Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_linear_regression.wasp
Title produced by softwareLinear Regression Graphical Model Validation
Date of computationSat, 13 Nov 2010 12:17:57 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Nov/13/t1289650592tu2wpou7azv34rm.htm/, Retrieved Wed, 15 Jan 2025 08:01:26 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=94359, Retrieved Wed, 15 Jan 2025 08:01:26 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact250
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Linear Regression Graphical Model Validation] [Colombia Coffee -...] [2008-02-26 10:22:06] [74be16979710d4c4e7c6647856088456]
-  M D  [Linear Regression Graphical Model Validation] [workshop 6 tutorial] [2010-11-12 10:13:29] [87d60b8864dc39f7ed759c345edfb471]
-    D    [Linear Regression Graphical Model Validation] [workshop 6 mini-t...] [2010-11-12 14:05:27] [87d60b8864dc39f7ed759c345edfb471]
-    D      [Linear Regression Graphical Model Validation] [W6-mini tutorial] [2010-11-12 20:02:51] [48146708a479232c43a8f6e52fbf83b4]
-               [Linear Regression Graphical Model Validation] [WS 6 - mini-tutorial] [2010-11-13 12:17:57] [a948b7c78e10e31abd3f68e640bbd8ba] [Current]
-   P             [Linear Regression Graphical Model Validation] [ws 6 mini tutorial] [2010-11-14 12:47:04] [af8eb90b4bf1bcfcc4325c143dbee260]
Feedback Forum

Post a new message
Dataseries X:
24
25
17
18
18
16
20
16
18
17
23
30
23
18
15
12
21
15
20
31
27
34
21
31
19
16
20
21
22
17
24
25
26
25
17
32
33
13
32
25
29
22
18
17
20
15
20
33
29
23
26
18
20
11
28
26
22
17
12
14
17
21
19
18
10
29
31
19
9
20
28
19
30
29
26
23
13
21
19
28
23
18
21
20
23
21
21
15
28
19
26
10
16
22
19
31
31
29
19
22
23
15
20
18
23
25
21
24
25
17
13
28
21
25
9
16
19
17
25
20
29
14
22
15
19
20
15
20
18
33
22
16
17
16
21
26
18
18
17
22
30
30
24
21
21
29
31
20
16
22
20
28
38
22
20
17
28
22
31
Dataseries Y:
26
23
25
23
19
29
25
21
22
25
24
18
22
15
22
28
20
12
24
20
21
20
21
23
28
24
24
24
23
23
29
24
18
25
21
26
22
22
22
23
30
23
17
23
23
25
24
24
23
21
24
24
28
16
20
29
27
22
28
16
25
24
28
24
23
30
24
21
25
25
22
23
26
23
25
21
25
24
29
22
27
26
22
24
27
24
24
29
22
21
24
24
23
20
27
26
25
21
21
19
21
21
16
22
29
15
17
15
21
21
19
24
20
17
23
24
14
19
24
13
22
16
19
25
25
23
24
26
26
25
18
21
26
23
23
22
20
13
24
15
14
22
10
24
22
24
19
20
13
20
22
24
29
12
20
21
24
22
20




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=94359&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=94359&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=94359&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Simple Linear Regression
StatisticsEstimateS.D.T-STAT (H0: coeff=0)P-value (two-sided)
constant term21.53661204576781.2140477539616417.73950981375340
slope0.03691103867217970.05437806339808220.678785458061780.498273172762898

\begin{tabular}{lllllllll}
\hline
Simple Linear Regression \tabularnewline
Statistics & Estimate & S.D. & T-STAT (H0: coeff=0) & P-value (two-sided) \tabularnewline
constant term & 21.5366120457678 & 1.21404775396164 & 17.7395098137534 & 0 \tabularnewline
slope & 0.0369110386721797 & 0.0543780633980822 & 0.67878545806178 & 0.498273172762898 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=94359&T=1

[TABLE]
[ROW][C]Simple Linear Regression[/C][/ROW]
[ROW][C]Statistics[/C][C]Estimate[/C][C]S.D.[/C][C]T-STAT (H0: coeff=0)[/C][C]P-value (two-sided)[/C][/ROW]
[ROW][C]constant term[/C][C]21.5366120457678[/C][C]1.21404775396164[/C][C]17.7395098137534[/C][C]0[/C][/ROW]
[ROW][C]slope[/C][C]0.0369110386721797[/C][C]0.0543780633980822[/C][C]0.67878545806178[/C][C]0.498273172762898[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=94359&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=94359&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Simple Linear Regression
StatisticsEstimateS.D.T-STAT (H0: coeff=0)P-value (two-sided)
constant term21.53661204576781.2140477539616417.73950981375340
slope0.03691103867217970.05437806339808220.678785458061780.498273172762898



Parameters (Session):
par1 = 0 ;
Parameters (R input):
par1 = 0 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
library(lattice)
z <- as.data.frame(cbind(x,y))
m <- lm(y~x)
summary(m)
bitmap(file='test1.png')
plot(z,main='Scatterplot, lowess, and regression line')
lines(lowess(z),col='red')
abline(m)
grid()
dev.off()
bitmap(file='test2.png')
m2 <- lm(m$fitted.values ~ x)
summary(m2)
z2 <- as.data.frame(cbind(x,m$fitted.values))
names(z2) <- list('x','Fitted')
plot(z2,main='Scatterplot, lowess, and regression line')
lines(lowess(z2),col='red')
abline(m2)
grid()
dev.off()
bitmap(file='test3.png')
m3 <- lm(m$residuals ~ x)
summary(m3)
z3 <- as.data.frame(cbind(x,m$residuals))
names(z3) <- list('x','Residuals')
plot(z3,main='Scatterplot, lowess, and regression line')
lines(lowess(z3),col='red')
abline(m3)
grid()
dev.off()
bitmap(file='test4.png')
m4 <- lm(m$fitted.values ~ m$residuals)
summary(m4)
z4 <- as.data.frame(cbind(m$residuals,m$fitted.values))
names(z4) <- list('Residuals','Fitted')
plot(z4,main='Scatterplot, lowess, and regression line')
lines(lowess(z4),col='red')
abline(m4)
grid()
dev.off()
bitmap(file='test5.png')
myr <- as.ts(m$residuals)
z5 <- as.data.frame(cbind(lag(myr,1),myr))
names(z5) <- list('Lagged Residuals','Residuals')
plot(z5,main='Lag plot')
m5 <- lm(z5)
summary(m5)
abline(m5)
grid()
dev.off()
bitmap(file='test6.png')
hist(m$residuals,main='Residual Histogram',xlab='Residuals')
dev.off()
bitmap(file='test7.png')
if (par1 > 0)
{
densityplot(~m$residuals,col='black',main=paste('Density Plot bw = ',par1),bw=par1)
} else {
densityplot(~m$residuals,col='black',main='Density Plot')
}
dev.off()
bitmap(file='test8.png')
acf(m$residuals,main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test9.png')
qqnorm(x)
qqline(x)
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Simple Linear Regression',5,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Statistics',1,TRUE)
a<-table.element(a,'Estimate',1,TRUE)
a<-table.element(a,'S.D.',1,TRUE)
a<-table.element(a,'T-STAT (H0: coeff=0)',1,TRUE)
a<-table.element(a,'P-value (two-sided)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'constant term',header=TRUE)
a<-table.element(a,m$coefficients[[1]])
sd <- sqrt(vcov(m)[1,1])
a<-table.element(a,sd)
tstat <- m$coefficients[[1]]/sd
a<-table.element(a,tstat)
pval <- 2*(1-pt(abs(tstat),length(x)-2))
a<-table.element(a,pval)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'slope',header=TRUE)
a<-table.element(a,m$coefficients[[2]])
sd <- sqrt(vcov(m)[2,2])
a<-table.element(a,sd)
tstat <- m$coefficients[[2]]/sd
a<-table.element(a,tstat)
pval <- 2*(1-pt(abs(tstat),length(x)-2))
a<-table.element(a,pval)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')