| cat1 <- as.numeric(par1) #cat2<- as.numeric(par2) #
 intercept<-as.logical(par3)
 x <- t(x)
 x1<-as.numeric(x[,cat1])
 f1<-as.character(x[,cat2])
 xdf<-data.frame(x1,f1)
 (V1<-dimnames(y)[[1]][cat1])
 (V2<-dimnames(y)[[1]][cat2])
 names(xdf)<-c('Response', 'Treatment')
 if(intercept == FALSE) (lmxdf<-lm(Response ~ Treatment - 1, data = xdf) ) else (lmxdf<-lm(Response ~ Treatment, data = xdf) )
 (aov.xdf<-aov(lmxdf) )
 (anova.xdf<-anova(lmxdf) )
 load(file='createtable')
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a,'ANOVA Model', length(lmxdf$coefficients)+1,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a, paste(V1, ' ~ ', V2), length(lmxdf$coefficients)+1,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a, 'means',,TRUE)
 for(i in 1:length(lmxdf$coefficients)){
 a<-table.element(a, round(lmxdf$coefficients[i], digits=3),,FALSE)
 }
 a<-table.row.end(a)
 a<-table.end(a)
 table.save(a,file='mytable.tab')
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a,'ANOVA Statistics', 5+1,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a, ' ',,TRUE)
 a<-table.element(a, 'Df',,FALSE)
 a<-table.element(a, 'Sum Sq',,FALSE)
 a<-table.element(a, 'Mean Sq',,FALSE)
 a<-table.element(a, 'F value',,FALSE)
 a<-table.element(a, 'Pr(>F)',,FALSE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a, V2,,TRUE)
 a<-table.element(a, anova.xdf$Df[1],,FALSE)
 a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3),,FALSE)
 a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3),,FALSE)
 a<-table.element(a, round(anova.xdf$'F value'[1], digits=3),,FALSE)
 a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3),,FALSE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a, 'Residuals',,TRUE)
 a<-table.element(a, anova.xdf$Df[2],,FALSE)
 a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3),,FALSE)
 a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3),,FALSE)
 a<-table.element(a, ' ',,FALSE)
 a<-table.element(a, ' ',,FALSE)
 a<-table.row.end(a)
 a<-table.end(a)
 table.save(a,file='mytable1.tab')
 bitmap(file='anovaplot.png')
 boxplot(Response ~ Treatment, data=xdf, xlab=V2, ylab=V1)
 dev.off()
 if(intercept==TRUE){
 thsd<-TukeyHSD(aov.xdf)
 bitmap(file='TukeyHSDPlot.png')
 plot(thsd)
 dev.off()
 }
 if(intercept==TRUE){
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a,'Tukey Honest Significant Difference Comparisons', 5,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a, ' ', 1, TRUE)
 for(i in 1:4){
 a<-table.element(a,colnames(thsd[[1]])[i], 1, TRUE)
 }
 a<-table.row.end(a)
 for(i in 1:length(rownames(thsd[[1]]))){
 a<-table.row.start(a)
 a<-table.element(a,rownames(thsd[[1]])[i], 1, TRUE)
 for(j in 1:4){
 a<-table.element(a,round(thsd[[1]][i,j], digits=3), 1, FALSE)
 }
 a<-table.row.end(a)
 }
 a<-table.end(a)
 table.save(a,file='mytable2.tab')
 }
 if(intercept==FALSE){
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a,'TukeyHSD Message', 1,TRUE)
 a<-table.row.end(a)
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a,'Must Include Intercept to use Tukey Test ', 1, FALSE)
 a<-table.row.end(a)
 a<-table.end(a)
 table.save(a,file='mytable2.tab')
 }
 library(car)
 lt.lmxdf<-levene.test(lmxdf)
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a,'Levenes Test for Homogeneity of Variance', 4,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,' ', 1, TRUE)
 for (i in 1:3){
 a<-table.element(a,names(lt.lmxdf)[i], 1, FALSE)
 }
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Group', 1, TRUE)
 for (i in 1:3){
 a<-table.element(a,round(lt.lmxdf[[i]][1], digits=3), 1, FALSE)
 }
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,' ', 1, TRUE)
 a<-table.element(a,lt.lmxdf[[1]][2], 1, FALSE)
 a<-table.element(a,' ', 1, FALSE)
 a<-table.element(a,' ', 1, FALSE)
 a<-table.row.end(a)
 a<-table.end(a)
 table.save(a,file='mytable3.tab')
 
 |