Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_regression_trees1.wasp
Title produced by softwareRecursive Partitioning (Regression Trees)
Date of computationSun, 12 Dec 2010 17:58:53 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Dec/12/t1292176639cyzk0bnbarfd3po.htm/, Retrieved Fri, 01 Nov 2024 00:05:05 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=108582, Retrieved Fri, 01 Nov 2024 00:05:05 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact145
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Recursive Partitioning (Regression Trees)] [] [2010-12-05 18:59:57] [b98453cac15ba1066b407e146608df68]
-   PD    [Recursive Partitioning (Regression Trees)] [Recursive Partiti...] [2010-12-12 17:58:53] [bff44ea937c3f909b1dc9a8bfab919e2] [Current]
-           [Recursive Partitioning (Regression Trees)] [Recursive Partiti...] [2010-12-12 18:04:32] [26379b86c25fbf0febe6a7a428e65173]
Feedback Forum

Post a new message
Dataseries X:
13	13	14	13	3	2
12	12	8	13	5	1
15	10	12	16	6	0
12	9	7	12	6	3
10	10	10	11	5	3
12	12	7	12	3	1
15	13	16	18	8	3
9	12	11	11	4	1
12	12	14	14	4	4
11	6	6	9	4	0
11	5	16	14	6	3
11	12	11	12	6	2
15	11	16	11	5	4
7	14	12	12	4	3
11	14	7	13	6	1
11	12	13	11	4	1
10	12	11	12	6	2
14	11	15	16	6	3
10	11	7	9	4	1
6	7	9	11	4	1
11	9	7	13	2	2
15	11	14	15	7	3
11	11	15	10	5	4
12	12	7	11	4	2
14	12	15	13	6	1
15	11	17	16	6	2
9	11	15	15	7	2
13	8	14	14	5	4
13	9	14	14	6	2
16	12	8	14	4	3
13	10	8	8	4	3
12	10	14	13	7	3
14	12	14	15	7	4
11	8	8	13	4	2
9	12	11	11	4	2
16	11	16	15	6	4
12	12	10	15	6	3
10	7	8	9	5	4
13	11	14	13	6	2
16	11	16	16	7	5
14	12	13	13	6	3
15	9	5	11	3	1
5	15	8	12	3	1
8	11	10	12	4	1
11	11	8	12	6	2
16	11	13	14	7	3
17	11	15	14	5	9
9	15	6	8	4	0
9	11	12	13	5	0
13	12	16	16	6	2
10	12	5	13	6	2
6	9	15	11	6	3
12	12	12	14	5	1
8	12	8	13	4	2
14	13	13	13	5	0
12	11	14	13	5	5
11	9	12	12	4	2
16	9	16	16	6	4
8	11	10	15	2	3
15	11	15	15	8	0
7	12	8	12	3	0
16	12	16	14	6	4
14	9	19	12	6	1
16	11	14	15	6	1
9	9	6	12	5	4
14	12	13	13	5	2
11	12	15	12	6	4
13	12	7	12	5	1
15	12	13	13	6	4
5	14	4	5	2	2
15	11	14	13	5	5
13	12	13	13	5	4
11	11	11	14	5	4
11	6	14	17	6	4
12	10	12	13	6	4
12	12	15	13	6	3
12	13	14	12	5	3
12	8	13	13	5	3
14	12	8	14	4	2
6	12	6	11	2	1
7	12	7	12	4	1
14	6	13	12	6	5
14	11	13	16	6	4
10	10	11	12	5	2
13	12	5	12	3	3
12	13	12	12	6	2
9	11	8	10	4	2
12	7	11	15	5	2
16	11	14	15	8	2
10	11	9	12	4	3
14	11	10	16	6	2
10	11	13	15	6	3
16	12	16	16	7	4
15	10	16	13	6	3
12	11	11	12	5	3
10	12	8	11	4	0
8	7	4	13	6	1
8	13	7	10	3	2
11	8	14	15	5	2
13	12	11	13	6	3
16	11	17	16	7	4
16	12	15	15	7	4
14	14	17	18	6	1
11	10	5	13	3	2
4	10	4	10	2	2
14	13	10	16	8	3
9	10	11	13	3	3
14	11	15	15	8	3
8	10	10	14	3	1
8	7	9	15	4	1
11	10	12	14	5	1
12	8	15	13	7	1
11	12	7	13	6	0
14	12	13	15	6	1
15	12	12	16	7	3
16	11	14	14	6	3
16	12	14	14	6	0
11	12	8	16	6	2
14	12	15	14	6	5
14	11	12	12	4	2
12	12	12	13	4	3
14	11	16	12	5	3
8	11	9	12	4	5
13	13	15	14	6	4
16	12	15	14	6	4
12	12	6	14	5	0
16	12	14	16	8	3
12	12	15	13	6	0
11	8	10	14	5	2
4	8	6	4	4	0
16	12	14	16	8	6
15	11	12	13	6	3
10	12	8	16	4	1
13	13	11	15	6	6
15	12	13	14	6	2
12	12	9	13	4	1
14	11	15	14	6	3
7	12	13	12	3	1
19	12	15	15	6	2
12	10	14	14	5	4
12	11	16	13	4	1
13	12	14	14	6	2
15	12	14	16	4	0
8	10	10	6	4	5
12	12	10	13	4	2
10	13	4	13	6	1
8	12	8	14	5	1
10	15	15	15	6	4
15	11	16	14	6	3
16	12	12	15	8	0
13	11	12	13	7	3
16	12	15	16	7	3
9	11	9	12	4	0
14	10	12	15	6	2
14	11	14	12	6	5
12	11	11	14	2	2




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 6 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=108582&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]6 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=108582&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=108582&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Goodness of Fit
Correlation0.6745
R-squared0.4549
RMSE2.1611

\begin{tabular}{lllllllll}
\hline
Goodness of Fit \tabularnewline
Correlation & 0.6745 \tabularnewline
R-squared & 0.4549 \tabularnewline
RMSE & 2.1611 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=108582&T=1

[TABLE]
[ROW][C]Goodness of Fit[/C][/ROW]
[ROW][C]Correlation[/C][C]0.6745[/C][/ROW]
[ROW][C]R-squared[/C][C]0.4549[/C][/ROW]
[ROW][C]RMSE[/C][C]2.1611[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=108582&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=108582&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goodness of Fit
Correlation0.6745
R-squared0.4549
RMSE2.1611







Actuals, Predictions, and Residuals
#ActualsForecastsResiduals
11311.26315789473681.73684210526316
21211.14814814814810.851851851851851
31514.320.68
41211.14814814814810.851851851851851
51011.1481481481481-1.14814814814815
6128.935483870967743.06451612903226
71514.320.68
898.935483870967740.064516129032258
91211.26315789473680.736842105263158
10118.935483870967742.06451612903226
111114.32-3.32
121111.1481481481481-0.148148148148149
131512.79310344827592.20689655172414
1478.93548387096774-1.93548387096774
151111.1481481481481-0.148148148148149
16118.935483870967742.06451612903226
171011.1481481481481-1.14814814814815
181414.32-0.32
19108.935483870967741.06451612903226
2068.93548387096774-2.93548387096774
211111.2631578947368-0.263157894736842
221514.320.68
231112.7931034482759-1.79310344827586
24128.935483870967743.06451612903226
251412.79310344827591.20689655172414
261514.320.68
27914.32-5.32
281314.32-1.32
291314.32-1.32
301611.26315789473684.73684210526316
31138.935483870967744.06451612903226
321212.7931034482759-0.793103448275861
331414.32-0.32
341111.2631578947368-0.263157894736842
3598.935483870967740.064516129032258
361614.321.68
371211.14814814814810.851851851851851
381011.1481481481481-1.14814814814815
391312.79310344827590.206896551724139
401614.321.68
411412.79310344827591.20689655172414
42158.935483870967746.06451612903226
4358.93548387096774-3.93548387096774
4488.93548387096774-0.935483870967742
451111.1481481481481-0.148148148148149
461614.321.68
471714.322.68
4898.935483870967740.064516129032258
49912.7931034482759-3.79310344827586
501314.32-1.32
511011.1481481481481-1.14814814814815
52612.7931034482759-6.79310344827586
531214.32-2.32
54811.2631578947368-3.26315789473684
551412.79310344827591.20689655172414
561212.7931034482759-0.793103448275861
57118.935483870967742.06451612903226
581614.321.68
59811.2631578947368-3.26315789473684
601514.320.68
6178.93548387096774-1.93548387096774
621614.321.68
631412.79310344827591.20689655172414
641614.321.68
65911.1481481481481-2.14814814814815
661412.79310344827591.20689655172414
671112.7931034482759-1.79310344827586
681311.14814814814811.85185185185185
691512.79310344827592.20689655172414
7058.93548387096774-3.93548387096774
711512.79310344827592.20689655172414
721312.79310344827590.206896551724139
731111.1481481481481-0.148148148148149
741114.32-3.32
751212.7931034482759-0.793103448275861
761212.7931034482759-0.793103448275861
771212.7931034482759-0.793103448275861
781212.7931034482759-0.793103448275861
791411.26315789473682.73684210526316
8068.93548387096774-2.93548387096774
8178.93548387096774-1.93548387096774
821412.79310344827591.20689655172414
831414.32-0.32
841011.1481481481481-1.14814814814815
85138.935483870967744.06451612903226
861212.7931034482759-0.793103448275861
8798.935483870967740.064516129032258
881211.14814814814810.851851851851851
891614.321.68
90108.935483870967741.06451612903226
911411.14814814814812.85185185185185
921014.32-4.32
931614.321.68
941512.79310344827592.20689655172414
951211.14814814814810.851851851851851
96108.935483870967741.06451612903226
97811.1481481481481-3.14814814814815
9888.93548387096774-0.935483870967742
991114.32-3.32
1001311.14814814814811.85185185185185
1011614.321.68
1021614.321.68
1031414.32-0.32
1041111.2631578947368-0.263157894736842
10548.93548387096774-4.93548387096774
1061411.14814814814812.85185185185185
107911.2631578947368-2.26315789473684
1081414.32-0.32
109811.2631578947368-3.26315789473684
110811.2631578947368-3.26315789473684
1111114.32-3.32
1121212.7931034482759-0.793103448275861
1131111.1481481481481-0.148148148148149
1141414.32-0.32
1151514.320.68
1161614.321.68
1171614.321.68
1181111.1481481481481-0.148148148148149
1191414.32-0.32
120148.935483870967745.06451612903226
1211211.26315789473680.736842105263158
1221412.79310344827591.20689655172414
12388.93548387096774-0.935483870967742
1241314.32-1.32
1251614.321.68
1261211.14814814814810.851851851851851
1271614.321.68
1281212.7931034482759-0.793103448275861
1291111.1481481481481-0.148148148148149
13048.93548387096774-4.93548387096774
1311614.321.68
1321512.79310344827592.20689655172414
1331011.2631578947368-1.26315789473684
1341311.14814814814811.85185185185185
1351514.320.68
1361211.26315789473680.736842105263158
1371414.32-0.32
13878.93548387096774-1.93548387096774
1391914.324.68
1401214.32-2.32
1411211.26315789473680.736842105263158
1421314.32-1.32
1431511.26315789473683.73684210526316
14488.93548387096774-0.935483870967742
1451211.26315789473680.736842105263158
1461011.1481481481481-1.14814814814815
147811.1481481481481-3.14814814814815
1481014.32-4.32
1491514.320.68
1501614.321.68
1511312.79310344827590.206896551724139
1521614.321.68
15398.935483870967740.064516129032258
1541414.32-0.32
1551412.79310344827591.20689655172414
1561211.26315789473680.736842105263158

\begin{tabular}{lllllllll}
\hline
Actuals, Predictions, and Residuals \tabularnewline
# & Actuals & Forecasts & Residuals \tabularnewline
1 & 13 & 11.2631578947368 & 1.73684210526316 \tabularnewline
2 & 12 & 11.1481481481481 & 0.851851851851851 \tabularnewline
3 & 15 & 14.32 & 0.68 \tabularnewline
4 & 12 & 11.1481481481481 & 0.851851851851851 \tabularnewline
5 & 10 & 11.1481481481481 & -1.14814814814815 \tabularnewline
6 & 12 & 8.93548387096774 & 3.06451612903226 \tabularnewline
7 & 15 & 14.32 & 0.68 \tabularnewline
8 & 9 & 8.93548387096774 & 0.064516129032258 \tabularnewline
9 & 12 & 11.2631578947368 & 0.736842105263158 \tabularnewline
10 & 11 & 8.93548387096774 & 2.06451612903226 \tabularnewline
11 & 11 & 14.32 & -3.32 \tabularnewline
12 & 11 & 11.1481481481481 & -0.148148148148149 \tabularnewline
13 & 15 & 12.7931034482759 & 2.20689655172414 \tabularnewline
14 & 7 & 8.93548387096774 & -1.93548387096774 \tabularnewline
15 & 11 & 11.1481481481481 & -0.148148148148149 \tabularnewline
16 & 11 & 8.93548387096774 & 2.06451612903226 \tabularnewline
17 & 10 & 11.1481481481481 & -1.14814814814815 \tabularnewline
18 & 14 & 14.32 & -0.32 \tabularnewline
19 & 10 & 8.93548387096774 & 1.06451612903226 \tabularnewline
20 & 6 & 8.93548387096774 & -2.93548387096774 \tabularnewline
21 & 11 & 11.2631578947368 & -0.263157894736842 \tabularnewline
22 & 15 & 14.32 & 0.68 \tabularnewline
23 & 11 & 12.7931034482759 & -1.79310344827586 \tabularnewline
24 & 12 & 8.93548387096774 & 3.06451612903226 \tabularnewline
25 & 14 & 12.7931034482759 & 1.20689655172414 \tabularnewline
26 & 15 & 14.32 & 0.68 \tabularnewline
27 & 9 & 14.32 & -5.32 \tabularnewline
28 & 13 & 14.32 & -1.32 \tabularnewline
29 & 13 & 14.32 & -1.32 \tabularnewline
30 & 16 & 11.2631578947368 & 4.73684210526316 \tabularnewline
31 & 13 & 8.93548387096774 & 4.06451612903226 \tabularnewline
32 & 12 & 12.7931034482759 & -0.793103448275861 \tabularnewline
33 & 14 & 14.32 & -0.32 \tabularnewline
34 & 11 & 11.2631578947368 & -0.263157894736842 \tabularnewline
35 & 9 & 8.93548387096774 & 0.064516129032258 \tabularnewline
36 & 16 & 14.32 & 1.68 \tabularnewline
37 & 12 & 11.1481481481481 & 0.851851851851851 \tabularnewline
38 & 10 & 11.1481481481481 & -1.14814814814815 \tabularnewline
39 & 13 & 12.7931034482759 & 0.206896551724139 \tabularnewline
40 & 16 & 14.32 & 1.68 \tabularnewline
41 & 14 & 12.7931034482759 & 1.20689655172414 \tabularnewline
42 & 15 & 8.93548387096774 & 6.06451612903226 \tabularnewline
43 & 5 & 8.93548387096774 & -3.93548387096774 \tabularnewline
44 & 8 & 8.93548387096774 & -0.935483870967742 \tabularnewline
45 & 11 & 11.1481481481481 & -0.148148148148149 \tabularnewline
46 & 16 & 14.32 & 1.68 \tabularnewline
47 & 17 & 14.32 & 2.68 \tabularnewline
48 & 9 & 8.93548387096774 & 0.064516129032258 \tabularnewline
49 & 9 & 12.7931034482759 & -3.79310344827586 \tabularnewline
50 & 13 & 14.32 & -1.32 \tabularnewline
51 & 10 & 11.1481481481481 & -1.14814814814815 \tabularnewline
52 & 6 & 12.7931034482759 & -6.79310344827586 \tabularnewline
53 & 12 & 14.32 & -2.32 \tabularnewline
54 & 8 & 11.2631578947368 & -3.26315789473684 \tabularnewline
55 & 14 & 12.7931034482759 & 1.20689655172414 \tabularnewline
56 & 12 & 12.7931034482759 & -0.793103448275861 \tabularnewline
57 & 11 & 8.93548387096774 & 2.06451612903226 \tabularnewline
58 & 16 & 14.32 & 1.68 \tabularnewline
59 & 8 & 11.2631578947368 & -3.26315789473684 \tabularnewline
60 & 15 & 14.32 & 0.68 \tabularnewline
61 & 7 & 8.93548387096774 & -1.93548387096774 \tabularnewline
62 & 16 & 14.32 & 1.68 \tabularnewline
63 & 14 & 12.7931034482759 & 1.20689655172414 \tabularnewline
64 & 16 & 14.32 & 1.68 \tabularnewline
65 & 9 & 11.1481481481481 & -2.14814814814815 \tabularnewline
66 & 14 & 12.7931034482759 & 1.20689655172414 \tabularnewline
67 & 11 & 12.7931034482759 & -1.79310344827586 \tabularnewline
68 & 13 & 11.1481481481481 & 1.85185185185185 \tabularnewline
69 & 15 & 12.7931034482759 & 2.20689655172414 \tabularnewline
70 & 5 & 8.93548387096774 & -3.93548387096774 \tabularnewline
71 & 15 & 12.7931034482759 & 2.20689655172414 \tabularnewline
72 & 13 & 12.7931034482759 & 0.206896551724139 \tabularnewline
73 & 11 & 11.1481481481481 & -0.148148148148149 \tabularnewline
74 & 11 & 14.32 & -3.32 \tabularnewline
75 & 12 & 12.7931034482759 & -0.793103448275861 \tabularnewline
76 & 12 & 12.7931034482759 & -0.793103448275861 \tabularnewline
77 & 12 & 12.7931034482759 & -0.793103448275861 \tabularnewline
78 & 12 & 12.7931034482759 & -0.793103448275861 \tabularnewline
79 & 14 & 11.2631578947368 & 2.73684210526316 \tabularnewline
80 & 6 & 8.93548387096774 & -2.93548387096774 \tabularnewline
81 & 7 & 8.93548387096774 & -1.93548387096774 \tabularnewline
82 & 14 & 12.7931034482759 & 1.20689655172414 \tabularnewline
83 & 14 & 14.32 & -0.32 \tabularnewline
84 & 10 & 11.1481481481481 & -1.14814814814815 \tabularnewline
85 & 13 & 8.93548387096774 & 4.06451612903226 \tabularnewline
86 & 12 & 12.7931034482759 & -0.793103448275861 \tabularnewline
87 & 9 & 8.93548387096774 & 0.064516129032258 \tabularnewline
88 & 12 & 11.1481481481481 & 0.851851851851851 \tabularnewline
89 & 16 & 14.32 & 1.68 \tabularnewline
90 & 10 & 8.93548387096774 & 1.06451612903226 \tabularnewline
91 & 14 & 11.1481481481481 & 2.85185185185185 \tabularnewline
92 & 10 & 14.32 & -4.32 \tabularnewline
93 & 16 & 14.32 & 1.68 \tabularnewline
94 & 15 & 12.7931034482759 & 2.20689655172414 \tabularnewline
95 & 12 & 11.1481481481481 & 0.851851851851851 \tabularnewline
96 & 10 & 8.93548387096774 & 1.06451612903226 \tabularnewline
97 & 8 & 11.1481481481481 & -3.14814814814815 \tabularnewline
98 & 8 & 8.93548387096774 & -0.935483870967742 \tabularnewline
99 & 11 & 14.32 & -3.32 \tabularnewline
100 & 13 & 11.1481481481481 & 1.85185185185185 \tabularnewline
101 & 16 & 14.32 & 1.68 \tabularnewline
102 & 16 & 14.32 & 1.68 \tabularnewline
103 & 14 & 14.32 & -0.32 \tabularnewline
104 & 11 & 11.2631578947368 & -0.263157894736842 \tabularnewline
105 & 4 & 8.93548387096774 & -4.93548387096774 \tabularnewline
106 & 14 & 11.1481481481481 & 2.85185185185185 \tabularnewline
107 & 9 & 11.2631578947368 & -2.26315789473684 \tabularnewline
108 & 14 & 14.32 & -0.32 \tabularnewline
109 & 8 & 11.2631578947368 & -3.26315789473684 \tabularnewline
110 & 8 & 11.2631578947368 & -3.26315789473684 \tabularnewline
111 & 11 & 14.32 & -3.32 \tabularnewline
112 & 12 & 12.7931034482759 & -0.793103448275861 \tabularnewline
113 & 11 & 11.1481481481481 & -0.148148148148149 \tabularnewline
114 & 14 & 14.32 & -0.32 \tabularnewline
115 & 15 & 14.32 & 0.68 \tabularnewline
116 & 16 & 14.32 & 1.68 \tabularnewline
117 & 16 & 14.32 & 1.68 \tabularnewline
118 & 11 & 11.1481481481481 & -0.148148148148149 \tabularnewline
119 & 14 & 14.32 & -0.32 \tabularnewline
120 & 14 & 8.93548387096774 & 5.06451612903226 \tabularnewline
121 & 12 & 11.2631578947368 & 0.736842105263158 \tabularnewline
122 & 14 & 12.7931034482759 & 1.20689655172414 \tabularnewline
123 & 8 & 8.93548387096774 & -0.935483870967742 \tabularnewline
124 & 13 & 14.32 & -1.32 \tabularnewline
125 & 16 & 14.32 & 1.68 \tabularnewline
126 & 12 & 11.1481481481481 & 0.851851851851851 \tabularnewline
127 & 16 & 14.32 & 1.68 \tabularnewline
128 & 12 & 12.7931034482759 & -0.793103448275861 \tabularnewline
129 & 11 & 11.1481481481481 & -0.148148148148149 \tabularnewline
130 & 4 & 8.93548387096774 & -4.93548387096774 \tabularnewline
131 & 16 & 14.32 & 1.68 \tabularnewline
132 & 15 & 12.7931034482759 & 2.20689655172414 \tabularnewline
133 & 10 & 11.2631578947368 & -1.26315789473684 \tabularnewline
134 & 13 & 11.1481481481481 & 1.85185185185185 \tabularnewline
135 & 15 & 14.32 & 0.68 \tabularnewline
136 & 12 & 11.2631578947368 & 0.736842105263158 \tabularnewline
137 & 14 & 14.32 & -0.32 \tabularnewline
138 & 7 & 8.93548387096774 & -1.93548387096774 \tabularnewline
139 & 19 & 14.32 & 4.68 \tabularnewline
140 & 12 & 14.32 & -2.32 \tabularnewline
141 & 12 & 11.2631578947368 & 0.736842105263158 \tabularnewline
142 & 13 & 14.32 & -1.32 \tabularnewline
143 & 15 & 11.2631578947368 & 3.73684210526316 \tabularnewline
144 & 8 & 8.93548387096774 & -0.935483870967742 \tabularnewline
145 & 12 & 11.2631578947368 & 0.736842105263158 \tabularnewline
146 & 10 & 11.1481481481481 & -1.14814814814815 \tabularnewline
147 & 8 & 11.1481481481481 & -3.14814814814815 \tabularnewline
148 & 10 & 14.32 & -4.32 \tabularnewline
149 & 15 & 14.32 & 0.68 \tabularnewline
150 & 16 & 14.32 & 1.68 \tabularnewline
151 & 13 & 12.7931034482759 & 0.206896551724139 \tabularnewline
152 & 16 & 14.32 & 1.68 \tabularnewline
153 & 9 & 8.93548387096774 & 0.064516129032258 \tabularnewline
154 & 14 & 14.32 & -0.32 \tabularnewline
155 & 14 & 12.7931034482759 & 1.20689655172414 \tabularnewline
156 & 12 & 11.2631578947368 & 0.736842105263158 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=108582&T=2

[TABLE]
[ROW][C]Actuals, Predictions, and Residuals[/C][/ROW]
[ROW][C]#[/C][C]Actuals[/C][C]Forecasts[/C][C]Residuals[/C][/ROW]
[ROW][C]1[/C][C]13[/C][C]11.2631578947368[/C][C]1.73684210526316[/C][/ROW]
[ROW][C]2[/C][C]12[/C][C]11.1481481481481[/C][C]0.851851851851851[/C][/ROW]
[ROW][C]3[/C][C]15[/C][C]14.32[/C][C]0.68[/C][/ROW]
[ROW][C]4[/C][C]12[/C][C]11.1481481481481[/C][C]0.851851851851851[/C][/ROW]
[ROW][C]5[/C][C]10[/C][C]11.1481481481481[/C][C]-1.14814814814815[/C][/ROW]
[ROW][C]6[/C][C]12[/C][C]8.93548387096774[/C][C]3.06451612903226[/C][/ROW]
[ROW][C]7[/C][C]15[/C][C]14.32[/C][C]0.68[/C][/ROW]
[ROW][C]8[/C][C]9[/C][C]8.93548387096774[/C][C]0.064516129032258[/C][/ROW]
[ROW][C]9[/C][C]12[/C][C]11.2631578947368[/C][C]0.736842105263158[/C][/ROW]
[ROW][C]10[/C][C]11[/C][C]8.93548387096774[/C][C]2.06451612903226[/C][/ROW]
[ROW][C]11[/C][C]11[/C][C]14.32[/C][C]-3.32[/C][/ROW]
[ROW][C]12[/C][C]11[/C][C]11.1481481481481[/C][C]-0.148148148148149[/C][/ROW]
[ROW][C]13[/C][C]15[/C][C]12.7931034482759[/C][C]2.20689655172414[/C][/ROW]
[ROW][C]14[/C][C]7[/C][C]8.93548387096774[/C][C]-1.93548387096774[/C][/ROW]
[ROW][C]15[/C][C]11[/C][C]11.1481481481481[/C][C]-0.148148148148149[/C][/ROW]
[ROW][C]16[/C][C]11[/C][C]8.93548387096774[/C][C]2.06451612903226[/C][/ROW]
[ROW][C]17[/C][C]10[/C][C]11.1481481481481[/C][C]-1.14814814814815[/C][/ROW]
[ROW][C]18[/C][C]14[/C][C]14.32[/C][C]-0.32[/C][/ROW]
[ROW][C]19[/C][C]10[/C][C]8.93548387096774[/C][C]1.06451612903226[/C][/ROW]
[ROW][C]20[/C][C]6[/C][C]8.93548387096774[/C][C]-2.93548387096774[/C][/ROW]
[ROW][C]21[/C][C]11[/C][C]11.2631578947368[/C][C]-0.263157894736842[/C][/ROW]
[ROW][C]22[/C][C]15[/C][C]14.32[/C][C]0.68[/C][/ROW]
[ROW][C]23[/C][C]11[/C][C]12.7931034482759[/C][C]-1.79310344827586[/C][/ROW]
[ROW][C]24[/C][C]12[/C][C]8.93548387096774[/C][C]3.06451612903226[/C][/ROW]
[ROW][C]25[/C][C]14[/C][C]12.7931034482759[/C][C]1.20689655172414[/C][/ROW]
[ROW][C]26[/C][C]15[/C][C]14.32[/C][C]0.68[/C][/ROW]
[ROW][C]27[/C][C]9[/C][C]14.32[/C][C]-5.32[/C][/ROW]
[ROW][C]28[/C][C]13[/C][C]14.32[/C][C]-1.32[/C][/ROW]
[ROW][C]29[/C][C]13[/C][C]14.32[/C][C]-1.32[/C][/ROW]
[ROW][C]30[/C][C]16[/C][C]11.2631578947368[/C][C]4.73684210526316[/C][/ROW]
[ROW][C]31[/C][C]13[/C][C]8.93548387096774[/C][C]4.06451612903226[/C][/ROW]
[ROW][C]32[/C][C]12[/C][C]12.7931034482759[/C][C]-0.793103448275861[/C][/ROW]
[ROW][C]33[/C][C]14[/C][C]14.32[/C][C]-0.32[/C][/ROW]
[ROW][C]34[/C][C]11[/C][C]11.2631578947368[/C][C]-0.263157894736842[/C][/ROW]
[ROW][C]35[/C][C]9[/C][C]8.93548387096774[/C][C]0.064516129032258[/C][/ROW]
[ROW][C]36[/C][C]16[/C][C]14.32[/C][C]1.68[/C][/ROW]
[ROW][C]37[/C][C]12[/C][C]11.1481481481481[/C][C]0.851851851851851[/C][/ROW]
[ROW][C]38[/C][C]10[/C][C]11.1481481481481[/C][C]-1.14814814814815[/C][/ROW]
[ROW][C]39[/C][C]13[/C][C]12.7931034482759[/C][C]0.206896551724139[/C][/ROW]
[ROW][C]40[/C][C]16[/C][C]14.32[/C][C]1.68[/C][/ROW]
[ROW][C]41[/C][C]14[/C][C]12.7931034482759[/C][C]1.20689655172414[/C][/ROW]
[ROW][C]42[/C][C]15[/C][C]8.93548387096774[/C][C]6.06451612903226[/C][/ROW]
[ROW][C]43[/C][C]5[/C][C]8.93548387096774[/C][C]-3.93548387096774[/C][/ROW]
[ROW][C]44[/C][C]8[/C][C]8.93548387096774[/C][C]-0.935483870967742[/C][/ROW]
[ROW][C]45[/C][C]11[/C][C]11.1481481481481[/C][C]-0.148148148148149[/C][/ROW]
[ROW][C]46[/C][C]16[/C][C]14.32[/C][C]1.68[/C][/ROW]
[ROW][C]47[/C][C]17[/C][C]14.32[/C][C]2.68[/C][/ROW]
[ROW][C]48[/C][C]9[/C][C]8.93548387096774[/C][C]0.064516129032258[/C][/ROW]
[ROW][C]49[/C][C]9[/C][C]12.7931034482759[/C][C]-3.79310344827586[/C][/ROW]
[ROW][C]50[/C][C]13[/C][C]14.32[/C][C]-1.32[/C][/ROW]
[ROW][C]51[/C][C]10[/C][C]11.1481481481481[/C][C]-1.14814814814815[/C][/ROW]
[ROW][C]52[/C][C]6[/C][C]12.7931034482759[/C][C]-6.79310344827586[/C][/ROW]
[ROW][C]53[/C][C]12[/C][C]14.32[/C][C]-2.32[/C][/ROW]
[ROW][C]54[/C][C]8[/C][C]11.2631578947368[/C][C]-3.26315789473684[/C][/ROW]
[ROW][C]55[/C][C]14[/C][C]12.7931034482759[/C][C]1.20689655172414[/C][/ROW]
[ROW][C]56[/C][C]12[/C][C]12.7931034482759[/C][C]-0.793103448275861[/C][/ROW]
[ROW][C]57[/C][C]11[/C][C]8.93548387096774[/C][C]2.06451612903226[/C][/ROW]
[ROW][C]58[/C][C]16[/C][C]14.32[/C][C]1.68[/C][/ROW]
[ROW][C]59[/C][C]8[/C][C]11.2631578947368[/C][C]-3.26315789473684[/C][/ROW]
[ROW][C]60[/C][C]15[/C][C]14.32[/C][C]0.68[/C][/ROW]
[ROW][C]61[/C][C]7[/C][C]8.93548387096774[/C][C]-1.93548387096774[/C][/ROW]
[ROW][C]62[/C][C]16[/C][C]14.32[/C][C]1.68[/C][/ROW]
[ROW][C]63[/C][C]14[/C][C]12.7931034482759[/C][C]1.20689655172414[/C][/ROW]
[ROW][C]64[/C][C]16[/C][C]14.32[/C][C]1.68[/C][/ROW]
[ROW][C]65[/C][C]9[/C][C]11.1481481481481[/C][C]-2.14814814814815[/C][/ROW]
[ROW][C]66[/C][C]14[/C][C]12.7931034482759[/C][C]1.20689655172414[/C][/ROW]
[ROW][C]67[/C][C]11[/C][C]12.7931034482759[/C][C]-1.79310344827586[/C][/ROW]
[ROW][C]68[/C][C]13[/C][C]11.1481481481481[/C][C]1.85185185185185[/C][/ROW]
[ROW][C]69[/C][C]15[/C][C]12.7931034482759[/C][C]2.20689655172414[/C][/ROW]
[ROW][C]70[/C][C]5[/C][C]8.93548387096774[/C][C]-3.93548387096774[/C][/ROW]
[ROW][C]71[/C][C]15[/C][C]12.7931034482759[/C][C]2.20689655172414[/C][/ROW]
[ROW][C]72[/C][C]13[/C][C]12.7931034482759[/C][C]0.206896551724139[/C][/ROW]
[ROW][C]73[/C][C]11[/C][C]11.1481481481481[/C][C]-0.148148148148149[/C][/ROW]
[ROW][C]74[/C][C]11[/C][C]14.32[/C][C]-3.32[/C][/ROW]
[ROW][C]75[/C][C]12[/C][C]12.7931034482759[/C][C]-0.793103448275861[/C][/ROW]
[ROW][C]76[/C][C]12[/C][C]12.7931034482759[/C][C]-0.793103448275861[/C][/ROW]
[ROW][C]77[/C][C]12[/C][C]12.7931034482759[/C][C]-0.793103448275861[/C][/ROW]
[ROW][C]78[/C][C]12[/C][C]12.7931034482759[/C][C]-0.793103448275861[/C][/ROW]
[ROW][C]79[/C][C]14[/C][C]11.2631578947368[/C][C]2.73684210526316[/C][/ROW]
[ROW][C]80[/C][C]6[/C][C]8.93548387096774[/C][C]-2.93548387096774[/C][/ROW]
[ROW][C]81[/C][C]7[/C][C]8.93548387096774[/C][C]-1.93548387096774[/C][/ROW]
[ROW][C]82[/C][C]14[/C][C]12.7931034482759[/C][C]1.20689655172414[/C][/ROW]
[ROW][C]83[/C][C]14[/C][C]14.32[/C][C]-0.32[/C][/ROW]
[ROW][C]84[/C][C]10[/C][C]11.1481481481481[/C][C]-1.14814814814815[/C][/ROW]
[ROW][C]85[/C][C]13[/C][C]8.93548387096774[/C][C]4.06451612903226[/C][/ROW]
[ROW][C]86[/C][C]12[/C][C]12.7931034482759[/C][C]-0.793103448275861[/C][/ROW]
[ROW][C]87[/C][C]9[/C][C]8.93548387096774[/C][C]0.064516129032258[/C][/ROW]
[ROW][C]88[/C][C]12[/C][C]11.1481481481481[/C][C]0.851851851851851[/C][/ROW]
[ROW][C]89[/C][C]16[/C][C]14.32[/C][C]1.68[/C][/ROW]
[ROW][C]90[/C][C]10[/C][C]8.93548387096774[/C][C]1.06451612903226[/C][/ROW]
[ROW][C]91[/C][C]14[/C][C]11.1481481481481[/C][C]2.85185185185185[/C][/ROW]
[ROW][C]92[/C][C]10[/C][C]14.32[/C][C]-4.32[/C][/ROW]
[ROW][C]93[/C][C]16[/C][C]14.32[/C][C]1.68[/C][/ROW]
[ROW][C]94[/C][C]15[/C][C]12.7931034482759[/C][C]2.20689655172414[/C][/ROW]
[ROW][C]95[/C][C]12[/C][C]11.1481481481481[/C][C]0.851851851851851[/C][/ROW]
[ROW][C]96[/C][C]10[/C][C]8.93548387096774[/C][C]1.06451612903226[/C][/ROW]
[ROW][C]97[/C][C]8[/C][C]11.1481481481481[/C][C]-3.14814814814815[/C][/ROW]
[ROW][C]98[/C][C]8[/C][C]8.93548387096774[/C][C]-0.935483870967742[/C][/ROW]
[ROW][C]99[/C][C]11[/C][C]14.32[/C][C]-3.32[/C][/ROW]
[ROW][C]100[/C][C]13[/C][C]11.1481481481481[/C][C]1.85185185185185[/C][/ROW]
[ROW][C]101[/C][C]16[/C][C]14.32[/C][C]1.68[/C][/ROW]
[ROW][C]102[/C][C]16[/C][C]14.32[/C][C]1.68[/C][/ROW]
[ROW][C]103[/C][C]14[/C][C]14.32[/C][C]-0.32[/C][/ROW]
[ROW][C]104[/C][C]11[/C][C]11.2631578947368[/C][C]-0.263157894736842[/C][/ROW]
[ROW][C]105[/C][C]4[/C][C]8.93548387096774[/C][C]-4.93548387096774[/C][/ROW]
[ROW][C]106[/C][C]14[/C][C]11.1481481481481[/C][C]2.85185185185185[/C][/ROW]
[ROW][C]107[/C][C]9[/C][C]11.2631578947368[/C][C]-2.26315789473684[/C][/ROW]
[ROW][C]108[/C][C]14[/C][C]14.32[/C][C]-0.32[/C][/ROW]
[ROW][C]109[/C][C]8[/C][C]11.2631578947368[/C][C]-3.26315789473684[/C][/ROW]
[ROW][C]110[/C][C]8[/C][C]11.2631578947368[/C][C]-3.26315789473684[/C][/ROW]
[ROW][C]111[/C][C]11[/C][C]14.32[/C][C]-3.32[/C][/ROW]
[ROW][C]112[/C][C]12[/C][C]12.7931034482759[/C][C]-0.793103448275861[/C][/ROW]
[ROW][C]113[/C][C]11[/C][C]11.1481481481481[/C][C]-0.148148148148149[/C][/ROW]
[ROW][C]114[/C][C]14[/C][C]14.32[/C][C]-0.32[/C][/ROW]
[ROW][C]115[/C][C]15[/C][C]14.32[/C][C]0.68[/C][/ROW]
[ROW][C]116[/C][C]16[/C][C]14.32[/C][C]1.68[/C][/ROW]
[ROW][C]117[/C][C]16[/C][C]14.32[/C][C]1.68[/C][/ROW]
[ROW][C]118[/C][C]11[/C][C]11.1481481481481[/C][C]-0.148148148148149[/C][/ROW]
[ROW][C]119[/C][C]14[/C][C]14.32[/C][C]-0.32[/C][/ROW]
[ROW][C]120[/C][C]14[/C][C]8.93548387096774[/C][C]5.06451612903226[/C][/ROW]
[ROW][C]121[/C][C]12[/C][C]11.2631578947368[/C][C]0.736842105263158[/C][/ROW]
[ROW][C]122[/C][C]14[/C][C]12.7931034482759[/C][C]1.20689655172414[/C][/ROW]
[ROW][C]123[/C][C]8[/C][C]8.93548387096774[/C][C]-0.935483870967742[/C][/ROW]
[ROW][C]124[/C][C]13[/C][C]14.32[/C][C]-1.32[/C][/ROW]
[ROW][C]125[/C][C]16[/C][C]14.32[/C][C]1.68[/C][/ROW]
[ROW][C]126[/C][C]12[/C][C]11.1481481481481[/C][C]0.851851851851851[/C][/ROW]
[ROW][C]127[/C][C]16[/C][C]14.32[/C][C]1.68[/C][/ROW]
[ROW][C]128[/C][C]12[/C][C]12.7931034482759[/C][C]-0.793103448275861[/C][/ROW]
[ROW][C]129[/C][C]11[/C][C]11.1481481481481[/C][C]-0.148148148148149[/C][/ROW]
[ROW][C]130[/C][C]4[/C][C]8.93548387096774[/C][C]-4.93548387096774[/C][/ROW]
[ROW][C]131[/C][C]16[/C][C]14.32[/C][C]1.68[/C][/ROW]
[ROW][C]132[/C][C]15[/C][C]12.7931034482759[/C][C]2.20689655172414[/C][/ROW]
[ROW][C]133[/C][C]10[/C][C]11.2631578947368[/C][C]-1.26315789473684[/C][/ROW]
[ROW][C]134[/C][C]13[/C][C]11.1481481481481[/C][C]1.85185185185185[/C][/ROW]
[ROW][C]135[/C][C]15[/C][C]14.32[/C][C]0.68[/C][/ROW]
[ROW][C]136[/C][C]12[/C][C]11.2631578947368[/C][C]0.736842105263158[/C][/ROW]
[ROW][C]137[/C][C]14[/C][C]14.32[/C][C]-0.32[/C][/ROW]
[ROW][C]138[/C][C]7[/C][C]8.93548387096774[/C][C]-1.93548387096774[/C][/ROW]
[ROW][C]139[/C][C]19[/C][C]14.32[/C][C]4.68[/C][/ROW]
[ROW][C]140[/C][C]12[/C][C]14.32[/C][C]-2.32[/C][/ROW]
[ROW][C]141[/C][C]12[/C][C]11.2631578947368[/C][C]0.736842105263158[/C][/ROW]
[ROW][C]142[/C][C]13[/C][C]14.32[/C][C]-1.32[/C][/ROW]
[ROW][C]143[/C][C]15[/C][C]11.2631578947368[/C][C]3.73684210526316[/C][/ROW]
[ROW][C]144[/C][C]8[/C][C]8.93548387096774[/C][C]-0.935483870967742[/C][/ROW]
[ROW][C]145[/C][C]12[/C][C]11.2631578947368[/C][C]0.736842105263158[/C][/ROW]
[ROW][C]146[/C][C]10[/C][C]11.1481481481481[/C][C]-1.14814814814815[/C][/ROW]
[ROW][C]147[/C][C]8[/C][C]11.1481481481481[/C][C]-3.14814814814815[/C][/ROW]
[ROW][C]148[/C][C]10[/C][C]14.32[/C][C]-4.32[/C][/ROW]
[ROW][C]149[/C][C]15[/C][C]14.32[/C][C]0.68[/C][/ROW]
[ROW][C]150[/C][C]16[/C][C]14.32[/C][C]1.68[/C][/ROW]
[ROW][C]151[/C][C]13[/C][C]12.7931034482759[/C][C]0.206896551724139[/C][/ROW]
[ROW][C]152[/C][C]16[/C][C]14.32[/C][C]1.68[/C][/ROW]
[ROW][C]153[/C][C]9[/C][C]8.93548387096774[/C][C]0.064516129032258[/C][/ROW]
[ROW][C]154[/C][C]14[/C][C]14.32[/C][C]-0.32[/C][/ROW]
[ROW][C]155[/C][C]14[/C][C]12.7931034482759[/C][C]1.20689655172414[/C][/ROW]
[ROW][C]156[/C][C]12[/C][C]11.2631578947368[/C][C]0.736842105263158[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=108582&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=108582&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Actuals, Predictions, and Residuals
#ActualsForecastsResiduals
11311.26315789473681.73684210526316
21211.14814814814810.851851851851851
31514.320.68
41211.14814814814810.851851851851851
51011.1481481481481-1.14814814814815
6128.935483870967743.06451612903226
71514.320.68
898.935483870967740.064516129032258
91211.26315789473680.736842105263158
10118.935483870967742.06451612903226
111114.32-3.32
121111.1481481481481-0.148148148148149
131512.79310344827592.20689655172414
1478.93548387096774-1.93548387096774
151111.1481481481481-0.148148148148149
16118.935483870967742.06451612903226
171011.1481481481481-1.14814814814815
181414.32-0.32
19108.935483870967741.06451612903226
2068.93548387096774-2.93548387096774
211111.2631578947368-0.263157894736842
221514.320.68
231112.7931034482759-1.79310344827586
24128.935483870967743.06451612903226
251412.79310344827591.20689655172414
261514.320.68
27914.32-5.32
281314.32-1.32
291314.32-1.32
301611.26315789473684.73684210526316
31138.935483870967744.06451612903226
321212.7931034482759-0.793103448275861
331414.32-0.32
341111.2631578947368-0.263157894736842
3598.935483870967740.064516129032258
361614.321.68
371211.14814814814810.851851851851851
381011.1481481481481-1.14814814814815
391312.79310344827590.206896551724139
401614.321.68
411412.79310344827591.20689655172414
42158.935483870967746.06451612903226
4358.93548387096774-3.93548387096774
4488.93548387096774-0.935483870967742
451111.1481481481481-0.148148148148149
461614.321.68
471714.322.68
4898.935483870967740.064516129032258
49912.7931034482759-3.79310344827586
501314.32-1.32
511011.1481481481481-1.14814814814815
52612.7931034482759-6.79310344827586
531214.32-2.32
54811.2631578947368-3.26315789473684
551412.79310344827591.20689655172414
561212.7931034482759-0.793103448275861
57118.935483870967742.06451612903226
581614.321.68
59811.2631578947368-3.26315789473684
601514.320.68
6178.93548387096774-1.93548387096774
621614.321.68
631412.79310344827591.20689655172414
641614.321.68
65911.1481481481481-2.14814814814815
661412.79310344827591.20689655172414
671112.7931034482759-1.79310344827586
681311.14814814814811.85185185185185
691512.79310344827592.20689655172414
7058.93548387096774-3.93548387096774
711512.79310344827592.20689655172414
721312.79310344827590.206896551724139
731111.1481481481481-0.148148148148149
741114.32-3.32
751212.7931034482759-0.793103448275861
761212.7931034482759-0.793103448275861
771212.7931034482759-0.793103448275861
781212.7931034482759-0.793103448275861
791411.26315789473682.73684210526316
8068.93548387096774-2.93548387096774
8178.93548387096774-1.93548387096774
821412.79310344827591.20689655172414
831414.32-0.32
841011.1481481481481-1.14814814814815
85138.935483870967744.06451612903226
861212.7931034482759-0.793103448275861
8798.935483870967740.064516129032258
881211.14814814814810.851851851851851
891614.321.68
90108.935483870967741.06451612903226
911411.14814814814812.85185185185185
921014.32-4.32
931614.321.68
941512.79310344827592.20689655172414
951211.14814814814810.851851851851851
96108.935483870967741.06451612903226
97811.1481481481481-3.14814814814815
9888.93548387096774-0.935483870967742
991114.32-3.32
1001311.14814814814811.85185185185185
1011614.321.68
1021614.321.68
1031414.32-0.32
1041111.2631578947368-0.263157894736842
10548.93548387096774-4.93548387096774
1061411.14814814814812.85185185185185
107911.2631578947368-2.26315789473684
1081414.32-0.32
109811.2631578947368-3.26315789473684
110811.2631578947368-3.26315789473684
1111114.32-3.32
1121212.7931034482759-0.793103448275861
1131111.1481481481481-0.148148148148149
1141414.32-0.32
1151514.320.68
1161614.321.68
1171614.321.68
1181111.1481481481481-0.148148148148149
1191414.32-0.32
120148.935483870967745.06451612903226
1211211.26315789473680.736842105263158
1221412.79310344827591.20689655172414
12388.93548387096774-0.935483870967742
1241314.32-1.32
1251614.321.68
1261211.14814814814810.851851851851851
1271614.321.68
1281212.7931034482759-0.793103448275861
1291111.1481481481481-0.148148148148149
13048.93548387096774-4.93548387096774
1311614.321.68
1321512.79310344827592.20689655172414
1331011.2631578947368-1.26315789473684
1341311.14814814814811.85185185185185
1351514.320.68
1361211.26315789473680.736842105263158
1371414.32-0.32
13878.93548387096774-1.93548387096774
1391914.324.68
1401214.32-2.32
1411211.26315789473680.736842105263158
1421314.32-1.32
1431511.26315789473683.73684210526316
14488.93548387096774-0.935483870967742
1451211.26315789473680.736842105263158
1461011.1481481481481-1.14814814814815
147811.1481481481481-3.14814814814815
1481014.32-4.32
1491514.320.68
1501614.321.68
1511312.79310344827590.206896551724139
1521614.321.68
15398.935483870967740.064516129032258
1541414.32-0.32
1551412.79310344827591.20689655172414
1561211.26315789473680.736842105263158



Parameters (Session):
par1 = pearson ;
Parameters (R input):
par1 = 1 ; par2 = none ; par3 = 3 ; par4 = no ;
R code (references can be found in the software module):
library(party)
library(Hmisc)
par1 <- as.numeric(par1)
par3 <- as.numeric(par3)
x <- data.frame(t(y))
is.data.frame(x)
x <- x[!is.na(x[,par1]),]
k <- length(x[1,])
n <- length(x[,1])
colnames(x)[par1]
x[,par1]
if (par2 == 'kmeans') {
cl <- kmeans(x[,par1], par3)
print(cl)
clm <- matrix(cbind(cl$centers,1:par3),ncol=2)
clm <- clm[sort.list(clm[,1]),]
for (i in 1:par3) {
cl$cluster[cl$cluster==clm[i,2]] <- paste('C',i,sep='')
}
cl$cluster <- as.factor(cl$cluster)
print(cl$cluster)
x[,par1] <- cl$cluster
}
if (par2 == 'quantiles') {
x[,par1] <- cut2(x[,par1],g=par3)
}
if (par2 == 'hclust') {
hc <- hclust(dist(x[,par1])^2, 'cen')
print(hc)
memb <- cutree(hc, k = par3)
dum <- c(mean(x[memb==1,par1]))
for (i in 2:par3) {
dum <- c(dum, mean(x[memb==i,par1]))
}
hcm <- matrix(cbind(dum,1:par3),ncol=2)
hcm <- hcm[sort.list(hcm[,1]),]
for (i in 1:par3) {
memb[memb==hcm[i,2]] <- paste('C',i,sep='')
}
memb <- as.factor(memb)
print(memb)
x[,par1] <- memb
}
if (par2=='equal') {
ed <- cut(as.numeric(x[,par1]),par3,labels=paste('C',1:par3,sep=''))
x[,par1] <- as.factor(ed)
}
table(x[,par1])
colnames(x)
colnames(x)[par1]
x[,par1]
if (par2 == 'none') {
m <- ctree(as.formula(paste(colnames(x)[par1],' ~ .',sep='')),data = x)
}
load(file='createtable')
if (par2 != 'none') {
m <- ctree(as.formula(paste('as.factor(',colnames(x)[par1],') ~ .',sep='')),data = x)
if (par4=='yes') {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'10-Fold Cross Validation',3+2*par3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'',1,TRUE)
a<-table.element(a,'Prediction (training)',par3+1,TRUE)
a<-table.element(a,'Prediction (testing)',par3+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Actual',1,TRUE)
for (jjj in 1:par3) a<-table.element(a,paste('C',jjj,sep=''),1,TRUE)
a<-table.element(a,'CV',1,TRUE)
for (jjj in 1:par3) a<-table.element(a,paste('C',jjj,sep=''),1,TRUE)
a<-table.element(a,'CV',1,TRUE)
a<-table.row.end(a)
for (i in 1:10) {
ind <- sample(2, nrow(x), replace=T, prob=c(0.9,0.1))
m.ct <- ctree(as.formula(paste('as.factor(',colnames(x)[par1],') ~ .',sep='')),data =x[ind==1,])
if (i==1) {
m.ct.i.pred <- predict(m.ct, newdata=x[ind==1,])
m.ct.i.actu <- x[ind==1,par1]
m.ct.x.pred <- predict(m.ct, newdata=x[ind==2,])
m.ct.x.actu <- x[ind==2,par1]
} else {
m.ct.i.pred <- c(m.ct.i.pred,predict(m.ct, newdata=x[ind==1,]))
m.ct.i.actu <- c(m.ct.i.actu,x[ind==1,par1])
m.ct.x.pred <- c(m.ct.x.pred,predict(m.ct, newdata=x[ind==2,]))
m.ct.x.actu <- c(m.ct.x.actu,x[ind==2,par1])
}
}
print(m.ct.i.tab <- table(m.ct.i.actu,m.ct.i.pred))
numer <- 0
for (i in 1:par3) {
print(m.ct.i.tab[i,i] / sum(m.ct.i.tab[i,]))
numer <- numer + m.ct.i.tab[i,i]
}
print(m.ct.i.cp <- numer / sum(m.ct.i.tab))
print(m.ct.x.tab <- table(m.ct.x.actu,m.ct.x.pred))
numer <- 0
for (i in 1:par3) {
print(m.ct.x.tab[i,i] / sum(m.ct.x.tab[i,]))
numer <- numer + m.ct.x.tab[i,i]
}
print(m.ct.x.cp <- numer / sum(m.ct.x.tab))
for (i in 1:par3) {
a<-table.row.start(a)
a<-table.element(a,paste('C',i,sep=''),1,TRUE)
for (jjj in 1:par3) a<-table.element(a,m.ct.i.tab[i,jjj])
a<-table.element(a,round(m.ct.i.tab[i,i]/sum(m.ct.i.tab[i,]),4))
for (jjj in 1:par3) a<-table.element(a,m.ct.x.tab[i,jjj])
a<-table.element(a,round(m.ct.x.tab[i,i]/sum(m.ct.x.tab[i,]),4))
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'Overall',1,TRUE)
for (jjj in 1:par3) a<-table.element(a,'-')
a<-table.element(a,round(m.ct.i.cp,4))
for (jjj in 1:par3) a<-table.element(a,'-')
a<-table.element(a,round(m.ct.x.cp,4))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
}
}
m
bitmap(file='test1.png')
plot(m)
dev.off()
bitmap(file='test1a.png')
plot(x[,par1] ~ as.factor(where(m)),main='Response by Terminal Node',xlab='Terminal Node',ylab='Response')
dev.off()
if (par2 == 'none') {
forec <- predict(m)
result <- as.data.frame(cbind(x[,par1],forec,x[,par1]-forec))
colnames(result) <- c('Actuals','Forecasts','Residuals')
print(result)
}
if (par2 != 'none') {
print(cbind(as.factor(x[,par1]),predict(m)))
myt <- table(as.factor(x[,par1]),predict(m))
print(myt)
}
bitmap(file='test2.png')
if(par2=='none') {
op <- par(mfrow=c(2,2))
plot(density(result$Actuals),main='Kernel Density Plot of Actuals')
plot(density(result$Residuals),main='Kernel Density Plot of Residuals')
plot(result$Forecasts,result$Actuals,main='Actuals versus Predictions',xlab='Predictions',ylab='Actuals')
plot(density(result$Forecasts),main='Kernel Density Plot of Predictions')
par(op)
}
if(par2!='none') {
plot(myt,main='Confusion Matrix',xlab='Actual',ylab='Predicted')
}
dev.off()
if (par2 == 'none') {
detcoef <- cor(result$Forecasts,result$Actuals)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goodness of Fit',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Correlation',1,TRUE)
a<-table.element(a,round(detcoef,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'R-squared',1,TRUE)
a<-table.element(a,round(detcoef*detcoef,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'RMSE',1,TRUE)
a<-table.element(a,round(sqrt(mean((result$Residuals)^2)),4))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Actuals, Predictions, and Residuals',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'#',header=TRUE)
a<-table.element(a,'Actuals',header=TRUE)
a<-table.element(a,'Forecasts',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(result$Actuals)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,result$Actuals[i])
a<-table.element(a,result$Forecasts[i])
a<-table.element(a,result$Residuals[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
}
if (par2 != 'none') {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Confusion Matrix (predicted in columns / actuals in rows)',par3+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'',1,TRUE)
for (i in 1:par3) {
a<-table.element(a,paste('C',i,sep=''),1,TRUE)
}
a<-table.row.end(a)
for (i in 1:par3) {
a<-table.row.start(a)
a<-table.element(a,paste('C',i,sep=''),1,TRUE)
for (j in 1:par3) {
a<-table.element(a,myt[i,j])
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
}