Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 20 Nov 2009 06:53:17 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/20/t1258725267hvic6fee5y2h0ma.htm/, Retrieved Wed, 15 Jan 2025 08:34:29 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=58161, Retrieved Wed, 15 Jan 2025 08:34:29 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsDSHW, SDHW
Estimated Impact192
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
- RMPD  [Multiple Regression] [Seatbelt] [2009-11-12 13:54:52] [b98453cac15ba1066b407e146608df68]
-    D    [Multiple Regression] [workshop 7 bereke...] [2009-11-19 15:24:52] [eaf42bcf5162b5692bb3c7f9d4636222]
-   PD      [Multiple Regression] [DSHW-WS7-Multiple...] [2009-11-20 13:19:23] [f15cfb7053d35072d573abca87df96a0]
-   P           [Multiple Regression] [DSHW-WS7-Multiple...] [2009-11-20 13:53:17] [36295456a56d4c7dcc9b9537ce63463b] [Current]
-    D            [Multiple Regression] [DSHW-WS7-MultRegr1] [2009-11-20 14:59:26] [f15cfb7053d35072d573abca87df96a0]
-    D              [Multiple Regression] [DSHW-WS7-MultRegr...] [2009-11-20 15:10:50] [f15cfb7053d35072d573abca87df96a0]
-   P                 [Multiple Regression] [DSHW-WS7-MiltRegr.2] [2009-11-20 15:42:03] [f15cfb7053d35072d573abca87df96a0]
-    D                  [Multiple Regression] [review 7] [2009-11-24 20:46:35] [309ee52d0058ff0a6f7eec15e07b2d9f]
Feedback Forum

Post a new message
Dataseries X:
1.4	0.0
1.6	0.0
1.7	0.0
2.0	0.0
2.0	0.0
2.1	0.0
2.5	0.0
2.5	0.0
2.6	0.0
2.7	0.0
3.7	0.0
4.0	0.0
5.0	0.0
5.1	0.0
5.1	0.0
5.0	0.0
5.1	0.0
4.7	0.0
4.5	0.0
4.5	0.0
4.6	0.0
4.6	0.0
4.6	0.0
4.6	0.0
5.3	0.0
5.4	0.0
5.3	0.0
5.2	0.0
5.0	0.0
4.2	0.0
4.3	0.0
4.3	0.0
4.3	0.0
4.0	0.0
4.0	0.0
4.1	0.0
4.4	0.0
3.6	0.0
3.7	0.0
3.8	0.0
3.3	0.0
3.3	0.0
3.3	0.0
3.5	0.0
3.3	1.0
3.3	1.0
3.4	1.0
3.4	1.0
5.2	1.0
5.3	1.0
4.8	1.0
5.0	1.0
4.6	1.0
4.6	1.0
3.5	1.0
3.5	1.0




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58161&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58161&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58161&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
IndGez[t] = + 3.875 + 0.283333333333334InvlCrisis[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
IndGez[t] =  +  3.875 +  0.283333333333334InvlCrisis[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58161&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]IndGez[t] =  +  3.875 +  0.283333333333334InvlCrisis[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58161&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58161&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
IndGez[t] = + 3.875 + 0.283333333333334InvlCrisis[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)3.8750.16243623.855600
InvlCrisis0.2833333333333340.3509010.80740.4229530.211477

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 3.875 & 0.162436 & 23.8556 & 0 & 0 \tabularnewline
InvlCrisis & 0.283333333333334 & 0.350901 & 0.8074 & 0.422953 & 0.211477 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58161&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]3.875[/C][C]0.162436[/C][C]23.8556[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]InvlCrisis[/C][C]0.283333333333334[/C][C]0.350901[/C][C]0.8074[/C][C]0.422953[/C][C]0.211477[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58161&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58161&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)3.8750.16243623.855600
InvlCrisis0.2833333333333340.3509010.80740.4229530.211477







Multiple Linear Regression - Regression Statistics
Multiple R0.109221891825004
R-squared0.0119294216538329
Adjusted R-squared-0.0063681816488741
F-TEST (value)0.651966350809897
F-TEST (DF numerator)1
F-TEST (DF denominator)54
p-value0.422953016391424
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1.07747704853675
Sum Squared Residuals62.6916666666667

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.109221891825004 \tabularnewline
R-squared & 0.0119294216538329 \tabularnewline
Adjusted R-squared & -0.0063681816488741 \tabularnewline
F-TEST (value) & 0.651966350809897 \tabularnewline
F-TEST (DF numerator) & 1 \tabularnewline
F-TEST (DF denominator) & 54 \tabularnewline
p-value & 0.422953016391424 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 1.07747704853675 \tabularnewline
Sum Squared Residuals & 62.6916666666667 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58161&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.109221891825004[/C][/ROW]
[ROW][C]R-squared[/C][C]0.0119294216538329[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.0063681816488741[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]0.651966350809897[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]1[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]54[/C][/ROW]
[ROW][C]p-value[/C][C]0.422953016391424[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]1.07747704853675[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]62.6916666666667[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58161&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58161&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.109221891825004
R-squared0.0119294216538329
Adjusted R-squared-0.0063681816488741
F-TEST (value)0.651966350809897
F-TEST (DF numerator)1
F-TEST (DF denominator)54
p-value0.422953016391424
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1.07747704853675
Sum Squared Residuals62.6916666666667







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
11.43.87500000000001-2.47500000000001
21.63.875-2.275
31.73.875-2.175
423.875-1.875
523.875-1.875
62.13.875-1.775
72.53.875-1.375
82.53.875-1.375
92.63.875-1.275
102.73.875-1.175
113.73.875-0.175000000000000
1243.8750.125000000000000
1353.8751.125
145.13.8751.225
155.13.8751.225
1653.8751.125
175.13.8751.225
184.73.8750.825
194.53.8750.625
204.53.8750.625
214.63.8750.725
224.63.8750.725
234.63.8750.725
244.63.8750.725
255.33.8751.425
265.43.8751.525
275.33.8751.425
285.23.8751.325
2953.8751.125
304.23.8750.325000000000001
314.33.8750.425
324.33.8750.425
334.33.8750.425
3443.8750.125000000000000
3543.8750.125000000000000
364.13.8750.225
374.43.8750.525000000000001
383.63.875-0.275000000000000
393.73.875-0.175000000000000
403.83.875-0.075
413.33.875-0.575
423.33.875-0.575
433.33.875-0.575
443.53.875-0.375
453.34.15833333333333-0.858333333333334
463.34.15833333333333-0.858333333333334
473.44.15833333333333-0.758333333333334
483.44.15833333333333-0.758333333333334
495.24.158333333333331.04166666666667
505.34.158333333333331.14166666666667
514.84.158333333333330.641666666666666
5254.158333333333330.841666666666667
534.64.158333333333330.441666666666666
544.64.158333333333330.441666666666666
553.54.15833333333333-0.658333333333333
563.54.15833333333333-0.658333333333333

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 1.4 & 3.87500000000001 & -2.47500000000001 \tabularnewline
2 & 1.6 & 3.875 & -2.275 \tabularnewline
3 & 1.7 & 3.875 & -2.175 \tabularnewline
4 & 2 & 3.875 & -1.875 \tabularnewline
5 & 2 & 3.875 & -1.875 \tabularnewline
6 & 2.1 & 3.875 & -1.775 \tabularnewline
7 & 2.5 & 3.875 & -1.375 \tabularnewline
8 & 2.5 & 3.875 & -1.375 \tabularnewline
9 & 2.6 & 3.875 & -1.275 \tabularnewline
10 & 2.7 & 3.875 & -1.175 \tabularnewline
11 & 3.7 & 3.875 & -0.175000000000000 \tabularnewline
12 & 4 & 3.875 & 0.125000000000000 \tabularnewline
13 & 5 & 3.875 & 1.125 \tabularnewline
14 & 5.1 & 3.875 & 1.225 \tabularnewline
15 & 5.1 & 3.875 & 1.225 \tabularnewline
16 & 5 & 3.875 & 1.125 \tabularnewline
17 & 5.1 & 3.875 & 1.225 \tabularnewline
18 & 4.7 & 3.875 & 0.825 \tabularnewline
19 & 4.5 & 3.875 & 0.625 \tabularnewline
20 & 4.5 & 3.875 & 0.625 \tabularnewline
21 & 4.6 & 3.875 & 0.725 \tabularnewline
22 & 4.6 & 3.875 & 0.725 \tabularnewline
23 & 4.6 & 3.875 & 0.725 \tabularnewline
24 & 4.6 & 3.875 & 0.725 \tabularnewline
25 & 5.3 & 3.875 & 1.425 \tabularnewline
26 & 5.4 & 3.875 & 1.525 \tabularnewline
27 & 5.3 & 3.875 & 1.425 \tabularnewline
28 & 5.2 & 3.875 & 1.325 \tabularnewline
29 & 5 & 3.875 & 1.125 \tabularnewline
30 & 4.2 & 3.875 & 0.325000000000001 \tabularnewline
31 & 4.3 & 3.875 & 0.425 \tabularnewline
32 & 4.3 & 3.875 & 0.425 \tabularnewline
33 & 4.3 & 3.875 & 0.425 \tabularnewline
34 & 4 & 3.875 & 0.125000000000000 \tabularnewline
35 & 4 & 3.875 & 0.125000000000000 \tabularnewline
36 & 4.1 & 3.875 & 0.225 \tabularnewline
37 & 4.4 & 3.875 & 0.525000000000001 \tabularnewline
38 & 3.6 & 3.875 & -0.275000000000000 \tabularnewline
39 & 3.7 & 3.875 & -0.175000000000000 \tabularnewline
40 & 3.8 & 3.875 & -0.075 \tabularnewline
41 & 3.3 & 3.875 & -0.575 \tabularnewline
42 & 3.3 & 3.875 & -0.575 \tabularnewline
43 & 3.3 & 3.875 & -0.575 \tabularnewline
44 & 3.5 & 3.875 & -0.375 \tabularnewline
45 & 3.3 & 4.15833333333333 & -0.858333333333334 \tabularnewline
46 & 3.3 & 4.15833333333333 & -0.858333333333334 \tabularnewline
47 & 3.4 & 4.15833333333333 & -0.758333333333334 \tabularnewline
48 & 3.4 & 4.15833333333333 & -0.758333333333334 \tabularnewline
49 & 5.2 & 4.15833333333333 & 1.04166666666667 \tabularnewline
50 & 5.3 & 4.15833333333333 & 1.14166666666667 \tabularnewline
51 & 4.8 & 4.15833333333333 & 0.641666666666666 \tabularnewline
52 & 5 & 4.15833333333333 & 0.841666666666667 \tabularnewline
53 & 4.6 & 4.15833333333333 & 0.441666666666666 \tabularnewline
54 & 4.6 & 4.15833333333333 & 0.441666666666666 \tabularnewline
55 & 3.5 & 4.15833333333333 & -0.658333333333333 \tabularnewline
56 & 3.5 & 4.15833333333333 & -0.658333333333333 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58161&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]1.4[/C][C]3.87500000000001[/C][C]-2.47500000000001[/C][/ROW]
[ROW][C]2[/C][C]1.6[/C][C]3.875[/C][C]-2.275[/C][/ROW]
[ROW][C]3[/C][C]1.7[/C][C]3.875[/C][C]-2.175[/C][/ROW]
[ROW][C]4[/C][C]2[/C][C]3.875[/C][C]-1.875[/C][/ROW]
[ROW][C]5[/C][C]2[/C][C]3.875[/C][C]-1.875[/C][/ROW]
[ROW][C]6[/C][C]2.1[/C][C]3.875[/C][C]-1.775[/C][/ROW]
[ROW][C]7[/C][C]2.5[/C][C]3.875[/C][C]-1.375[/C][/ROW]
[ROW][C]8[/C][C]2.5[/C][C]3.875[/C][C]-1.375[/C][/ROW]
[ROW][C]9[/C][C]2.6[/C][C]3.875[/C][C]-1.275[/C][/ROW]
[ROW][C]10[/C][C]2.7[/C][C]3.875[/C][C]-1.175[/C][/ROW]
[ROW][C]11[/C][C]3.7[/C][C]3.875[/C][C]-0.175000000000000[/C][/ROW]
[ROW][C]12[/C][C]4[/C][C]3.875[/C][C]0.125000000000000[/C][/ROW]
[ROW][C]13[/C][C]5[/C][C]3.875[/C][C]1.125[/C][/ROW]
[ROW][C]14[/C][C]5.1[/C][C]3.875[/C][C]1.225[/C][/ROW]
[ROW][C]15[/C][C]5.1[/C][C]3.875[/C][C]1.225[/C][/ROW]
[ROW][C]16[/C][C]5[/C][C]3.875[/C][C]1.125[/C][/ROW]
[ROW][C]17[/C][C]5.1[/C][C]3.875[/C][C]1.225[/C][/ROW]
[ROW][C]18[/C][C]4.7[/C][C]3.875[/C][C]0.825[/C][/ROW]
[ROW][C]19[/C][C]4.5[/C][C]3.875[/C][C]0.625[/C][/ROW]
[ROW][C]20[/C][C]4.5[/C][C]3.875[/C][C]0.625[/C][/ROW]
[ROW][C]21[/C][C]4.6[/C][C]3.875[/C][C]0.725[/C][/ROW]
[ROW][C]22[/C][C]4.6[/C][C]3.875[/C][C]0.725[/C][/ROW]
[ROW][C]23[/C][C]4.6[/C][C]3.875[/C][C]0.725[/C][/ROW]
[ROW][C]24[/C][C]4.6[/C][C]3.875[/C][C]0.725[/C][/ROW]
[ROW][C]25[/C][C]5.3[/C][C]3.875[/C][C]1.425[/C][/ROW]
[ROW][C]26[/C][C]5.4[/C][C]3.875[/C][C]1.525[/C][/ROW]
[ROW][C]27[/C][C]5.3[/C][C]3.875[/C][C]1.425[/C][/ROW]
[ROW][C]28[/C][C]5.2[/C][C]3.875[/C][C]1.325[/C][/ROW]
[ROW][C]29[/C][C]5[/C][C]3.875[/C][C]1.125[/C][/ROW]
[ROW][C]30[/C][C]4.2[/C][C]3.875[/C][C]0.325000000000001[/C][/ROW]
[ROW][C]31[/C][C]4.3[/C][C]3.875[/C][C]0.425[/C][/ROW]
[ROW][C]32[/C][C]4.3[/C][C]3.875[/C][C]0.425[/C][/ROW]
[ROW][C]33[/C][C]4.3[/C][C]3.875[/C][C]0.425[/C][/ROW]
[ROW][C]34[/C][C]4[/C][C]3.875[/C][C]0.125000000000000[/C][/ROW]
[ROW][C]35[/C][C]4[/C][C]3.875[/C][C]0.125000000000000[/C][/ROW]
[ROW][C]36[/C][C]4.1[/C][C]3.875[/C][C]0.225[/C][/ROW]
[ROW][C]37[/C][C]4.4[/C][C]3.875[/C][C]0.525000000000001[/C][/ROW]
[ROW][C]38[/C][C]3.6[/C][C]3.875[/C][C]-0.275000000000000[/C][/ROW]
[ROW][C]39[/C][C]3.7[/C][C]3.875[/C][C]-0.175000000000000[/C][/ROW]
[ROW][C]40[/C][C]3.8[/C][C]3.875[/C][C]-0.075[/C][/ROW]
[ROW][C]41[/C][C]3.3[/C][C]3.875[/C][C]-0.575[/C][/ROW]
[ROW][C]42[/C][C]3.3[/C][C]3.875[/C][C]-0.575[/C][/ROW]
[ROW][C]43[/C][C]3.3[/C][C]3.875[/C][C]-0.575[/C][/ROW]
[ROW][C]44[/C][C]3.5[/C][C]3.875[/C][C]-0.375[/C][/ROW]
[ROW][C]45[/C][C]3.3[/C][C]4.15833333333333[/C][C]-0.858333333333334[/C][/ROW]
[ROW][C]46[/C][C]3.3[/C][C]4.15833333333333[/C][C]-0.858333333333334[/C][/ROW]
[ROW][C]47[/C][C]3.4[/C][C]4.15833333333333[/C][C]-0.758333333333334[/C][/ROW]
[ROW][C]48[/C][C]3.4[/C][C]4.15833333333333[/C][C]-0.758333333333334[/C][/ROW]
[ROW][C]49[/C][C]5.2[/C][C]4.15833333333333[/C][C]1.04166666666667[/C][/ROW]
[ROW][C]50[/C][C]5.3[/C][C]4.15833333333333[/C][C]1.14166666666667[/C][/ROW]
[ROW][C]51[/C][C]4.8[/C][C]4.15833333333333[/C][C]0.641666666666666[/C][/ROW]
[ROW][C]52[/C][C]5[/C][C]4.15833333333333[/C][C]0.841666666666667[/C][/ROW]
[ROW][C]53[/C][C]4.6[/C][C]4.15833333333333[/C][C]0.441666666666666[/C][/ROW]
[ROW][C]54[/C][C]4.6[/C][C]4.15833333333333[/C][C]0.441666666666666[/C][/ROW]
[ROW][C]55[/C][C]3.5[/C][C]4.15833333333333[/C][C]-0.658333333333333[/C][/ROW]
[ROW][C]56[/C][C]3.5[/C][C]4.15833333333333[/C][C]-0.658333333333333[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58161&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58161&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
11.43.87500000000001-2.47500000000001
21.63.875-2.275
31.73.875-2.175
423.875-1.875
523.875-1.875
62.13.875-1.775
72.53.875-1.375
82.53.875-1.375
92.63.875-1.275
102.73.875-1.175
113.73.875-0.175000000000000
1243.8750.125000000000000
1353.8751.125
145.13.8751.225
155.13.8751.225
1653.8751.125
175.13.8751.225
184.73.8750.825
194.53.8750.625
204.53.8750.625
214.63.8750.725
224.63.8750.725
234.63.8750.725
244.63.8750.725
255.33.8751.425
265.43.8751.525
275.33.8751.425
285.23.8751.325
2953.8751.125
304.23.8750.325000000000001
314.33.8750.425
324.33.8750.425
334.33.8750.425
3443.8750.125000000000000
3543.8750.125000000000000
364.13.8750.225
374.43.8750.525000000000001
383.63.875-0.275000000000000
393.73.875-0.175000000000000
403.83.875-0.075
413.33.875-0.575
423.33.875-0.575
433.33.875-0.575
443.53.875-0.375
453.34.15833333333333-0.858333333333334
463.34.15833333333333-0.858333333333334
473.44.15833333333333-0.758333333333334
483.44.15833333333333-0.758333333333334
495.24.158333333333331.04166666666667
505.34.158333333333331.14166666666667
514.84.158333333333330.641666666666666
5254.158333333333330.841666666666667
534.64.158333333333330.441666666666666
544.64.158333333333330.441666666666666
553.54.15833333333333-0.658333333333333
563.54.15833333333333-0.658333333333333







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
50.05270943985635020.1054188797127000.94729056014365
60.03379426735935720.06758853471871450.966205732640643
70.06512742953454080.1302548590690820.934872570465459
80.0796726046585470.1593452093170940.920327395341453
90.1046582463610760.2093164927221530.895341753638924
100.1471426361469510.2942852722939020.85285736385305
110.5371056525582340.9257886948835310.462894347441766
120.8145055277557190.3709889444885620.185494472244281
130.9840934022014890.03181319559702270.0159065977985114
140.9979275460908910.004144907818217240.00207245390910862
150.9995189906343630.0009620187312730720.000481009365636536
160.9997931722191920.0004136555616170420.000206827780808521
170.9999049376269320.0001901247461358909.50623730679448e-05
180.9998970626839220.0002058746321551620.000102937316077581
190.999850301898580.0002993962028390920.000149698101419546
200.9997739763509870.0004520472980256220.000226023649012811
210.9996776060543620.000644787891276460.00032239394563823
220.9995284557464850.0009430885070300530.000471544253515027
230.999299525465690.001400949068620480.000700474534310241
240.9989512433017060.002097513396587840.00104875669829392
250.9993500733351560.001299853329688680.000649926664844341
260.9996924705897560.0006150588204889620.000307529410244481
270.9998451063750870.0003097872498264440.000154893624913222
280.9999195982405110.0001608035189771418.04017594885707e-05
290.9999461979498320.0001076041003355165.38020501677579e-05
300.999888049602120.0002239007957599980.000111950397879999
310.9997941283051760.000411743389647910.000205871694823955
320.9996388028307980.0007223943384049710.000361197169202485
330.9993990362568760.001201927486248100.000600963743124051
340.9988055900583630.002388819883274980.00119440994163749
350.9977260434145070.004547913170985710.00227395658549285
360.9961180345451080.007763930909784160.00388196545489208
370.9955230327797260.008953934440547150.00447696722027357
380.991482471028810.01703505794238080.0085175289711904
390.9847311239359260.03053775212814810.0152688760640740
400.9750395071853970.04992098562920670.0249604928146034
410.9578038527852280.0843922944295450.0421961472147725
420.9312383809122480.1375232381755050.0687616190877525
430.8925678731564540.2148642536870920.107432126843546
440.8355941269569460.3288117460861070.164405873043054
450.8147123167514110.3705753664971790.185287683248589
460.8052022025111080.3895955949777850.194797797488893
470.7982581246613170.4034837506773670.201741875338684
480.8201678979889670.3596642040220650.179832102011033
490.7857934181156620.4284131637686770.214206581884338
500.7806993749292220.4386012501415560.219300625070778
510.6706124076698930.6587751846602140.329387592330107

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
5 & 0.0527094398563502 & 0.105418879712700 & 0.94729056014365 \tabularnewline
6 & 0.0337942673593572 & 0.0675885347187145 & 0.966205732640643 \tabularnewline
7 & 0.0651274295345408 & 0.130254859069082 & 0.934872570465459 \tabularnewline
8 & 0.079672604658547 & 0.159345209317094 & 0.920327395341453 \tabularnewline
9 & 0.104658246361076 & 0.209316492722153 & 0.895341753638924 \tabularnewline
10 & 0.147142636146951 & 0.294285272293902 & 0.85285736385305 \tabularnewline
11 & 0.537105652558234 & 0.925788694883531 & 0.462894347441766 \tabularnewline
12 & 0.814505527755719 & 0.370988944488562 & 0.185494472244281 \tabularnewline
13 & 0.984093402201489 & 0.0318131955970227 & 0.0159065977985114 \tabularnewline
14 & 0.997927546090891 & 0.00414490781821724 & 0.00207245390910862 \tabularnewline
15 & 0.999518990634363 & 0.000962018731273072 & 0.000481009365636536 \tabularnewline
16 & 0.999793172219192 & 0.000413655561617042 & 0.000206827780808521 \tabularnewline
17 & 0.999904937626932 & 0.000190124746135890 & 9.50623730679448e-05 \tabularnewline
18 & 0.999897062683922 & 0.000205874632155162 & 0.000102937316077581 \tabularnewline
19 & 0.99985030189858 & 0.000299396202839092 & 0.000149698101419546 \tabularnewline
20 & 0.999773976350987 & 0.000452047298025622 & 0.000226023649012811 \tabularnewline
21 & 0.999677606054362 & 0.00064478789127646 & 0.00032239394563823 \tabularnewline
22 & 0.999528455746485 & 0.000943088507030053 & 0.000471544253515027 \tabularnewline
23 & 0.99929952546569 & 0.00140094906862048 & 0.000700474534310241 \tabularnewline
24 & 0.998951243301706 & 0.00209751339658784 & 0.00104875669829392 \tabularnewline
25 & 0.999350073335156 & 0.00129985332968868 & 0.000649926664844341 \tabularnewline
26 & 0.999692470589756 & 0.000615058820488962 & 0.000307529410244481 \tabularnewline
27 & 0.999845106375087 & 0.000309787249826444 & 0.000154893624913222 \tabularnewline
28 & 0.999919598240511 & 0.000160803518977141 & 8.04017594885707e-05 \tabularnewline
29 & 0.999946197949832 & 0.000107604100335516 & 5.38020501677579e-05 \tabularnewline
30 & 0.99988804960212 & 0.000223900795759998 & 0.000111950397879999 \tabularnewline
31 & 0.999794128305176 & 0.00041174338964791 & 0.000205871694823955 \tabularnewline
32 & 0.999638802830798 & 0.000722394338404971 & 0.000361197169202485 \tabularnewline
33 & 0.999399036256876 & 0.00120192748624810 & 0.000600963743124051 \tabularnewline
34 & 0.998805590058363 & 0.00238881988327498 & 0.00119440994163749 \tabularnewline
35 & 0.997726043414507 & 0.00454791317098571 & 0.00227395658549285 \tabularnewline
36 & 0.996118034545108 & 0.00776393090978416 & 0.00388196545489208 \tabularnewline
37 & 0.995523032779726 & 0.00895393444054715 & 0.00447696722027357 \tabularnewline
38 & 0.99148247102881 & 0.0170350579423808 & 0.0085175289711904 \tabularnewline
39 & 0.984731123935926 & 0.0305377521281481 & 0.0152688760640740 \tabularnewline
40 & 0.975039507185397 & 0.0499209856292067 & 0.0249604928146034 \tabularnewline
41 & 0.957803852785228 & 0.084392294429545 & 0.0421961472147725 \tabularnewline
42 & 0.931238380912248 & 0.137523238175505 & 0.0687616190877525 \tabularnewline
43 & 0.892567873156454 & 0.214864253687092 & 0.107432126843546 \tabularnewline
44 & 0.835594126956946 & 0.328811746086107 & 0.164405873043054 \tabularnewline
45 & 0.814712316751411 & 0.370575366497179 & 0.185287683248589 \tabularnewline
46 & 0.805202202511108 & 0.389595594977785 & 0.194797797488893 \tabularnewline
47 & 0.798258124661317 & 0.403483750677367 & 0.201741875338684 \tabularnewline
48 & 0.820167897988967 & 0.359664204022065 & 0.179832102011033 \tabularnewline
49 & 0.785793418115662 & 0.428413163768677 & 0.214206581884338 \tabularnewline
50 & 0.780699374929222 & 0.438601250141556 & 0.219300625070778 \tabularnewline
51 & 0.670612407669893 & 0.658775184660214 & 0.329387592330107 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58161&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]5[/C][C]0.0527094398563502[/C][C]0.105418879712700[/C][C]0.94729056014365[/C][/ROW]
[ROW][C]6[/C][C]0.0337942673593572[/C][C]0.0675885347187145[/C][C]0.966205732640643[/C][/ROW]
[ROW][C]7[/C][C]0.0651274295345408[/C][C]0.130254859069082[/C][C]0.934872570465459[/C][/ROW]
[ROW][C]8[/C][C]0.079672604658547[/C][C]0.159345209317094[/C][C]0.920327395341453[/C][/ROW]
[ROW][C]9[/C][C]0.104658246361076[/C][C]0.209316492722153[/C][C]0.895341753638924[/C][/ROW]
[ROW][C]10[/C][C]0.147142636146951[/C][C]0.294285272293902[/C][C]0.85285736385305[/C][/ROW]
[ROW][C]11[/C][C]0.537105652558234[/C][C]0.925788694883531[/C][C]0.462894347441766[/C][/ROW]
[ROW][C]12[/C][C]0.814505527755719[/C][C]0.370988944488562[/C][C]0.185494472244281[/C][/ROW]
[ROW][C]13[/C][C]0.984093402201489[/C][C]0.0318131955970227[/C][C]0.0159065977985114[/C][/ROW]
[ROW][C]14[/C][C]0.997927546090891[/C][C]0.00414490781821724[/C][C]0.00207245390910862[/C][/ROW]
[ROW][C]15[/C][C]0.999518990634363[/C][C]0.000962018731273072[/C][C]0.000481009365636536[/C][/ROW]
[ROW][C]16[/C][C]0.999793172219192[/C][C]0.000413655561617042[/C][C]0.000206827780808521[/C][/ROW]
[ROW][C]17[/C][C]0.999904937626932[/C][C]0.000190124746135890[/C][C]9.50623730679448e-05[/C][/ROW]
[ROW][C]18[/C][C]0.999897062683922[/C][C]0.000205874632155162[/C][C]0.000102937316077581[/C][/ROW]
[ROW][C]19[/C][C]0.99985030189858[/C][C]0.000299396202839092[/C][C]0.000149698101419546[/C][/ROW]
[ROW][C]20[/C][C]0.999773976350987[/C][C]0.000452047298025622[/C][C]0.000226023649012811[/C][/ROW]
[ROW][C]21[/C][C]0.999677606054362[/C][C]0.00064478789127646[/C][C]0.00032239394563823[/C][/ROW]
[ROW][C]22[/C][C]0.999528455746485[/C][C]0.000943088507030053[/C][C]0.000471544253515027[/C][/ROW]
[ROW][C]23[/C][C]0.99929952546569[/C][C]0.00140094906862048[/C][C]0.000700474534310241[/C][/ROW]
[ROW][C]24[/C][C]0.998951243301706[/C][C]0.00209751339658784[/C][C]0.00104875669829392[/C][/ROW]
[ROW][C]25[/C][C]0.999350073335156[/C][C]0.00129985332968868[/C][C]0.000649926664844341[/C][/ROW]
[ROW][C]26[/C][C]0.999692470589756[/C][C]0.000615058820488962[/C][C]0.000307529410244481[/C][/ROW]
[ROW][C]27[/C][C]0.999845106375087[/C][C]0.000309787249826444[/C][C]0.000154893624913222[/C][/ROW]
[ROW][C]28[/C][C]0.999919598240511[/C][C]0.000160803518977141[/C][C]8.04017594885707e-05[/C][/ROW]
[ROW][C]29[/C][C]0.999946197949832[/C][C]0.000107604100335516[/C][C]5.38020501677579e-05[/C][/ROW]
[ROW][C]30[/C][C]0.99988804960212[/C][C]0.000223900795759998[/C][C]0.000111950397879999[/C][/ROW]
[ROW][C]31[/C][C]0.999794128305176[/C][C]0.00041174338964791[/C][C]0.000205871694823955[/C][/ROW]
[ROW][C]32[/C][C]0.999638802830798[/C][C]0.000722394338404971[/C][C]0.000361197169202485[/C][/ROW]
[ROW][C]33[/C][C]0.999399036256876[/C][C]0.00120192748624810[/C][C]0.000600963743124051[/C][/ROW]
[ROW][C]34[/C][C]0.998805590058363[/C][C]0.00238881988327498[/C][C]0.00119440994163749[/C][/ROW]
[ROW][C]35[/C][C]0.997726043414507[/C][C]0.00454791317098571[/C][C]0.00227395658549285[/C][/ROW]
[ROW][C]36[/C][C]0.996118034545108[/C][C]0.00776393090978416[/C][C]0.00388196545489208[/C][/ROW]
[ROW][C]37[/C][C]0.995523032779726[/C][C]0.00895393444054715[/C][C]0.00447696722027357[/C][/ROW]
[ROW][C]38[/C][C]0.99148247102881[/C][C]0.0170350579423808[/C][C]0.0085175289711904[/C][/ROW]
[ROW][C]39[/C][C]0.984731123935926[/C][C]0.0305377521281481[/C][C]0.0152688760640740[/C][/ROW]
[ROW][C]40[/C][C]0.975039507185397[/C][C]0.0499209856292067[/C][C]0.0249604928146034[/C][/ROW]
[ROW][C]41[/C][C]0.957803852785228[/C][C]0.084392294429545[/C][C]0.0421961472147725[/C][/ROW]
[ROW][C]42[/C][C]0.931238380912248[/C][C]0.137523238175505[/C][C]0.0687616190877525[/C][/ROW]
[ROW][C]43[/C][C]0.892567873156454[/C][C]0.214864253687092[/C][C]0.107432126843546[/C][/ROW]
[ROW][C]44[/C][C]0.835594126956946[/C][C]0.328811746086107[/C][C]0.164405873043054[/C][/ROW]
[ROW][C]45[/C][C]0.814712316751411[/C][C]0.370575366497179[/C][C]0.185287683248589[/C][/ROW]
[ROW][C]46[/C][C]0.805202202511108[/C][C]0.389595594977785[/C][C]0.194797797488893[/C][/ROW]
[ROW][C]47[/C][C]0.798258124661317[/C][C]0.403483750677367[/C][C]0.201741875338684[/C][/ROW]
[ROW][C]48[/C][C]0.820167897988967[/C][C]0.359664204022065[/C][C]0.179832102011033[/C][/ROW]
[ROW][C]49[/C][C]0.785793418115662[/C][C]0.428413163768677[/C][C]0.214206581884338[/C][/ROW]
[ROW][C]50[/C][C]0.780699374929222[/C][C]0.438601250141556[/C][C]0.219300625070778[/C][/ROW]
[ROW][C]51[/C][C]0.670612407669893[/C][C]0.658775184660214[/C][C]0.329387592330107[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58161&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58161&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
50.05270943985635020.1054188797127000.94729056014365
60.03379426735935720.06758853471871450.966205732640643
70.06512742953454080.1302548590690820.934872570465459
80.0796726046585470.1593452093170940.920327395341453
90.1046582463610760.2093164927221530.895341753638924
100.1471426361469510.2942852722939020.85285736385305
110.5371056525582340.9257886948835310.462894347441766
120.8145055277557190.3709889444885620.185494472244281
130.9840934022014890.03181319559702270.0159065977985114
140.9979275460908910.004144907818217240.00207245390910862
150.9995189906343630.0009620187312730720.000481009365636536
160.9997931722191920.0004136555616170420.000206827780808521
170.9999049376269320.0001901247461358909.50623730679448e-05
180.9998970626839220.0002058746321551620.000102937316077581
190.999850301898580.0002993962028390920.000149698101419546
200.9997739763509870.0004520472980256220.000226023649012811
210.9996776060543620.000644787891276460.00032239394563823
220.9995284557464850.0009430885070300530.000471544253515027
230.999299525465690.001400949068620480.000700474534310241
240.9989512433017060.002097513396587840.00104875669829392
250.9993500733351560.001299853329688680.000649926664844341
260.9996924705897560.0006150588204889620.000307529410244481
270.9998451063750870.0003097872498264440.000154893624913222
280.9999195982405110.0001608035189771418.04017594885707e-05
290.9999461979498320.0001076041003355165.38020501677579e-05
300.999888049602120.0002239007957599980.000111950397879999
310.9997941283051760.000411743389647910.000205871694823955
320.9996388028307980.0007223943384049710.000361197169202485
330.9993990362568760.001201927486248100.000600963743124051
340.9988055900583630.002388819883274980.00119440994163749
350.9977260434145070.004547913170985710.00227395658549285
360.9961180345451080.007763930909784160.00388196545489208
370.9955230327797260.008953934440547150.00447696722027357
380.991482471028810.01703505794238080.0085175289711904
390.9847311239359260.03053775212814810.0152688760640740
400.9750395071853970.04992098562920670.0249604928146034
410.9578038527852280.0843922944295450.0421961472147725
420.9312383809122480.1375232381755050.0687616190877525
430.8925678731564540.2148642536870920.107432126843546
440.8355941269569460.3288117460861070.164405873043054
450.8147123167514110.3705753664971790.185287683248589
460.8052022025111080.3895955949777850.194797797488893
470.7982581246613170.4034837506773670.201741875338684
480.8201678979889670.3596642040220650.179832102011033
490.7857934181156620.4284131637686770.214206581884338
500.7806993749292220.4386012501415560.219300625070778
510.6706124076698930.6587751846602140.329387592330107







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level240.51063829787234NOK
5% type I error level280.595744680851064NOK
10% type I error level300.638297872340426NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 24 & 0.51063829787234 & NOK \tabularnewline
5% type I error level & 28 & 0.595744680851064 & NOK \tabularnewline
10% type I error level & 30 & 0.638297872340426 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58161&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]24[/C][C]0.51063829787234[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]28[/C][C]0.595744680851064[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]30[/C][C]0.638297872340426[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58161&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58161&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level240.51063829787234NOK
5% type I error level280.595744680851064NOK
10% type I error level300.638297872340426NOK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}