Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_cloud.wasp
Title produced by softwareTrivariate Scatterplots
Date of computationMon, 02 Nov 2009 06:45:08 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/02/t1257169612l1ys4sdpuhzophf.htm/, Retrieved Tue, 12 Nov 2024 22:16:55 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=52619, Retrieved Tue, 12 Nov 2024 22:16:55 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact237
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Bivariate Data Series] [Bivariate dataset] [2008-01-05 23:51:08] [74be16979710d4c4e7c6647856088456]
-   PD  [Bivariate Data Series] [Reproduction Part 1] [2009-10-26 18:51:43] [96e597a9107bfe8c07649cce3d4f6fec]
- RMPD    [Bivariate Explorative Data Analysis] [JJ Workshop 4, De...] [2009-10-26 19:42:48] [96e597a9107bfe8c07649cce3d4f6fec]
-    D      [Bivariate Explorative Data Analysis] [JJ Workshop 4, de...] [2009-10-27 18:56:34] [96e597a9107bfe8c07649cce3d4f6fec]
- RM D        [Bivariate Explorative Data Analysis] [JJ Workshop 5, mo...] [2009-11-02 13:09:27] [96e597a9107bfe8c07649cce3d4f6fec]
- RMPD            [Trivariate Scatterplots] [JJ Workshop 5, mo...] [2009-11-02 13:45:08] [e31f2fa83f4a5291b9a51009566cf69b] [Current]
-   PD              [Trivariate Scatterplots] [JJ Workshop 5, mo...] [2009-11-02 15:03:12] [96e597a9107bfe8c07649cce3d4f6fec]
- RMPD                [Partial Correlation] [JJ Workshop 5, Mo...] [2009-11-04 11:19:23] [96e597a9107bfe8c07649cce3d4f6fec]
-   PD              [Trivariate Scatterplots] [JJ Workshop 5, mo...] [2009-11-02 15:07:04] [96e597a9107bfe8c07649cce3d4f6fec]
- RMPD                [Partial Correlation] [JJ Workshop 5, Mo...] [2009-11-04 11:22:21] [96e597a9107bfe8c07649cce3d4f6fec]
-   PD                [Trivariate Scatterplots] [Paper, Trivariate...] [2009-12-22 17:37:24] [96e597a9107bfe8c07649cce3d4f6fec]
- RMP               [Partial Correlation] [JJ Workshop 5, mo...] [2009-11-04 11:14:11] [96e597a9107bfe8c07649cce3d4f6fec]
-    D                [Partial Correlation] [Paper, Partial Co...] [2009-12-22 19:16:17] [96e597a9107bfe8c07649cce3d4f6fec]
Feedback Forum

Post a new message
Dataseries X:
85
96.1
113.6
116.8
102.7
106.8
124.2
117.8
121.6
117.9
111.4
109.8
92.6
104.9
120.3
109.1
93.1
87.3
106.9
102.1
102.4
113.3
100.6
103.5
93.7
102.6
108.1
105.9
87.1
81.8
103.8
95.8
92.7
101.1
88
92.8
89.7
95.6
95.2
96.9
79.2
73.5
99.7
87.8
91.3
93.9
90
89.8
88.9
104.2
110.8
110.5
87.1
89.2
96.5
95.4
101
107.6
93.8
93.8
Dataseries Y:
94.3
99.4
115.7
116.8
99.8
96
115.9
109.1
117.3
109.8
112.8
110.7
100
113.3
122.4
112.5
104.2
92.5
117.2
109.3
106.1
118.8
105.3
106
102
112.9
116.5
114.8
100.5
85.4
114.6
109.9
100.7
115.5
100.7
99
102.3
108.8
105.9
113.2
95.7
80.9
113.9
98.1
102.8
104.7
95.9
94.6
101.6
103.9
110.3
114.1
96.8
87.4
111.4
97.4
102.9
112.7
97
95.1
Dataseries Z:
160
171.4
192
231.2
250.8
268.4
266.9
268.5
268.2
265.3
253.8
243.4
213.6
221
227.3
221.6
222.1
232.2
229.6
238.9
238.2
223.9
215
211.1
210.6
206.6
207
201.7
204.5
204.5
195.1
205.5
187.5
173.5
172.3
167.5
157.5
151.1
148.5
147.9
145.6
139.8
138.9
141.4
148.7
150.9
147.3
144.5
134
135.1
131.4
128.4
127.6
127.4
124
123.5
128
129.9
127.6
121.8




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=52619&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=52619&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=52619&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135



Parameters (Session):
par1 = 50 ; par2 = 50 ; par3 = Y ; par4 = Y ; par5 = activiteit in de metallurgie ; par6 = Totale industriële activiteit ; par7 = Prijsindexcijfer van de industriële grondstoffen ;
Parameters (R input):
par1 = 50 ; par2 = 50 ; par3 = Y ; par4 = Y ; par5 = activiteit in de metallurgie ; par6 = Totale industriële activiteit ; par7 = Prijsindexcijfer van de industriële grondstoffen ;
R code (references can be found in the software module):
x <- array(x,dim=c(length(x),1))
colnames(x) <- par5
y <- array(y,dim=c(length(y),1))
colnames(y) <- par6
z <- array(z,dim=c(length(z),1))
colnames(z) <- par7
d <- data.frame(cbind(z,y,x))
colnames(d) <- list(par7,par6,par5)
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
if (par1>500) par1 <- 500
if (par2>500) par2 <- 500
if (par1<10) par1 <- 10
if (par2<10) par2 <- 10
library(GenKern)
library(lattice)
panel.hist <- function(x, ...)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col='black', ...)
}
bitmap(file='cloud1.png')
cloud(z~x*y, screen = list(x=-45, y=45, z=35),xlab=par5,ylab=par6,zlab=par7)
dev.off()
bitmap(file='cloud2.png')
cloud(z~x*y, screen = list(x=35, y=45, z=25),xlab=par5,ylab=par6,zlab=par7)
dev.off()
bitmap(file='cloud3.png')
cloud(z~x*y, screen = list(x=35, y=-25, z=90),xlab=par5,ylab=par6,zlab=par7)
dev.off()
bitmap(file='pairs.png')
pairs(d,diag.panel=panel.hist)
dev.off()
x <- as.vector(x)
y <- as.vector(y)
z <- as.vector(z)
bitmap(file='bidensity1.png')
op <- KernSur(x,y, xgridsize=par1, ygridsize=par2, correlation=cor(x,y), xbandwidth=dpik(x), ybandwidth=dpik(y))
image(op$xords, op$yords, op$zden, col=terrain.colors(100), axes=TRUE,main='Bivariate Kernel Density Plot (x,y)',xlab=par5,ylab=par6)
if (par3=='Y') contour(op$xords, op$yords, op$zden, add=TRUE)
if (par4=='Y') points(x,y)
(r<-lm(y ~ x))
abline(r)
box()
dev.off()
bitmap(file='bidensity2.png')
op <- KernSur(y,z, xgridsize=par1, ygridsize=par2, correlation=cor(y,z), xbandwidth=dpik(y), ybandwidth=dpik(z))
op
image(op$xords, op$yords, op$zden, col=terrain.colors(100), axes=TRUE,main='Bivariate Kernel Density Plot (y,z)',xlab=par6,ylab=par7)
if (par3=='Y') contour(op$xords, op$yords, op$zden, add=TRUE)
if (par4=='Y') points(y,z)
(r<-lm(z ~ y))
abline(r)
box()
dev.off()
bitmap(file='bidensity3.png')
op <- KernSur(x,z, xgridsize=par1, ygridsize=par2, correlation=cor(x,z), xbandwidth=dpik(x), ybandwidth=dpik(z))
op
image(op$xords, op$yords, op$zden, col=terrain.colors(100), axes=TRUE,main='Bivariate Kernel Density Plot (x,z)',xlab=par5,ylab=par7)
if (par3=='Y') contour(op$xords, op$yords, op$zden, add=TRUE)
if (par4=='Y') points(x,z)
(r<-lm(z ~ x))
abline(r)
box()
dev.off()