Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_edabi.wasp
Title produced by softwareBivariate Explorative Data Analysis
Date of computationMon, 02 Nov 2009 06:36:21 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/02/t1257169091pdalgjm86hk7yz3.htm/, Retrieved Tue, 12 Nov 2024 22:15:34 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=52604, Retrieved Tue, 12 Nov 2024 22:15:34 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact192
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Bivariate Data Series] [Bivariate dataset] [2008-01-05 23:51:08] [74be16979710d4c4e7c6647856088456]
-   PD  [Bivariate Data Series] [Reproduction Part 1] [2009-10-26 18:51:43] [96e597a9107bfe8c07649cce3d4f6fec]
- RMPD    [Bivariate Explorative Data Analysis] [JJ Workshop 4, De...] [2009-10-26 19:42:48] [96e597a9107bfe8c07649cce3d4f6fec]
-    D      [Bivariate Explorative Data Analysis] [JJ Workshop 4, de...] [2009-10-27 18:56:34] [96e597a9107bfe8c07649cce3d4f6fec]
- RM D          [Bivariate Explorative Data Analysis] [JJ Workshop 5, mo...] [2009-11-02 13:36:21] [e31f2fa83f4a5291b9a51009566cf69b] [Current]
-    D            [Bivariate Explorative Data Analysis] [JJ Workshop 5, mo...] [2009-11-02 14:48:25] [96e597a9107bfe8c07649cce3d4f6fec]
-    D            [Bivariate Explorative Data Analysis] [JJ Workshop 5, mo...] [2009-11-02 14:58:53] [96e597a9107bfe8c07649cce3d4f6fec]
Feedback Forum

Post a new message
Dataseries X:
-11,152
-1,5796
13,16
11,1072
-5,6192
-3,8776
13,7234
7,109
10,9492
7,6378
2,6788
2,4724
-10,7344
0,574
15,1298
4,6936
-11,3734
-18,5268
1,4216
-4,6246
-4,2308
8,5854
-2,922
0,5006
-9,2324
0,2036
5,65
4,1602
-15,015
-20,315
2,9446
-6,449
-7,137
3,139
-9,8002
-4,357
-6,117
0,6406
0,589
2,3694
-15,0224
-19,9452
6,3754
-5,8596
-3,3378
-1,0326
-4,4502
-4,275
-3,768
11,3846
18,4804
18,5824
-4,7104
-2,5836
5,172
4,139
9,136
15,4814
1,9896
2,7668
Dataseries Y:
-9,314
-5,0234
9,814
8,1308
-10,2608
-15,3104
4,6961
-2,2175
6,0038
-1,2903
2,5262
1,1646
-7,4196
5,355
14,0077
4,5124
-3,8231
-16,2402
8,6444
0,0841
-3,0662
10,6491
-2,219
-1,2421
-5,2066
5,9774
9,549
8,2253
-6,2735
-21,3735
8,4939
3,0555
-4,8665
10,9275
-3,7873
-5,1465
-1,1365
5,8179
3,1025
10,4451
-6,8916
-21,2798
11,7841
-4,1934
-0,0117
1,7321
-6,8123
-7,9135
-0,168
2,0539
8,7166
12,7296
-4,5136
-13,8994
10,342
-3,6225
1,558
11,2231
-4,3136
-5,8018




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'RServer@AstonUniversity' @ vre.aston.ac.uk

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'RServer@AstonUniversity' @ vre.aston.ac.uk \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=52604&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'RServer@AstonUniversity' @ vre.aston.ac.uk[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=52604&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=52604&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'RServer@AstonUniversity' @ vre.aston.ac.uk







Model: Y[t] = c + b X[t] + e[t]
c0.0064555318859748
b0.726099179211623

\begin{tabular}{lllllllll}
\hline
Model: Y[t] = c + b X[t] + e[t] \tabularnewline
c & 0.0064555318859748 \tabularnewline
b & 0.726099179211623 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=52604&T=1

[TABLE]
[ROW][C]Model: Y[t] = c + b X[t] + e[t][/C][/ROW]
[ROW][C]c[/C][C]0.0064555318859748[/C][/ROW]
[ROW][C]b[/C][C]0.726099179211623[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=52604&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=52604&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Model: Y[t] = c + b X[t] + e[t]
c0.0064555318859748
b0.726099179211623







Descriptive Statistics about e[t]
# observations60
minimum-12.5013333545750
Q1-4.08929665214959
median0.155747467231872
mean-7.1701903673708e-18
Q34.10947072715467
maximum8.71822507289

\begin{tabular}{lllllllll}
\hline
Descriptive Statistics about e[t] \tabularnewline
# observations & 60 \tabularnewline
minimum & -12.5013333545750 \tabularnewline
Q1 & -4.08929665214959 \tabularnewline
median & 0.155747467231872 \tabularnewline
mean & -7.1701903673708e-18 \tabularnewline
Q3 & 4.10947072715467 \tabularnewline
maximum & 8.71822507289 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=52604&T=2

[TABLE]
[ROW][C]Descriptive Statistics about e[t][/C][/ROW]
[ROW][C]# observations[/C][C]60[/C][/ROW]
[ROW][C]minimum[/C][C]-12.5013333545750[/C][/ROW]
[ROW][C]Q1[/C][C]-4.08929665214959[/C][/ROW]
[ROW][C]median[/C][C]0.155747467231872[/C][/ROW]
[ROW][C]mean[/C][C]-7.1701903673708e-18[/C][/ROW]
[ROW][C]Q3[/C][C]4.10947072715467[/C][/ROW]
[ROW][C]maximum[/C][C]8.71822507289[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=52604&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=52604&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Descriptive Statistics about e[t]
# observations60
minimum-12.5013333545750
Q1-4.08929665214959
median0.155747467231872
mean-7.1701903673708e-18
Q34.10947072715467
maximum8.71822507289



Parameters (Session):
par1 = 0 ; par2 = 36 ;
Parameters (R input):
par1 = 0 ; par2 = 36 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
x <- as.ts(x)
y <- as.ts(y)
mylm <- lm(y~x)
cbind(mylm$resid)
library(lattice)
bitmap(file='pic1.png')
plot(y,type='l',main='Run Sequence Plot of Y[t]',xlab='time or index',ylab='value')
grid()
dev.off()
bitmap(file='pic1a.png')
plot(x,type='l',main='Run Sequence Plot of X[t]',xlab='time or index',ylab='value')
grid()
dev.off()
bitmap(file='pic1b.png')
plot(x,y,main='Scatter Plot',xlab='X[t]',ylab='Y[t]')
grid()
dev.off()
bitmap(file='pic1c.png')
plot(mylm$resid,type='l',main='Run Sequence Plot of e[t]',xlab='time or index',ylab='value')
grid()
dev.off()
bitmap(file='pic2.png')
hist(mylm$resid,main='Histogram of e[t]')
dev.off()
bitmap(file='pic3.png')
if (par1 > 0)
{
densityplot(~mylm$resid,col='black',main=paste('Density Plot of e[t] bw = ',par1),bw=par1)
} else {
densityplot(~mylm$resid,col='black',main='Density Plot of e[t]')
}
dev.off()
bitmap(file='pic4.png')
qqnorm(mylm$resid,main='QQ plot of e[t]')
qqline(mylm$resid)
grid()
dev.off()
if (par2 > 0)
{
bitmap(file='pic5.png')
acf(mylm$resid,lag.max=par2,main='Residual Autocorrelation Function')
grid()
dev.off()
}
summary(x)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Model: Y[t] = c + b X[t] + e[t]',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'c',1,TRUE)
a<-table.element(a,mylm$coeff[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'b',1,TRUE)
a<-table.element(a,mylm$coeff[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Descriptive Statistics about e[t]',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'# observations',header=TRUE)
a<-table.element(a,length(mylm$resid))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'minimum',header=TRUE)
a<-table.element(a,min(mylm$resid))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Q1',header=TRUE)
a<-table.element(a,quantile(mylm$resid,0.25))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'median',header=TRUE)
a<-table.element(a,median(mylm$resid))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
a<-table.element(a,mean(mylm$resid))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Q3',header=TRUE)
a<-table.element(a,quantile(mylm$resid,0.75))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'maximum',header=TRUE)
a<-table.element(a,max(mylm$resid))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')