Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationSat, 14 Nov 2009 04:29:26 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/14/t1258198284y0zo98g2ogxlkin.htm/, Retrieved Wed, 15 Jan 2025 10:18:43 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=57216, Retrieved Wed, 15 Jan 2025 10:18:43 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact292
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
- RMPD  [Multiple Regression] [Seatbelt] [2009-11-12 14:03:14] [b98453cac15ba1066b407e146608df68]
-    D    [Multiple Regression] [] [2009-11-14 11:27:12] [e2a6b1b31bd881219e1879835b4c60d0]
-             [Multiple Regression] [Regressiemodel me...] [2009-11-14 11:29:26] [2622964eb3e61db9b0dfd11950e3a18c] [Current]
Feedback Forum

Post a new message
Dataseries X:
5560	36.68
3922	36.7
3759	36.71
4138	36.72
4634	36.73
3996	36.73
4308	36.87
4429	37.31
5219	37.39
4929	37.42
5755	37.51
5592	37.67
4163	37.67
4962	37.71
5208	37.78
4755	37.79
4491	37.84
5732	37.88
5731	38.34
5040	38.58
6102	38.72
4904	38.83
5369	38.9
5578	38.92
4619	38.94
4731	39.1
5011	39.14
5299	39.16
4146	39.32
4625	39.34
4736	39.44
4219	39.92
5116	40.19
4205	40.2
4121	40.27
5103	40.28
4300	40.3
4578	40.34
3809	40.4
5526	40.43
4247	40.48
3830	40.48
4394	40.63
4826	40.74
4409	40.77
4569	40.91
4106	40.92
4794	41.03
3914	41
3793	41.04
4405	41.33
4022	41.44
4100	41.46
4788	41.55
3163	41.55
3585	41.81
3903	41.78
4178	41.84
3863	41.84
4187	41.86




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57216&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57216&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57216&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 12017.7830247441 -174.383836222070X[t] -719.912886653628M1[t] -823.449856480296M2[t] -765.857775875422M3[t] -449.979957771428M4[t] -864.265695270547M5[t] -588.434180183885M6[t] -686.588928026133M7[t] -679.82747414218M8[t] -132.737858192417M9[t] -513.330989656872M10[t] -419.160565518212M11[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Y[t] =  +  12017.7830247441 -174.383836222070X[t] -719.912886653628M1[t] -823.449856480296M2[t] -765.857775875422M3[t] -449.979957771428M4[t] -864.265695270547M5[t] -588.434180183885M6[t] -686.588928026133M7[t] -679.82747414218M8[t] -132.737858192417M9[t] -513.330989656872M10[t] -419.160565518212M11[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57216&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Y[t] =  +  12017.7830247441 -174.383836222070X[t] -719.912886653628M1[t] -823.449856480296M2[t] -765.857775875422M3[t] -449.979957771428M4[t] -864.265695270547M5[t] -588.434180183885M6[t] -686.588928026133M7[t] -679.82747414218M8[t] -132.737858192417M9[t] -513.330989656872M10[t] -419.160565518212M11[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57216&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57216&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 12017.7830247441 -174.383836222070X[t] -719.912886653628M1[t] -823.449856480296M2[t] -765.857775875422M3[t] -449.979957771428M4[t] -864.265695270547M5[t] -588.434180183885M6[t] -686.588928026133M7[t] -679.82747414218M8[t] -132.737858192417M9[t] -513.330989656872M10[t] -419.160565518212M11[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)12017.78302474411895.3759486.340600
X-174.38383622207046.980391-3.71180.0005440.000272
M1-719.912886653628375.895987-1.91520.0615640.030782
M2-823.449856480296375.542108-2.19270.0333150.016657
M3-765.857775875422375.029626-2.04210.0467720.023386
M4-449.979957771428374.846949-1.20040.2359850.117993
M5-864.265695270547374.568512-2.30740.0254870.012743
M6-588.434180183885374.432193-1.57150.1227660.061383
M7-686.588928026133373.759183-1.8370.072540.03627
M8-679.82747414218372.975923-1.82270.0747120.037356
M9-132.737858192417372.841934-0.3560.7234210.361711
M10-513.330989656872372.781014-1.3770.1750260.087513
M11-419.160565518212372.756004-1.12450.2665150.133258

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 12017.7830247441 & 1895.375948 & 6.3406 & 0 & 0 \tabularnewline
X & -174.383836222070 & 46.980391 & -3.7118 & 0.000544 & 0.000272 \tabularnewline
M1 & -719.912886653628 & 375.895987 & -1.9152 & 0.061564 & 0.030782 \tabularnewline
M2 & -823.449856480296 & 375.542108 & -2.1927 & 0.033315 & 0.016657 \tabularnewline
M3 & -765.857775875422 & 375.029626 & -2.0421 & 0.046772 & 0.023386 \tabularnewline
M4 & -449.979957771428 & 374.846949 & -1.2004 & 0.235985 & 0.117993 \tabularnewline
M5 & -864.265695270547 & 374.568512 & -2.3074 & 0.025487 & 0.012743 \tabularnewline
M6 & -588.434180183885 & 374.432193 & -1.5715 & 0.122766 & 0.061383 \tabularnewline
M7 & -686.588928026133 & 373.759183 & -1.837 & 0.07254 & 0.03627 \tabularnewline
M8 & -679.82747414218 & 372.975923 & -1.8227 & 0.074712 & 0.037356 \tabularnewline
M9 & -132.737858192417 & 372.841934 & -0.356 & 0.723421 & 0.361711 \tabularnewline
M10 & -513.330989656872 & 372.781014 & -1.377 & 0.175026 & 0.087513 \tabularnewline
M11 & -419.160565518212 & 372.756004 & -1.1245 & 0.266515 & 0.133258 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57216&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]12017.7830247441[/C][C]1895.375948[/C][C]6.3406[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]X[/C][C]-174.383836222070[/C][C]46.980391[/C][C]-3.7118[/C][C]0.000544[/C][C]0.000272[/C][/ROW]
[ROW][C]M1[/C][C]-719.912886653628[/C][C]375.895987[/C][C]-1.9152[/C][C]0.061564[/C][C]0.030782[/C][/ROW]
[ROW][C]M2[/C][C]-823.449856480296[/C][C]375.542108[/C][C]-2.1927[/C][C]0.033315[/C][C]0.016657[/C][/ROW]
[ROW][C]M3[/C][C]-765.857775875422[/C][C]375.029626[/C][C]-2.0421[/C][C]0.046772[/C][C]0.023386[/C][/ROW]
[ROW][C]M4[/C][C]-449.979957771428[/C][C]374.846949[/C][C]-1.2004[/C][C]0.235985[/C][C]0.117993[/C][/ROW]
[ROW][C]M5[/C][C]-864.265695270547[/C][C]374.568512[/C][C]-2.3074[/C][C]0.025487[/C][C]0.012743[/C][/ROW]
[ROW][C]M6[/C][C]-588.434180183885[/C][C]374.432193[/C][C]-1.5715[/C][C]0.122766[/C][C]0.061383[/C][/ROW]
[ROW][C]M7[/C][C]-686.588928026133[/C][C]373.759183[/C][C]-1.837[/C][C]0.07254[/C][C]0.03627[/C][/ROW]
[ROW][C]M8[/C][C]-679.82747414218[/C][C]372.975923[/C][C]-1.8227[/C][C]0.074712[/C][C]0.037356[/C][/ROW]
[ROW][C]M9[/C][C]-132.737858192417[/C][C]372.841934[/C][C]-0.356[/C][C]0.723421[/C][C]0.361711[/C][/ROW]
[ROW][C]M10[/C][C]-513.330989656872[/C][C]372.781014[/C][C]-1.377[/C][C]0.175026[/C][C]0.087513[/C][/ROW]
[ROW][C]M11[/C][C]-419.160565518212[/C][C]372.756004[/C][C]-1.1245[/C][C]0.266515[/C][C]0.133258[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57216&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57216&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)12017.78302474411895.3759486.340600
X-174.38383622207046.980391-3.71180.0005440.000272
M1-719.912886653628375.895987-1.91520.0615640.030782
M2-823.449856480296375.542108-2.19270.0333150.016657
M3-765.857775875422375.029626-2.04210.0467720.023386
M4-449.979957771428374.846949-1.20040.2359850.117993
M5-864.265695270547374.568512-2.30740.0254870.012743
M6-588.434180183885374.432193-1.57150.1227660.061383
M7-686.588928026133373.759183-1.8370.072540.03627
M8-679.82747414218372.975923-1.82270.0747120.037356
M9-132.737858192417372.841934-0.3560.7234210.361711
M10-513.330989656872372.781014-1.3770.1750260.087513
M11-419.160565518212372.756004-1.12450.2665150.133258







Multiple Linear Regression - Regression Statistics
Multiple R0.562255368238571
R-squared0.316131099113091
Adjusted R-squared0.141526273354732
F-TEST (value)1.81055190049898
F-TEST (DF numerator)12
F-TEST (DF denominator)47
p-value0.0738665033626638
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation589.359817260218
Sum Squared Residuals16325214.7274469

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.562255368238571 \tabularnewline
R-squared & 0.316131099113091 \tabularnewline
Adjusted R-squared & 0.141526273354732 \tabularnewline
F-TEST (value) & 1.81055190049898 \tabularnewline
F-TEST (DF numerator) & 12 \tabularnewline
F-TEST (DF denominator) & 47 \tabularnewline
p-value & 0.0738665033626638 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 589.359817260218 \tabularnewline
Sum Squared Residuals & 16325214.7274469 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57216&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.562255368238571[/C][/ROW]
[ROW][C]R-squared[/C][C]0.316131099113091[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.141526273354732[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]1.81055190049898[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]12[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]47[/C][/ROW]
[ROW][C]p-value[/C][C]0.0738665033626638[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]589.359817260218[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]16325214.7274469[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57216&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57216&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.562255368238571
R-squared0.316131099113091
Adjusted R-squared0.141526273354732
F-TEST (value)1.81055190049898
F-TEST (DF numerator)12
F-TEST (DF denominator)47
p-value0.0738665033626638
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation589.359817260218
Sum Squared Residuals16325214.7274469







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
155604901.47102546502658.528974534976
239224794.44637891388-872.446378913876
337594850.29462115653-1091.29462115653
441385164.4286008983-1026.42860089830
546344748.39902503696-114.399025036963
639965024.23054012363-1028.23054012363
743084901.66205521029-593.662055210287
844294831.69462115653-402.69462115653
952195364.83353020853-145.833530208527
1049294979.00888365741-50.0088836574102
1157555057.48476253608697.515237463916
1255925448.74391425876143.256085741236
1341634728.83102760514-565.831027605136
1449624618.31870432959343.681295670415
1552084663.70391639891544.296083601085
1647554977.83789614069-222.837896140689
1744914554.83296683046-63.8329668304644
1857324823.68912846824908.310871531756
1957314645.317815963841085.68218403616
2050404610.2271491545429.772850845499
2161025132.90302803317969.096971966826
2249044733.12767458429170.872325415709
2353694815.09123018741553.908769812594
2455785230.76411898118347.235881018824
2546194507.36355560311111.636444396893
2647314375.92517198091355.074828019092
2750114426.5418991369584.458100863101
2852994738.93204051645560.067959483547
2941464296.7448892218-150.744889221801
3046254569.0887275840255.9112724159788
3147364453.49559611957282.504403880433
3242194376.55280861693-157.552808616926
3351164876.55878878673239.441211213269
3442054494.22181896005-289.221818960054
3541214576.18537456317-455.185374563169
3651034993.60210171916109.397898280839
3743004270.2015383410929.7984616589081
3845784159.68921506554418.31078493446
3938094206.81826549709-397.818265497091
4055264517.464568514421008.53543148558
4142474094.4596392042152.540360795800
4238304370.29115429086-540.291154290862
4343944245.9788310153148.021168984697
4448264233.55806291483592.441937085171
4544094775.41616377793-366.416163777929
4645694370.40929524239198.590704757615
4741064462.83588101882-356.835881018823
4847944862.81422455261-68.8142245526083
4939144148.13285298564-234.132852985642
5037934037.62052971009-244.620529710091
5144054044.64129781057360.358702189434
5240224341.33689393013-319.336893930132
5341003923.56347970657176.436520293429
5447884183.70044953325604.299550466753
5531634085.545701691-922.545701690999
5635854046.96735815721-461.967358157214
5739034599.28848919364-696.288489193638
5841784208.23232755586-30.2323275558589
5938634302.40275169452-439.402751694519
6041874718.07564048829-531.07564048829

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 5560 & 4901.47102546502 & 658.528974534976 \tabularnewline
2 & 3922 & 4794.44637891388 & -872.446378913876 \tabularnewline
3 & 3759 & 4850.29462115653 & -1091.29462115653 \tabularnewline
4 & 4138 & 5164.4286008983 & -1026.42860089830 \tabularnewline
5 & 4634 & 4748.39902503696 & -114.399025036963 \tabularnewline
6 & 3996 & 5024.23054012363 & -1028.23054012363 \tabularnewline
7 & 4308 & 4901.66205521029 & -593.662055210287 \tabularnewline
8 & 4429 & 4831.69462115653 & -402.69462115653 \tabularnewline
9 & 5219 & 5364.83353020853 & -145.833530208527 \tabularnewline
10 & 4929 & 4979.00888365741 & -50.0088836574102 \tabularnewline
11 & 5755 & 5057.48476253608 & 697.515237463916 \tabularnewline
12 & 5592 & 5448.74391425876 & 143.256085741236 \tabularnewline
13 & 4163 & 4728.83102760514 & -565.831027605136 \tabularnewline
14 & 4962 & 4618.31870432959 & 343.681295670415 \tabularnewline
15 & 5208 & 4663.70391639891 & 544.296083601085 \tabularnewline
16 & 4755 & 4977.83789614069 & -222.837896140689 \tabularnewline
17 & 4491 & 4554.83296683046 & -63.8329668304644 \tabularnewline
18 & 5732 & 4823.68912846824 & 908.310871531756 \tabularnewline
19 & 5731 & 4645.31781596384 & 1085.68218403616 \tabularnewline
20 & 5040 & 4610.2271491545 & 429.772850845499 \tabularnewline
21 & 6102 & 5132.90302803317 & 969.096971966826 \tabularnewline
22 & 4904 & 4733.12767458429 & 170.872325415709 \tabularnewline
23 & 5369 & 4815.09123018741 & 553.908769812594 \tabularnewline
24 & 5578 & 5230.76411898118 & 347.235881018824 \tabularnewline
25 & 4619 & 4507.36355560311 & 111.636444396893 \tabularnewline
26 & 4731 & 4375.92517198091 & 355.074828019092 \tabularnewline
27 & 5011 & 4426.5418991369 & 584.458100863101 \tabularnewline
28 & 5299 & 4738.93204051645 & 560.067959483547 \tabularnewline
29 & 4146 & 4296.7448892218 & -150.744889221801 \tabularnewline
30 & 4625 & 4569.08872758402 & 55.9112724159788 \tabularnewline
31 & 4736 & 4453.49559611957 & 282.504403880433 \tabularnewline
32 & 4219 & 4376.55280861693 & -157.552808616926 \tabularnewline
33 & 5116 & 4876.55878878673 & 239.441211213269 \tabularnewline
34 & 4205 & 4494.22181896005 & -289.221818960054 \tabularnewline
35 & 4121 & 4576.18537456317 & -455.185374563169 \tabularnewline
36 & 5103 & 4993.60210171916 & 109.397898280839 \tabularnewline
37 & 4300 & 4270.20153834109 & 29.7984616589081 \tabularnewline
38 & 4578 & 4159.68921506554 & 418.31078493446 \tabularnewline
39 & 3809 & 4206.81826549709 & -397.818265497091 \tabularnewline
40 & 5526 & 4517.46456851442 & 1008.53543148558 \tabularnewline
41 & 4247 & 4094.4596392042 & 152.540360795800 \tabularnewline
42 & 3830 & 4370.29115429086 & -540.291154290862 \tabularnewline
43 & 4394 & 4245.9788310153 & 148.021168984697 \tabularnewline
44 & 4826 & 4233.55806291483 & 592.441937085171 \tabularnewline
45 & 4409 & 4775.41616377793 & -366.416163777929 \tabularnewline
46 & 4569 & 4370.40929524239 & 198.590704757615 \tabularnewline
47 & 4106 & 4462.83588101882 & -356.835881018823 \tabularnewline
48 & 4794 & 4862.81422455261 & -68.8142245526083 \tabularnewline
49 & 3914 & 4148.13285298564 & -234.132852985642 \tabularnewline
50 & 3793 & 4037.62052971009 & -244.620529710091 \tabularnewline
51 & 4405 & 4044.64129781057 & 360.358702189434 \tabularnewline
52 & 4022 & 4341.33689393013 & -319.336893930132 \tabularnewline
53 & 4100 & 3923.56347970657 & 176.436520293429 \tabularnewline
54 & 4788 & 4183.70044953325 & 604.299550466753 \tabularnewline
55 & 3163 & 4085.545701691 & -922.545701690999 \tabularnewline
56 & 3585 & 4046.96735815721 & -461.967358157214 \tabularnewline
57 & 3903 & 4599.28848919364 & -696.288489193638 \tabularnewline
58 & 4178 & 4208.23232755586 & -30.2323275558589 \tabularnewline
59 & 3863 & 4302.40275169452 & -439.402751694519 \tabularnewline
60 & 4187 & 4718.07564048829 & -531.07564048829 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57216&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]5560[/C][C]4901.47102546502[/C][C]658.528974534976[/C][/ROW]
[ROW][C]2[/C][C]3922[/C][C]4794.44637891388[/C][C]-872.446378913876[/C][/ROW]
[ROW][C]3[/C][C]3759[/C][C]4850.29462115653[/C][C]-1091.29462115653[/C][/ROW]
[ROW][C]4[/C][C]4138[/C][C]5164.4286008983[/C][C]-1026.42860089830[/C][/ROW]
[ROW][C]5[/C][C]4634[/C][C]4748.39902503696[/C][C]-114.399025036963[/C][/ROW]
[ROW][C]6[/C][C]3996[/C][C]5024.23054012363[/C][C]-1028.23054012363[/C][/ROW]
[ROW][C]7[/C][C]4308[/C][C]4901.66205521029[/C][C]-593.662055210287[/C][/ROW]
[ROW][C]8[/C][C]4429[/C][C]4831.69462115653[/C][C]-402.69462115653[/C][/ROW]
[ROW][C]9[/C][C]5219[/C][C]5364.83353020853[/C][C]-145.833530208527[/C][/ROW]
[ROW][C]10[/C][C]4929[/C][C]4979.00888365741[/C][C]-50.0088836574102[/C][/ROW]
[ROW][C]11[/C][C]5755[/C][C]5057.48476253608[/C][C]697.515237463916[/C][/ROW]
[ROW][C]12[/C][C]5592[/C][C]5448.74391425876[/C][C]143.256085741236[/C][/ROW]
[ROW][C]13[/C][C]4163[/C][C]4728.83102760514[/C][C]-565.831027605136[/C][/ROW]
[ROW][C]14[/C][C]4962[/C][C]4618.31870432959[/C][C]343.681295670415[/C][/ROW]
[ROW][C]15[/C][C]5208[/C][C]4663.70391639891[/C][C]544.296083601085[/C][/ROW]
[ROW][C]16[/C][C]4755[/C][C]4977.83789614069[/C][C]-222.837896140689[/C][/ROW]
[ROW][C]17[/C][C]4491[/C][C]4554.83296683046[/C][C]-63.8329668304644[/C][/ROW]
[ROW][C]18[/C][C]5732[/C][C]4823.68912846824[/C][C]908.310871531756[/C][/ROW]
[ROW][C]19[/C][C]5731[/C][C]4645.31781596384[/C][C]1085.68218403616[/C][/ROW]
[ROW][C]20[/C][C]5040[/C][C]4610.2271491545[/C][C]429.772850845499[/C][/ROW]
[ROW][C]21[/C][C]6102[/C][C]5132.90302803317[/C][C]969.096971966826[/C][/ROW]
[ROW][C]22[/C][C]4904[/C][C]4733.12767458429[/C][C]170.872325415709[/C][/ROW]
[ROW][C]23[/C][C]5369[/C][C]4815.09123018741[/C][C]553.908769812594[/C][/ROW]
[ROW][C]24[/C][C]5578[/C][C]5230.76411898118[/C][C]347.235881018824[/C][/ROW]
[ROW][C]25[/C][C]4619[/C][C]4507.36355560311[/C][C]111.636444396893[/C][/ROW]
[ROW][C]26[/C][C]4731[/C][C]4375.92517198091[/C][C]355.074828019092[/C][/ROW]
[ROW][C]27[/C][C]5011[/C][C]4426.5418991369[/C][C]584.458100863101[/C][/ROW]
[ROW][C]28[/C][C]5299[/C][C]4738.93204051645[/C][C]560.067959483547[/C][/ROW]
[ROW][C]29[/C][C]4146[/C][C]4296.7448892218[/C][C]-150.744889221801[/C][/ROW]
[ROW][C]30[/C][C]4625[/C][C]4569.08872758402[/C][C]55.9112724159788[/C][/ROW]
[ROW][C]31[/C][C]4736[/C][C]4453.49559611957[/C][C]282.504403880433[/C][/ROW]
[ROW][C]32[/C][C]4219[/C][C]4376.55280861693[/C][C]-157.552808616926[/C][/ROW]
[ROW][C]33[/C][C]5116[/C][C]4876.55878878673[/C][C]239.441211213269[/C][/ROW]
[ROW][C]34[/C][C]4205[/C][C]4494.22181896005[/C][C]-289.221818960054[/C][/ROW]
[ROW][C]35[/C][C]4121[/C][C]4576.18537456317[/C][C]-455.185374563169[/C][/ROW]
[ROW][C]36[/C][C]5103[/C][C]4993.60210171916[/C][C]109.397898280839[/C][/ROW]
[ROW][C]37[/C][C]4300[/C][C]4270.20153834109[/C][C]29.7984616589081[/C][/ROW]
[ROW][C]38[/C][C]4578[/C][C]4159.68921506554[/C][C]418.31078493446[/C][/ROW]
[ROW][C]39[/C][C]3809[/C][C]4206.81826549709[/C][C]-397.818265497091[/C][/ROW]
[ROW][C]40[/C][C]5526[/C][C]4517.46456851442[/C][C]1008.53543148558[/C][/ROW]
[ROW][C]41[/C][C]4247[/C][C]4094.4596392042[/C][C]152.540360795800[/C][/ROW]
[ROW][C]42[/C][C]3830[/C][C]4370.29115429086[/C][C]-540.291154290862[/C][/ROW]
[ROW][C]43[/C][C]4394[/C][C]4245.9788310153[/C][C]148.021168984697[/C][/ROW]
[ROW][C]44[/C][C]4826[/C][C]4233.55806291483[/C][C]592.441937085171[/C][/ROW]
[ROW][C]45[/C][C]4409[/C][C]4775.41616377793[/C][C]-366.416163777929[/C][/ROW]
[ROW][C]46[/C][C]4569[/C][C]4370.40929524239[/C][C]198.590704757615[/C][/ROW]
[ROW][C]47[/C][C]4106[/C][C]4462.83588101882[/C][C]-356.835881018823[/C][/ROW]
[ROW][C]48[/C][C]4794[/C][C]4862.81422455261[/C][C]-68.8142245526083[/C][/ROW]
[ROW][C]49[/C][C]3914[/C][C]4148.13285298564[/C][C]-234.132852985642[/C][/ROW]
[ROW][C]50[/C][C]3793[/C][C]4037.62052971009[/C][C]-244.620529710091[/C][/ROW]
[ROW][C]51[/C][C]4405[/C][C]4044.64129781057[/C][C]360.358702189434[/C][/ROW]
[ROW][C]52[/C][C]4022[/C][C]4341.33689393013[/C][C]-319.336893930132[/C][/ROW]
[ROW][C]53[/C][C]4100[/C][C]3923.56347970657[/C][C]176.436520293429[/C][/ROW]
[ROW][C]54[/C][C]4788[/C][C]4183.70044953325[/C][C]604.299550466753[/C][/ROW]
[ROW][C]55[/C][C]3163[/C][C]4085.545701691[/C][C]-922.545701690999[/C][/ROW]
[ROW][C]56[/C][C]3585[/C][C]4046.96735815721[/C][C]-461.967358157214[/C][/ROW]
[ROW][C]57[/C][C]3903[/C][C]4599.28848919364[/C][C]-696.288489193638[/C][/ROW]
[ROW][C]58[/C][C]4178[/C][C]4208.23232755586[/C][C]-30.2323275558589[/C][/ROW]
[ROW][C]59[/C][C]3863[/C][C]4302.40275169452[/C][C]-439.402751694519[/C][/ROW]
[ROW][C]60[/C][C]4187[/C][C]4718.07564048829[/C][C]-531.07564048829[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57216&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57216&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
155604901.47102546502658.528974534976
239224794.44637891388-872.446378913876
337594850.29462115653-1091.29462115653
441385164.4286008983-1026.42860089830
546344748.39902503696-114.399025036963
639965024.23054012363-1028.23054012363
743084901.66205521029-593.662055210287
844294831.69462115653-402.69462115653
952195364.83353020853-145.833530208527
1049294979.00888365741-50.0088836574102
1157555057.48476253608697.515237463916
1255925448.74391425876143.256085741236
1341634728.83102760514-565.831027605136
1449624618.31870432959343.681295670415
1552084663.70391639891544.296083601085
1647554977.83789614069-222.837896140689
1744914554.83296683046-63.8329668304644
1857324823.68912846824908.310871531756
1957314645.317815963841085.68218403616
2050404610.2271491545429.772850845499
2161025132.90302803317969.096971966826
2249044733.12767458429170.872325415709
2353694815.09123018741553.908769812594
2455785230.76411898118347.235881018824
2546194507.36355560311111.636444396893
2647314375.92517198091355.074828019092
2750114426.5418991369584.458100863101
2852994738.93204051645560.067959483547
2941464296.7448892218-150.744889221801
3046254569.0887275840255.9112724159788
3147364453.49559611957282.504403880433
3242194376.55280861693-157.552808616926
3351164876.55878878673239.441211213269
3442054494.22181896005-289.221818960054
3541214576.18537456317-455.185374563169
3651034993.60210171916109.397898280839
3743004270.2015383410929.7984616589081
3845784159.68921506554418.31078493446
3938094206.81826549709-397.818265497091
4055264517.464568514421008.53543148558
4142474094.4596392042152.540360795800
4238304370.29115429086-540.291154290862
4343944245.9788310153148.021168984697
4448264233.55806291483592.441937085171
4544094775.41616377793-366.416163777929
4645694370.40929524239198.590704757615
4741064462.83588101882-356.835881018823
4847944862.81422455261-68.8142245526083
4939144148.13285298564-234.132852985642
5037934037.62052971009-244.620529710091
5144054044.64129781057360.358702189434
5240224341.33689393013-319.336893930132
5341003923.56347970657176.436520293429
5447884183.70044953325604.299550466753
5531634085.545701691-922.545701690999
5635854046.96735815721-461.967358157214
5739034599.28848919364-696.288489193638
5841784208.23232755586-30.2323275558589
5938634302.40275169452-439.402751694519
6041874718.07564048829-531.07564048829







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
160.987182754660950.02563449067809780.0128172453390489
170.982538269739660.03492346052068140.0174617302603407
180.9882490518794520.02350189624109540.0117509481205477
190.9854849313116760.02903013737664840.0145150686883242
200.9714871919805220.05702561603895590.0285128080194780
210.9647894186782950.07042116264341070.0352105813217054
220.9596014053510120.08079718929797650.0403985946489882
230.9693199591992030.06136008160159390.0306800408007969
240.9540594588873780.09188108222524390.0459405411126220
250.9494679042098260.1010641915803480.0505320957901738
260.9198645832018950.1602708335962100.0801354167981048
270.8827967645855740.2344064708288520.117203235414426
280.8328669736086450.334266052782710.167133026391355
290.8571938995944490.2856122008111020.142806100405551
300.8313360550608330.3373278898783340.168663944939167
310.7955709897154940.4088580205690120.204429010284506
320.788964524734480.4220709505310390.211035475265520
330.7783654886385180.4432690227229650.221634511361482
340.789231132765680.4215377344686390.210768867234320
350.8235293208928660.3529413582142670.176470679107134
360.7536150428361950.4927699143276110.246384957163806
370.6675220080752060.6649559838495880.332477991924794
380.5861048115959470.8277903768081060.413895188404053
390.6425654356677110.7148691286645770.357434564332289
400.7090380907986750.5819238184026510.290961909201325
410.5995098285051410.8009803429897170.400490171494859
420.948482120157030.1030357596859400.0515178798429699
430.9520041441970510.09599171160589790.0479958558029490
440.9890430951145130.02191380977097380.0109569048854869

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
16 & 0.98718275466095 & 0.0256344906780978 & 0.0128172453390489 \tabularnewline
17 & 0.98253826973966 & 0.0349234605206814 & 0.0174617302603407 \tabularnewline
18 & 0.988249051879452 & 0.0235018962410954 & 0.0117509481205477 \tabularnewline
19 & 0.985484931311676 & 0.0290301373766484 & 0.0145150686883242 \tabularnewline
20 & 0.971487191980522 & 0.0570256160389559 & 0.0285128080194780 \tabularnewline
21 & 0.964789418678295 & 0.0704211626434107 & 0.0352105813217054 \tabularnewline
22 & 0.959601405351012 & 0.0807971892979765 & 0.0403985946489882 \tabularnewline
23 & 0.969319959199203 & 0.0613600816015939 & 0.0306800408007969 \tabularnewline
24 & 0.954059458887378 & 0.0918810822252439 & 0.0459405411126220 \tabularnewline
25 & 0.949467904209826 & 0.101064191580348 & 0.0505320957901738 \tabularnewline
26 & 0.919864583201895 & 0.160270833596210 & 0.0801354167981048 \tabularnewline
27 & 0.882796764585574 & 0.234406470828852 & 0.117203235414426 \tabularnewline
28 & 0.832866973608645 & 0.33426605278271 & 0.167133026391355 \tabularnewline
29 & 0.857193899594449 & 0.285612200811102 & 0.142806100405551 \tabularnewline
30 & 0.831336055060833 & 0.337327889878334 & 0.168663944939167 \tabularnewline
31 & 0.795570989715494 & 0.408858020569012 & 0.204429010284506 \tabularnewline
32 & 0.78896452473448 & 0.422070950531039 & 0.211035475265520 \tabularnewline
33 & 0.778365488638518 & 0.443269022722965 & 0.221634511361482 \tabularnewline
34 & 0.78923113276568 & 0.421537734468639 & 0.210768867234320 \tabularnewline
35 & 0.823529320892866 & 0.352941358214267 & 0.176470679107134 \tabularnewline
36 & 0.753615042836195 & 0.492769914327611 & 0.246384957163806 \tabularnewline
37 & 0.667522008075206 & 0.664955983849588 & 0.332477991924794 \tabularnewline
38 & 0.586104811595947 & 0.827790376808106 & 0.413895188404053 \tabularnewline
39 & 0.642565435667711 & 0.714869128664577 & 0.357434564332289 \tabularnewline
40 & 0.709038090798675 & 0.581923818402651 & 0.290961909201325 \tabularnewline
41 & 0.599509828505141 & 0.800980342989717 & 0.400490171494859 \tabularnewline
42 & 0.94848212015703 & 0.103035759685940 & 0.0515178798429699 \tabularnewline
43 & 0.952004144197051 & 0.0959917116058979 & 0.0479958558029490 \tabularnewline
44 & 0.989043095114513 & 0.0219138097709738 & 0.0109569048854869 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57216&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]16[/C][C]0.98718275466095[/C][C]0.0256344906780978[/C][C]0.0128172453390489[/C][/ROW]
[ROW][C]17[/C][C]0.98253826973966[/C][C]0.0349234605206814[/C][C]0.0174617302603407[/C][/ROW]
[ROW][C]18[/C][C]0.988249051879452[/C][C]0.0235018962410954[/C][C]0.0117509481205477[/C][/ROW]
[ROW][C]19[/C][C]0.985484931311676[/C][C]0.0290301373766484[/C][C]0.0145150686883242[/C][/ROW]
[ROW][C]20[/C][C]0.971487191980522[/C][C]0.0570256160389559[/C][C]0.0285128080194780[/C][/ROW]
[ROW][C]21[/C][C]0.964789418678295[/C][C]0.0704211626434107[/C][C]0.0352105813217054[/C][/ROW]
[ROW][C]22[/C][C]0.959601405351012[/C][C]0.0807971892979765[/C][C]0.0403985946489882[/C][/ROW]
[ROW][C]23[/C][C]0.969319959199203[/C][C]0.0613600816015939[/C][C]0.0306800408007969[/C][/ROW]
[ROW][C]24[/C][C]0.954059458887378[/C][C]0.0918810822252439[/C][C]0.0459405411126220[/C][/ROW]
[ROW][C]25[/C][C]0.949467904209826[/C][C]0.101064191580348[/C][C]0.0505320957901738[/C][/ROW]
[ROW][C]26[/C][C]0.919864583201895[/C][C]0.160270833596210[/C][C]0.0801354167981048[/C][/ROW]
[ROW][C]27[/C][C]0.882796764585574[/C][C]0.234406470828852[/C][C]0.117203235414426[/C][/ROW]
[ROW][C]28[/C][C]0.832866973608645[/C][C]0.33426605278271[/C][C]0.167133026391355[/C][/ROW]
[ROW][C]29[/C][C]0.857193899594449[/C][C]0.285612200811102[/C][C]0.142806100405551[/C][/ROW]
[ROW][C]30[/C][C]0.831336055060833[/C][C]0.337327889878334[/C][C]0.168663944939167[/C][/ROW]
[ROW][C]31[/C][C]0.795570989715494[/C][C]0.408858020569012[/C][C]0.204429010284506[/C][/ROW]
[ROW][C]32[/C][C]0.78896452473448[/C][C]0.422070950531039[/C][C]0.211035475265520[/C][/ROW]
[ROW][C]33[/C][C]0.778365488638518[/C][C]0.443269022722965[/C][C]0.221634511361482[/C][/ROW]
[ROW][C]34[/C][C]0.78923113276568[/C][C]0.421537734468639[/C][C]0.210768867234320[/C][/ROW]
[ROW][C]35[/C][C]0.823529320892866[/C][C]0.352941358214267[/C][C]0.176470679107134[/C][/ROW]
[ROW][C]36[/C][C]0.753615042836195[/C][C]0.492769914327611[/C][C]0.246384957163806[/C][/ROW]
[ROW][C]37[/C][C]0.667522008075206[/C][C]0.664955983849588[/C][C]0.332477991924794[/C][/ROW]
[ROW][C]38[/C][C]0.586104811595947[/C][C]0.827790376808106[/C][C]0.413895188404053[/C][/ROW]
[ROW][C]39[/C][C]0.642565435667711[/C][C]0.714869128664577[/C][C]0.357434564332289[/C][/ROW]
[ROW][C]40[/C][C]0.709038090798675[/C][C]0.581923818402651[/C][C]0.290961909201325[/C][/ROW]
[ROW][C]41[/C][C]0.599509828505141[/C][C]0.800980342989717[/C][C]0.400490171494859[/C][/ROW]
[ROW][C]42[/C][C]0.94848212015703[/C][C]0.103035759685940[/C][C]0.0515178798429699[/C][/ROW]
[ROW][C]43[/C][C]0.952004144197051[/C][C]0.0959917116058979[/C][C]0.0479958558029490[/C][/ROW]
[ROW][C]44[/C][C]0.989043095114513[/C][C]0.0219138097709738[/C][C]0.0109569048854869[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57216&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57216&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
160.987182754660950.02563449067809780.0128172453390489
170.982538269739660.03492346052068140.0174617302603407
180.9882490518794520.02350189624109540.0117509481205477
190.9854849313116760.02903013737664840.0145150686883242
200.9714871919805220.05702561603895590.0285128080194780
210.9647894186782950.07042116264341070.0352105813217054
220.9596014053510120.08079718929797650.0403985946489882
230.9693199591992030.06136008160159390.0306800408007969
240.9540594588873780.09188108222524390.0459405411126220
250.9494679042098260.1010641915803480.0505320957901738
260.9198645832018950.1602708335962100.0801354167981048
270.8827967645855740.2344064708288520.117203235414426
280.8328669736086450.334266052782710.167133026391355
290.8571938995944490.2856122008111020.142806100405551
300.8313360550608330.3373278898783340.168663944939167
310.7955709897154940.4088580205690120.204429010284506
320.788964524734480.4220709505310390.211035475265520
330.7783654886385180.4432690227229650.221634511361482
340.789231132765680.4215377344686390.210768867234320
350.8235293208928660.3529413582142670.176470679107134
360.7536150428361950.4927699143276110.246384957163806
370.6675220080752060.6649559838495880.332477991924794
380.5861048115959470.8277903768081060.413895188404053
390.6425654356677110.7148691286645770.357434564332289
400.7090380907986750.5819238184026510.290961909201325
410.5995098285051410.8009803429897170.400490171494859
420.948482120157030.1030357596859400.0515178798429699
430.9520041441970510.09599171160589790.0479958558029490
440.9890430951145130.02191380977097380.0109569048854869







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level50.172413793103448NOK
10% type I error level110.379310344827586NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 5 & 0.172413793103448 & NOK \tabularnewline
10% type I error level & 11 & 0.379310344827586 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57216&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]5[/C][C]0.172413793103448[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]11[/C][C]0.379310344827586[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57216&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57216&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level50.172413793103448NOK
10% type I error level110.379310344827586NOK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}