tabularnewline
18 & -0.205911 & -1.7472 & 0.042432 \tabularnewline
19 & -0.200215 & -1.6989 & 0.04683 \tabularnewline
20 & -0.093638 & -0.7945 & 0.214744 \tabularnewline
21 & -0.010596 & -0.0899 & 0.464304 \tabularnewline
22 & 0.05393 & 0.4576 & 0.324306 \tabularnewline
23 & 0.23488 & 1.993 & 0.025025 \tabularnewline
24 & 0.540306 & 4.5846 & 9e-06 \tabularnewline
25 & 0.25674 & 2.1785 & 0.016322 \tabularnewline
26 & 0.123012 & 1.0438 & 0.150037 \tabularnewline
27 & 0.021149 & 0.1795 & 0.429042 \tabularnewline
28 & -0.115572 & -0.9807 & 0.165021 \tabularnewline
29 & -0.138651 & -1.1765 & 0.121637 \tabularnewline
30 & -0.231081 & -1.9608 & 0.026887 \tabularnewline
31 & -0.210914 & -1.7897 & 0.038857 \tabularnewline
32 & -0.114261 & -0.9695 & 0.167761 \tabularnewline
33 & -0.071502 & -0.6067 & 0.272975 \tabularnewline
34 & -0.041658 & -0.3535 & 0.362382 \tabularnewline
35 & 0.074101 & 0.6288 & 0.265746 \tabularnewline
36 & 0.302874 & 2.57 & 0.00612 \tabularnewline
37 & 0.102432 & 0.8692 & 0.193823 \tabularnewline
38 & 0.026195 & 0.2223 & 0.412367 \tabularnewline
39 & -0.054585 & -0.4632 & 0.32232 \tabularnewline
40 & -0.14598 & -1.2387 & 0.109743 \tabularnewline
41 & -0.145596 & -1.2354 & 0.110345 \tabularnewline
42 & -0.237249 & -2.0131 & 0.023921 \tabularnewline
43 & -0.205485 & -1.7436 & 0.042748 \tabularnewline
44 & -0.145312 & -1.233 & 0.110791 \tabularnewline
45 & -0.108272 & -0.9187 & 0.180654 \tabularnewline
46 & -0.045215 & -0.3837 & 0.351179 \tabularnewline
47 & 0.037691 & 0.3198 & 0.375017 \tabularnewline
48 & 0.224949 & 1.9088 & 0.03014 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=41515&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.499538[/C][C]4.2387[/C][C]3.3e-05[/C][/ROW]
[ROW][C]2[/C][C]0.294086[/C][C]2.4954[/C][C]0.007437[/C][/ROW]
[ROW][C]3[/C][C]0.186006[/C][C]1.5783[/C][C]0.059439[/C][/ROW]
[ROW][C]4[/C][C]-0.025916[/C][C]-0.2199[/C][C]0.413283[/C][/ROW]
[ROW][C]5[/C][C]-0.117689[/C][C]-0.9986[/C][C]0.16066[/C][/ROW]
[ROW][C]6[/C][C]-0.219519[/C][C]-1.8627[/C][C]0.033294[/C][/ROW]
[ROW][C]7[/C][C]-0.186776[/C][C]-1.5848[/C][C]0.058692[/C][/ROW]
[ROW][C]8[/C][C]-0.100033[/C][C]-0.8488[/C][C]0.199402[/C][/ROW]
[ROW][C]9[/C][C]0.028785[/C][C]0.2442[/C][C]0.403868[/C][/ROW]
[ROW][C]10[/C][C]0.073049[/C][C]0.6198[/C][C]0.26866[/C][/ROW]
[ROW][C]11[/C][C]0.234924[/C][C]1.9934[/C][C]0.025004[/C][/ROW]
[ROW][C]12[/C][C]0.643267[/C][C]5.4583[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]0.276641[/C][C]2.3474[/C][C]0.010829[/C][/ROW]
[ROW][C]14[/C][C]0.133165[/C][C]1.1299[/C][C]0.131125[/C][/ROW]
[ROW][C]15[/C][C]0.078298[/C][C]0.6644[/C][C]0.254283[/C][/ROW]
[ROW][C]16[/C][C]-0.092697[/C][C]-0.7866[/C][C]0.217061[/C][/ROW]
[ROW][C]17[/C][C]-0.124197[/C][C]-1.0538[/C][C]0.147738[/C][/ROW]
[ROW][C]18[/C][C]-0.205911[/C][C]-1.7472[/C][C]0.042432[/C][/ROW]
[ROW][C]19[/C][C]-0.200215[/C][C]-1.6989[/C][C]0.04683[/C][/ROW]
[ROW][C]20[/C][C]-0.093638[/C][C]-0.7945[/C][C]0.214744[/C][/ROW]
[ROW][C]21[/C][C]-0.010596[/C][C]-0.0899[/C][C]0.464304[/C][/ROW]
[ROW][C]22[/C][C]0.05393[/C][C]0.4576[/C][C]0.324306[/C][/ROW]
[ROW][C]23[/C][C]0.23488[/C][C]1.993[/C][C]0.025025[/C][/ROW]
[ROW][C]24[/C][C]0.540306[/C][C]4.5846[/C][C]9e-06[/C][/ROW]
[ROW][C]25[/C][C]0.25674[/C][C]2.1785[/C][C]0.016322[/C][/ROW]
[ROW][C]26[/C][C]0.123012[/C][C]1.0438[/C][C]0.150037[/C][/ROW]
[ROW][C]27[/C][C]0.021149[/C][C]0.1795[/C][C]0.429042[/C][/ROW]
[ROW][C]28[/C][C]-0.115572[/C][C]-0.9807[/C][C]0.165021[/C][/ROW]
[ROW][C]29[/C][C]-0.138651[/C][C]-1.1765[/C][C]0.121637[/C][/ROW]
[ROW][C]30[/C][C]-0.231081[/C][C]-1.9608[/C][C]0.026887[/C][/ROW]
[ROW][C]31[/C][C]-0.210914[/C][C]-1.7897[/C][C]0.038857[/C][/ROW]
[ROW][C]32[/C][C]-0.114261[/C][C]-0.9695[/C][C]0.167761[/C][/ROW]
[ROW][C]33[/C][C]-0.071502[/C][C]-0.6067[/C][C]0.272975[/C][/ROW]
[ROW][C]34[/C][C]-0.041658[/C][C]-0.3535[/C][C]0.362382[/C][/ROW]
[ROW][C]35[/C][C]0.074101[/C][C]0.6288[/C][C]0.265746[/C][/ROW]
[ROW][C]36[/C][C]0.302874[/C][C]2.57[/C][C]0.00612[/C][/ROW]
[ROW][C]37[/C][C]0.102432[/C][C]0.8692[/C][C]0.193823[/C][/ROW]
[ROW][C]38[/C][C]0.026195[/C][C]0.2223[/C][C]0.412367[/C][/ROW]
[ROW][C]39[/C][C]-0.054585[/C][C]-0.4632[/C][C]0.32232[/C][/ROW]
[ROW][C]40[/C][C]-0.14598[/C][C]-1.2387[/C][C]0.109743[/C][/ROW]
[ROW][C]41[/C][C]-0.145596[/C][C]-1.2354[/C][C]0.110345[/C][/ROW]
[ROW][C]42[/C][C]-0.237249[/C][C]-2.0131[/C][C]0.023921[/C][/ROW]
[ROW][C]43[/C][C]-0.205485[/C][C]-1.7436[/C][C]0.042748[/C][/ROW]
[ROW][C]44[/C][C]-0.145312[/C][C]-1.233[/C][C]0.110791[/C][/ROW]
[ROW][C]45[/C][C]-0.108272[/C][C]-0.9187[/C][C]0.180654[/C][/ROW]
[ROW][C]46[/C][C]-0.045215[/C][C]-0.3837[/C][C]0.351179[/C][/ROW]
[ROW][C]47[/C][C]0.037691[/C][C]0.3198[/C][C]0.375017[/C][/ROW]
[ROW][C]48[/C][C]0.224949[/C][C]1.9088[/C][C]0.03014[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=41515&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=41515&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.4995384.23873.3e-05
20.2940862.49540.007437
30.1860061.57830.059439
4-0.025916-0.21990.413283
5-0.117689-0.99860.16066
6-0.219519-1.86270.033294
7-0.186776-1.58480.058692
8-0.100033-0.84880.199402
90.0287850.24420.403868
100.0730490.61980.26866
110.2349241.99340.025004
120.6432675.45830
130.2766412.34740.010829
140.1331651.12990.131125
150.0782980.66440.254283
16-0.092697-0.78660.217061
17-0.124197-1.05380.147738
18-0.205911-1.74720.042432
19-0.200215-1.69890.04683
20-0.093638-0.79450.214744
21-0.010596-0.08990.464304
220.053930.45760.324306
230.234881.9930.025025
240.5403064.58469e-06
250.256742.17850.016322
260.1230121.04380.150037
270.0211490.17950.429042
28-0.115572-0.98070.165021
29-0.138651-1.17650.121637
30-0.231081-1.96080.026887
31-0.210914-1.78970.038857
32-0.114261-0.96950.167761
33-0.071502-0.60670.272975
34-0.041658-0.35350.362382
350.0741010.62880.265746
360.3028742.570.00612
370.1024320.86920.193823
380.0261950.22230.412367
39-0.054585-0.46320.32232
40-0.14598-1.23870.109743
41-0.145596-1.23540.110345
42-0.237249-2.01310.023921
43-0.205485-1.74360.042748
44-0.145312-1.2330.110791
45-0.108272-0.91870.180654
46-0.045215-0.38370.351179
470.0376910.31980.375017
480.2249491.90880.03014







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.4995384.23873.3e-05
20.0593610.50370.308008
30.0242930.20610.418634
4-0.186365-1.58140.059089
5-0.077256-0.65550.257105
6-0.143315-1.21610.113966
70.0301590.25590.399376
80.0568640.48250.315454
90.1391271.18050.120837
10-0.008644-0.07330.470867
110.1946551.65170.051475
120.5964925.06142e-06
13-0.512861-4.35182.2e-05
14-0.129969-1.10280.136887
150.0360150.30560.380397
160.0427950.36310.358787
170.0092440.07840.468848
180.0511440.4340.332805
19-0.040168-0.34080.36711
200.0081340.0690.472584
210.0054670.04640.481566
220.1888051.60210.05676
230.1413151.19910.117211
24-0.110135-0.93450.176578
25-0.068624-0.58230.281095
26-0.029649-0.25160.40104
27-0.15843-1.34430.091532
280.1230011.04370.150058
290.0304320.25820.398484
30-0.079591-0.67540.250807
310.059770.50720.306794
32-0.044999-0.38180.351856
33-0.018395-0.15610.4382
34-0.117067-0.99330.161934
35-0.217087-1.8420.034793
360.0428140.36330.358726
370.0247920.21040.416987
380.0432740.36720.357278
390.0918350.77920.219194
40-0.149853-1.27150.103814
41-0.107575-0.91280.182196
420.0394750.3350.369316
43-0.016756-0.14220.443668
44-0.065404-0.5550.290318
450.0106980.09080.463961
460.0058010.04920.48044
47-0.003448-0.02930.488372
48-0.035739-0.30330.381285

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.499538 & 4.2387 & 3.3e-05 \tabularnewline
2 & 0.059361 & 0.5037 & 0.308008 \tabularnewline
3 & 0.024293 & 0.2061 & 0.418634 \tabularnewline
4 & -0.186365 & -1.5814 & 0.059089 \tabularnewline
5 & -0.077256 & -0.6555 & 0.257105 \tabularnewline
6 & -0.143315 & -1.2161 & 0.113966 \tabularnewline
7 & 0.030159 & 0.2559 & 0.399376 \tabularnewline
8 & 0.056864 & 0.4825 & 0.315454 \tabularnewline
9 & 0.139127 & 1.1805 & 0.120837 \tabularnewline
10 & -0.008644 & -0.0733 & 0.470867 \tabularnewline
11 & 0.194655 & 1.6517 & 0.051475 \tabularnewline
12 & 0.596492 & 5.0614 & 2e-06 \tabularnewline
13 & -0.512861 & -4.3518 & 2.2e-05 \tabularnewline
14 & -0.129969 & -1.1028 & 0.136887 \tabularnewline
15 & 0.036015 & 0.3056 & 0.380397 \tabularnewline
16 & 0.042795 & 0.3631 & 0.358787 \tabularnewline
17 & 0.009244 & 0.0784 & 0.468848 \tabularnewline
18 & 0.051144 & 0.434 & 0.332805 \tabularnewline
19 & -0.040168 & -0.3408 & 0.36711 \tabularnewline
20 & 0.008134 & 0.069 & 0.472584 \tabularnewline
21 & 0.005467 & 0.0464 & 0.481566 \tabularnewline
22 & 0.188805 & 1.6021 & 0.05676 \tabularnewline
23 & 0.141315 & 1.1991 & 0.117211 \tabularnewline
24 & -0.110135 & -0.9345 & 0.176578 \tabularnewline
25 & -0.068624 & -0.5823 & 0.281095 \tabularnewline
26 & -0.029649 & -0.2516 & 0.40104 \tabularnewline
27 & -0.15843 & -1.3443 & 0.091532 \tabularnewline
28 & 0.123001 & 1.0437 & 0.150058 \tabularnewline
29 & 0.030432 & 0.2582 & 0.398484 \tabularnewline
30 & -0.079591 & -0.6754 & 0.250807 \tabularnewline
31 & 0.05977 & 0.5072 & 0.306794 \tabularnewline
32 & -0.044999 & -0.3818 & 0.351856 \tabularnewline
33 & -0.018395 & -0.1561 & 0.4382 \tabularnewline
34 & -0.117067 & -0.9933 & 0.161934 \tabularnewline
35 & -0.217087 & -1.842 & 0.034793 \tabularnewline
36 & 0.042814 & 0.3633 & 0.358726 \tabularnewline
37 & 0.024792 & 0.2104 & 0.416987 \tabularnewline
38 & 0.043274 & 0.3672 & 0.357278 \tabularnewline
39 & 0.091835 & 0.7792 & 0.219194 \tabularnewline
40 & -0.149853 & -1.2715 & 0.103814 \tabularnewline
41 & -0.107575 & -0.9128 & 0.182196 \tabularnewline
42 & 0.039475 & 0.335 & 0.369316 \tabularnewline
43 & -0.016756 & -0.1422 & 0.443668 \tabularnewline
44 & -0.065404 & -0.555 & 0.290318 \tabularnewline
45 & 0.010698 & 0.0908 & 0.463961 \tabularnewline
46 & 0.005801 & 0.0492 & 0.48044 \tabularnewline
47 & -0.003448 & -0.0293 & 0.488372 \tabularnewline
48 & -0.035739 & -0.3033 & 0.381285 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=41515&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.499538[/C][C]4.2387[/C][C]3.3e-05[/C][/ROW]
[ROW][C]2[/C][C]0.059361[/C][C]0.5037[/C][C]0.308008[/C][/ROW]
[ROW][C]3[/C][C]0.024293[/C][C]0.2061[/C][C]0.418634[/C][/ROW]
[ROW][C]4[/C][C]-0.186365[/C][C]-1.5814[/C][C]0.059089[/C][/ROW]
[ROW][C]5[/C][C]-0.077256[/C][C]-0.6555[/C][C]0.257105[/C][/ROW]
[ROW][C]6[/C][C]-0.143315[/C][C]-1.2161[/C][C]0.113966[/C][/ROW]
[ROW][C]7[/C][C]0.030159[/C][C]0.2559[/C][C]0.399376[/C][/ROW]
[ROW][C]8[/C][C]0.056864[/C][C]0.4825[/C][C]0.315454[/C][/ROW]
[ROW][C]9[/C][C]0.139127[/C][C]1.1805[/C][C]0.120837[/C][/ROW]
[ROW][C]10[/C][C]-0.008644[/C][C]-0.0733[/C][C]0.470867[/C][/ROW]
[ROW][C]11[/C][C]0.194655[/C][C]1.6517[/C][C]0.051475[/C][/ROW]
[ROW][C]12[/C][C]0.596492[/C][C]5.0614[/C][C]2e-06[/C][/ROW]
[ROW][C]13[/C][C]-0.512861[/C][C]-4.3518[/C][C]2.2e-05[/C][/ROW]
[ROW][C]14[/C][C]-0.129969[/C][C]-1.1028[/C][C]0.136887[/C][/ROW]
[ROW][C]15[/C][C]0.036015[/C][C]0.3056[/C][C]0.380397[/C][/ROW]
[ROW][C]16[/C][C]0.042795[/C][C]0.3631[/C][C]0.358787[/C][/ROW]
[ROW][C]17[/C][C]0.009244[/C][C]0.0784[/C][C]0.468848[/C][/ROW]
[ROW][C]18[/C][C]0.051144[/C][C]0.434[/C][C]0.332805[/C][/ROW]
[ROW][C]19[/C][C]-0.040168[/C][C]-0.3408[/C][C]0.36711[/C][/ROW]
[ROW][C]20[/C][C]0.008134[/C][C]0.069[/C][C]0.472584[/C][/ROW]
[ROW][C]21[/C][C]0.005467[/C][C]0.0464[/C][C]0.481566[/C][/ROW]
[ROW][C]22[/C][C]0.188805[/C][C]1.6021[/C][C]0.05676[/C][/ROW]
[ROW][C]23[/C][C]0.141315[/C][C]1.1991[/C][C]0.117211[/C][/ROW]
[ROW][C]24[/C][C]-0.110135[/C][C]-0.9345[/C][C]0.176578[/C][/ROW]
[ROW][C]25[/C][C]-0.068624[/C][C]-0.5823[/C][C]0.281095[/C][/ROW]
[ROW][C]26[/C][C]-0.029649[/C][C]-0.2516[/C][C]0.40104[/C][/ROW]
[ROW][C]27[/C][C]-0.15843[/C][C]-1.3443[/C][C]0.091532[/C][/ROW]
[ROW][C]28[/C][C]0.123001[/C][C]1.0437[/C][C]0.150058[/C][/ROW]
[ROW][C]29[/C][C]0.030432[/C][C]0.2582[/C][C]0.398484[/C][/ROW]
[ROW][C]30[/C][C]-0.079591[/C][C]-0.6754[/C][C]0.250807[/C][/ROW]
[ROW][C]31[/C][C]0.05977[/C][C]0.5072[/C][C]0.306794[/C][/ROW]
[ROW][C]32[/C][C]-0.044999[/C][C]-0.3818[/C][C]0.351856[/C][/ROW]
[ROW][C]33[/C][C]-0.018395[/C][C]-0.1561[/C][C]0.4382[/C][/ROW]
[ROW][C]34[/C][C]-0.117067[/C][C]-0.9933[/C][C]0.161934[/C][/ROW]
[ROW][C]35[/C][C]-0.217087[/C][C]-1.842[/C][C]0.034793[/C][/ROW]
[ROW][C]36[/C][C]0.042814[/C][C]0.3633[/C][C]0.358726[/C][/ROW]
[ROW][C]37[/C][C]0.024792[/C][C]0.2104[/C][C]0.416987[/C][/ROW]
[ROW][C]38[/C][C]0.043274[/C][C]0.3672[/C][C]0.357278[/C][/ROW]
[ROW][C]39[/C][C]0.091835[/C][C]0.7792[/C][C]0.219194[/C][/ROW]
[ROW][C]40[/C][C]-0.149853[/C][C]-1.2715[/C][C]0.103814[/C][/ROW]
[ROW][C]41[/C][C]-0.107575[/C][C]-0.9128[/C][C]0.182196[/C][/ROW]
[ROW][C]42[/C][C]0.039475[/C][C]0.335[/C][C]0.369316[/C][/ROW]
[ROW][C]43[/C][C]-0.016756[/C][C]-0.1422[/C][C]0.443668[/C][/ROW]
[ROW][C]44[/C][C]-0.065404[/C][C]-0.555[/C][C]0.290318[/C][/ROW]
[ROW][C]45[/C][C]0.010698[/C][C]0.0908[/C][C]0.463961[/C][/ROW]
[ROW][C]46[/C][C]0.005801[/C][C]0.0492[/C][C]0.48044[/C][/ROW]
[ROW][C]47[/C][C]-0.003448[/C][C]-0.0293[/C][C]0.488372[/C][/ROW]
[ROW][C]48[/C][C]-0.035739[/C][C]-0.3033[/C][C]0.381285[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=41515&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=41515&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.4995384.23873.3e-05
20.0593610.50370.308008
30.0242930.20610.418634
4-0.186365-1.58140.059089
5-0.077256-0.65550.257105
6-0.143315-1.21610.113966
70.0301590.25590.399376
80.0568640.48250.315454
90.1391271.18050.120837
10-0.008644-0.07330.470867
110.1946551.65170.051475
120.5964925.06142e-06
13-0.512861-4.35182.2e-05
14-0.129969-1.10280.136887
150.0360150.30560.380397
160.0427950.36310.358787
170.0092440.07840.468848
180.0511440.4340.332805
19-0.040168-0.34080.36711
200.0081340.0690.472584
210.0054670.04640.481566
220.1888051.60210.05676
230.1413151.19910.117211
24-0.110135-0.93450.176578
25-0.068624-0.58230.281095
26-0.029649-0.25160.40104
27-0.15843-1.34430.091532
280.1230011.04370.150058
290.0304320.25820.398484
30-0.079591-0.67540.250807
310.059770.50720.306794
32-0.044999-0.38180.351856
33-0.018395-0.15610.4382
34-0.117067-0.99330.161934
35-0.217087-1.8420.034793
360.0428140.36330.358726
370.0247920.21040.416987
380.0432740.36720.357278
390.0918350.77920.219194
40-0.149853-1.27150.103814
41-0.107575-0.91280.182196
420.0394750.3350.369316
43-0.016756-0.14220.443668
44-0.065404-0.5550.290318
450.0106980.09080.463961
460.0058010.04920.48044
47-0.003448-0.02930.488372
48-0.035739-0.30330.381285



Parameters (Session):
par1 = 48 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ;
Parameters (R input):
par1 = 48 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='pic1.png')
racf <- acf(x,par1,main='Autocorrelation',xlab='lags',ylab='ACF')
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF')
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')