Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_variability.wasp
Title produced by softwareVariability
Date of computationSat, 02 Oct 2010 18:22:22 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Oct/02/t1286043681op0dijdv6fl1ttb.htm/, Retrieved Fri, 01 Nov 2024 00:30:29 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=80095, Retrieved Fri, 01 Nov 2024 00:30:29 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact164
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
F       [Variability] [Task 5] [2010-10-02 18:22:22] [d41d8cd98f00b204e9800998ecf8427e] [Current]
Feedback Forum
2010-10-10 13:02:14 [73b763ab03a59f488b4c9e04fda397bb] [reply
Het heeft inderdaad geen nut, aangezien dat er minwaarden zullen zijn.

Post a new message
Dataseries X:
426.11
383.7
232.44
70.94
226.73
947.29
611.28
158.05
34
37.03
388.3
506.65
392.25
180.82
198.3
217.47
275.56
1030.94
57.47
136.45
556.28
213.36
274.48
220.55
236.71
260.64
2763.54
213.92
169.86
403.06
449.59
406.17
206.89
156.19
257.1
62.16
662.88
251.42
171.33
350.09
221.59
4.81
183.19
190.38
223.17
232.67
356.73
109.22
475.83
315.96
694.87
8.95
278.74
308.16
207.53
192.8
601.16
289.71
293.67
386.69
699.65
85.09
131.81
645.29
197.55
308.17
86.58
242.21
238.5
187.88
140.32
440.31
421.4
218.76
1305.92
137.55
262.52
348.82
150.03
64.02
261.6
259.7
171.26
203.08
249.15
211.66
252.64
438.56
239.89
401.92
216.89
184.64
380.16
653.64
313.91
366.94
236.3
229.64
235.58
103.9
263.91
241.17
216.55
295.28
193.3
204.39
257.57
136.81
240.76
59.61
213.51
380.53
242.34
250.41
183.61
191.84
266.79
246.54
330.56
403.56
208.11
324.04
308.53
199.3
200.16
262.88
287.07
190.16
199.75
265.78
435.96
72.84
756.46
206.77
4202.36
401.42
216.05
39.05
441.44




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=80095&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=80095&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=80095&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Variability - Ungrouped Data
Absolute range4197.55
Relative range (unbiased)9.65232660064336
Relative range (biased)9.68723567155522
Variance (unbiased)189115.767288166
Variance (biased)187755.222199762
Standard Deviation (unbiased)434.874427034019
Standard Deviation (biased)433.307306884804
Coefficient of Variation (unbiased)1.30459212106003
Coefficient of Variation (biased)1.29989087290119
Mean Squared Error (MSE versus 0)298871.641128057
Mean Squared Error (MSE versus Mean)187755.222199762
Mean Absolute Deviation from Mean (MAD Mean)190.658716422545
Mean Absolute Deviation from Median (MAD Median)164.433884892086
Median Absolute Deviation from Mean116.451294964029
Median Absolute Deviation from Median67
Mean Squared Deviation from Mean187755.222199762
Mean Squared Deviation from Median196250.769815108
Interquartile Difference (Weighted Average at Xnp)166.7225
Interquartile Difference (Weighted Average at X(n+1)p)174.14
Interquartile Difference (Empirical Distribution Function)174.14
Interquartile Difference (Empirical Distribution Function - Averaging)174.14
Interquartile Difference (Empirical Distribution Function - Interpolation)168.785
Interquartile Difference (Closest Observation)163.93
Interquartile Difference (True Basic - Statistics Graphics Toolkit)174.14
Interquartile Difference (MS Excel (old versions))174.14
Semi Interquartile Difference (Weighted Average at Xnp)83.36125
Semi Interquartile Difference (Weighted Average at X(n+1)p)87.07
Semi Interquartile Difference (Empirical Distribution Function)87.07
Semi Interquartile Difference (Empirical Distribution Function - Averaging)87.07
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)84.3925
Semi Interquartile Difference (Closest Observation)81.965
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)87.07
Semi Interquartile Difference (MS Excel (old versions))87.07
Coefficient of Quartile Variation (Weighted Average at Xnp)0.302119717129435
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.311108729052774
Coefficient of Quartile Variation (Empirical Distribution Function)0.311108729052774
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.311108729052774
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.304180145435541
Coefficient of Quartile Variation (Closest Observation)0.298309464451440
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.311108729052774
Coefficient of Quartile Variation (MS Excel (old versions))0.311108729052774
Number of all Pairs of Observations9591
Squared Differences between all Pairs of Observations378231.534576332
Mean Absolute Differences between all Pairs of Observations271.103766030654
Gini Mean Difference271.103766030653
Leik Measure of Dispersion0.546817070706438
Index of Diversity0.980649523155023
Index of Qualitative Variation0.987755679119914
Coefficient of Dispersion0.790557351339493
Observations139

\begin{tabular}{lllllllll}
\hline
Variability - Ungrouped Data \tabularnewline
Absolute range & 4197.55 \tabularnewline
Relative range (unbiased) & 9.65232660064336 \tabularnewline
Relative range (biased) & 9.68723567155522 \tabularnewline
Variance (unbiased) & 189115.767288166 \tabularnewline
Variance (biased) & 187755.222199762 \tabularnewline
Standard Deviation (unbiased) & 434.874427034019 \tabularnewline
Standard Deviation (biased) & 433.307306884804 \tabularnewline
Coefficient of Variation (unbiased) & 1.30459212106003 \tabularnewline
Coefficient of Variation (biased) & 1.29989087290119 \tabularnewline
Mean Squared Error (MSE versus 0) & 298871.641128057 \tabularnewline
Mean Squared Error (MSE versus Mean) & 187755.222199762 \tabularnewline
Mean Absolute Deviation from Mean (MAD Mean) & 190.658716422545 \tabularnewline
Mean Absolute Deviation from Median (MAD Median) & 164.433884892086 \tabularnewline
Median Absolute Deviation from Mean & 116.451294964029 \tabularnewline
Median Absolute Deviation from Median & 67 \tabularnewline
Mean Squared Deviation from Mean & 187755.222199762 \tabularnewline
Mean Squared Deviation from Median & 196250.769815108 \tabularnewline
Interquartile Difference (Weighted Average at Xnp) & 166.7225 \tabularnewline
Interquartile Difference (Weighted Average at X(n+1)p) & 174.14 \tabularnewline
Interquartile Difference (Empirical Distribution Function) & 174.14 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Averaging) & 174.14 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Interpolation) & 168.785 \tabularnewline
Interquartile Difference (Closest Observation) & 163.93 \tabularnewline
Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 174.14 \tabularnewline
Interquartile Difference (MS Excel (old versions)) & 174.14 \tabularnewline
Semi Interquartile Difference (Weighted Average at Xnp) & 83.36125 \tabularnewline
Semi Interquartile Difference (Weighted Average at X(n+1)p) & 87.07 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function) & 87.07 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Averaging) & 87.07 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Interpolation) & 84.3925 \tabularnewline
Semi Interquartile Difference (Closest Observation) & 81.965 \tabularnewline
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 87.07 \tabularnewline
Semi Interquartile Difference (MS Excel (old versions)) & 87.07 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at Xnp) & 0.302119717129435 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at X(n+1)p) & 0.311108729052774 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function) & 0.311108729052774 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging) & 0.311108729052774 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation) & 0.304180145435541 \tabularnewline
Coefficient of Quartile Variation (Closest Observation) & 0.298309464451440 \tabularnewline
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit) & 0.311108729052774 \tabularnewline
Coefficient of Quartile Variation (MS Excel (old versions)) & 0.311108729052774 \tabularnewline
Number of all Pairs of Observations & 9591 \tabularnewline
Squared Differences between all Pairs of Observations & 378231.534576332 \tabularnewline
Mean Absolute Differences between all Pairs of Observations & 271.103766030654 \tabularnewline
Gini Mean Difference & 271.103766030653 \tabularnewline
Leik Measure of Dispersion & 0.546817070706438 \tabularnewline
Index of Diversity & 0.980649523155023 \tabularnewline
Index of Qualitative Variation & 0.987755679119914 \tabularnewline
Coefficient of Dispersion & 0.790557351339493 \tabularnewline
Observations & 139 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=80095&T=1

[TABLE]
[ROW][C]Variability - Ungrouped Data[/C][/ROW]
[ROW][C]Absolute range[/C][C]4197.55[/C][/ROW]
[ROW][C]Relative range (unbiased)[/C][C]9.65232660064336[/C][/ROW]
[ROW][C]Relative range (biased)[/C][C]9.68723567155522[/C][/ROW]
[ROW][C]Variance (unbiased)[/C][C]189115.767288166[/C][/ROW]
[ROW][C]Variance (biased)[/C][C]187755.222199762[/C][/ROW]
[ROW][C]Standard Deviation (unbiased)[/C][C]434.874427034019[/C][/ROW]
[ROW][C]Standard Deviation (biased)[/C][C]433.307306884804[/C][/ROW]
[ROW][C]Coefficient of Variation (unbiased)[/C][C]1.30459212106003[/C][/ROW]
[ROW][C]Coefficient of Variation (biased)[/C][C]1.29989087290119[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus 0)[/C][C]298871.641128057[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus Mean)[/C][C]187755.222199762[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Mean (MAD Mean)[/C][C]190.658716422545[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Median (MAD Median)[/C][C]164.433884892086[/C][/ROW]
[ROW][C]Median Absolute Deviation from Mean[/C][C]116.451294964029[/C][/ROW]
[ROW][C]Median Absolute Deviation from Median[/C][C]67[/C][/ROW]
[ROW][C]Mean Squared Deviation from Mean[/C][C]187755.222199762[/C][/ROW]
[ROW][C]Mean Squared Deviation from Median[/C][C]196250.769815108[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at Xnp)[/C][C]166.7225[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]174.14[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function)[/C][C]174.14[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]174.14[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]168.785[/C][/ROW]
[ROW][C]Interquartile Difference (Closest Observation)[/C][C]163.93[/C][/ROW]
[ROW][C]Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]174.14[/C][/ROW]
[ROW][C]Interquartile Difference (MS Excel (old versions))[/C][C]174.14[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at Xnp)[/C][C]83.36125[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]87.07[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function)[/C][C]87.07[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]87.07[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]84.3925[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Closest Observation)[/C][C]81.965[/C][/ROW]
[ROW][C]Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]87.07[/C][/ROW]
[ROW][C]Semi Interquartile Difference (MS Excel (old versions))[/C][C]87.07[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at Xnp)[/C][C]0.302119717129435[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at X(n+1)p)[/C][C]0.311108729052774[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function)[/C][C]0.311108729052774[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)[/C][C]0.311108729052774[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)[/C][C]0.304180145435541[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Closest Observation)[/C][C]0.298309464451440[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)[/C][C]0.311108729052774[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (MS Excel (old versions))[/C][C]0.311108729052774[/C][/ROW]
[ROW][C]Number of all Pairs of Observations[/C][C]9591[/C][/ROW]
[ROW][C]Squared Differences between all Pairs of Observations[/C][C]378231.534576332[/C][/ROW]
[ROW][C]Mean Absolute Differences between all Pairs of Observations[/C][C]271.103766030654[/C][/ROW]
[ROW][C]Gini Mean Difference[/C][C]271.103766030653[/C][/ROW]
[ROW][C]Leik Measure of Dispersion[/C][C]0.546817070706438[/C][/ROW]
[ROW][C]Index of Diversity[/C][C]0.980649523155023[/C][/ROW]
[ROW][C]Index of Qualitative Variation[/C][C]0.987755679119914[/C][/ROW]
[ROW][C]Coefficient of Dispersion[/C][C]0.790557351339493[/C][/ROW]
[ROW][C]Observations[/C][C]139[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=80095&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=80095&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variability - Ungrouped Data
Absolute range4197.55
Relative range (unbiased)9.65232660064336
Relative range (biased)9.68723567155522
Variance (unbiased)189115.767288166
Variance (biased)187755.222199762
Standard Deviation (unbiased)434.874427034019
Standard Deviation (biased)433.307306884804
Coefficient of Variation (unbiased)1.30459212106003
Coefficient of Variation (biased)1.29989087290119
Mean Squared Error (MSE versus 0)298871.641128057
Mean Squared Error (MSE versus Mean)187755.222199762
Mean Absolute Deviation from Mean (MAD Mean)190.658716422545
Mean Absolute Deviation from Median (MAD Median)164.433884892086
Median Absolute Deviation from Mean116.451294964029
Median Absolute Deviation from Median67
Mean Squared Deviation from Mean187755.222199762
Mean Squared Deviation from Median196250.769815108
Interquartile Difference (Weighted Average at Xnp)166.7225
Interquartile Difference (Weighted Average at X(n+1)p)174.14
Interquartile Difference (Empirical Distribution Function)174.14
Interquartile Difference (Empirical Distribution Function - Averaging)174.14
Interquartile Difference (Empirical Distribution Function - Interpolation)168.785
Interquartile Difference (Closest Observation)163.93
Interquartile Difference (True Basic - Statistics Graphics Toolkit)174.14
Interquartile Difference (MS Excel (old versions))174.14
Semi Interquartile Difference (Weighted Average at Xnp)83.36125
Semi Interquartile Difference (Weighted Average at X(n+1)p)87.07
Semi Interquartile Difference (Empirical Distribution Function)87.07
Semi Interquartile Difference (Empirical Distribution Function - Averaging)87.07
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)84.3925
Semi Interquartile Difference (Closest Observation)81.965
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)87.07
Semi Interquartile Difference (MS Excel (old versions))87.07
Coefficient of Quartile Variation (Weighted Average at Xnp)0.302119717129435
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.311108729052774
Coefficient of Quartile Variation (Empirical Distribution Function)0.311108729052774
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.311108729052774
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.304180145435541
Coefficient of Quartile Variation (Closest Observation)0.298309464451440
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.311108729052774
Coefficient of Quartile Variation (MS Excel (old versions))0.311108729052774
Number of all Pairs of Observations9591
Squared Differences between all Pairs of Observations378231.534576332
Mean Absolute Differences between all Pairs of Observations271.103766030654
Gini Mean Difference271.103766030653
Leik Measure of Dispersion0.546817070706438
Index of Diversity0.980649523155023
Index of Qualitative Variation0.987755679119914
Coefficient of Dispersion0.790557351339493
Observations139



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
num <- 50
res <- array(NA,dim=c(num,3))
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
iqd <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
iqdiff <- qvalue3 - qvalue1
return(c(iqdiff,iqdiff/2,iqdiff/(qvalue3 + qvalue1)))
}
range <- max(x) - min(x)
lx <- length(x)
biasf <- (lx-1)/lx
varx <- var(x)
bvarx <- varx*biasf
sdx <- sqrt(varx)
mx <- mean(x)
bsdx <- sqrt(bvarx)
x2 <- x*x
mse0 <- sum(x2)/lx
xmm <- x-mx
xmm2 <- xmm*xmm
msem <- sum(xmm2)/lx
axmm <- abs(x - mx)
medx <- median(x)
axmmed <- abs(x - medx)
xmmed <- x - medx
xmmed2 <- xmmed*xmmed
msemed <- sum(xmmed2)/lx
qarr <- array(NA,dim=c(8,3))
for (j in 1:8) {
qarr[j,] <- iqd(x,j)
}
sdpo <- 0
adpo <- 0
for (i in 1:(lx-1)) {
for (j in (i+1):lx) {
ldi <- x[i]-x[j]
aldi <- abs(ldi)
sdpo = sdpo + ldi * ldi
adpo = adpo + aldi
}
}
denom <- (lx*(lx-1)/2)
sdpo = sdpo / denom
adpo = adpo / denom
gmd <- 0
for (i in 1:lx) {
for (j in 1:lx) {
ldi <- abs(x[i]-x[j])
gmd = gmd + ldi
}
}
gmd <- gmd / (lx*(lx-1))
sumx <- sum(x)
pk <- x / sumx
ck <- cumsum(pk)
dk <- array(NA,dim=lx)
for (i in 1:lx) {
if (ck[i] <= 0.5) dk[i] <- ck[i] else dk[i] <- 1 - ck[i]
}
bigd <- sum(dk) * 2 / (lx-1)
iod <- 1 - sum(pk*pk)
res[1,] <- c('Absolute range','absolute.htm', range)
res[2,] <- c('Relative range (unbiased)','relative.htm', range/sd(x))
res[3,] <- c('Relative range (biased)','relative.htm', range/sqrt(varx*biasf))
res[4,] <- c('Variance (unbiased)','unbiased.htm', varx)
res[5,] <- c('Variance (biased)','biased.htm', bvarx)
res[6,] <- c('Standard Deviation (unbiased)','unbiased1.htm', sdx)
res[7,] <- c('Standard Deviation (biased)','biased1.htm', bsdx)
res[8,] <- c('Coefficient of Variation (unbiased)','variation.htm', sdx/mx)
res[9,] <- c('Coefficient of Variation (biased)','variation.htm', bsdx/mx)
res[10,] <- c('Mean Squared Error (MSE versus 0)','mse.htm', mse0)
res[11,] <- c('Mean Squared Error (MSE versus Mean)','mse.htm', msem)
res[12,] <- c('Mean Absolute Deviation from Mean (MAD Mean)', 'mean2.htm', sum(axmm)/lx)
res[13,] <- c('Mean Absolute Deviation from Median (MAD Median)', 'median1.htm', sum(axmmed)/lx)
res[14,] <- c('Median Absolute Deviation from Mean', 'mean3.htm', median(axmm))
res[15,] <- c('Median Absolute Deviation from Median', 'median2.htm', median(axmmed))
res[16,] <- c('Mean Squared Deviation from Mean', 'mean1.htm', msem)
res[17,] <- c('Mean Squared Deviation from Median', 'median.htm', msemed)
load(file='createtable')
mylink1 <- hyperlink('difference.htm','Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[18,] <- c('', mylink2, qarr[1,1])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[19,] <- c('', mylink2, qarr[2,1])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[20,] <- c('', mylink2, qarr[3,1])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[21,] <- c('', mylink2, qarr[4,1])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[22,] <- c('', mylink2, qarr[5,1])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[23,] <- c('', mylink2, qarr[6,1])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[24,] <- c('', mylink2, qarr[7,1])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[25,] <- c('', mylink2, qarr[8,1])
mylink1 <- hyperlink('deviation.htm','Semi Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[26,] <- c('', mylink2, qarr[1,2])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[27,] <- c('', mylink2, qarr[2,2])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[28,] <- c('', mylink2, qarr[3,2])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[29,] <- c('', mylink2, qarr[4,2])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[30,] <- c('', mylink2, qarr[5,2])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[31,] <- c('', mylink2, qarr[6,2])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[32,] <- c('', mylink2, qarr[7,2])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[33,] <- c('', mylink2, qarr[8,2])
mylink1 <- hyperlink('variation1.htm','Coefficient of Quartile Variation','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[34,] <- c('', mylink2, qarr[1,3])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[35,] <- c('', mylink2, qarr[2,3])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[36,] <- c('', mylink2, qarr[3,3])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[37,] <- c('', mylink2, qarr[4,3])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[38,] <- c('', mylink2, qarr[5,3])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[39,] <- c('', mylink2, qarr[6,3])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[40,] <- c('', mylink2, qarr[7,3])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[41,] <- c('', mylink2, qarr[8,3])
res[42,] <- c('Number of all Pairs of Observations', 'pair_numbers.htm', lx*(lx-1)/2)
res[43,] <- c('Squared Differences between all Pairs of Observations', 'squared_differences.htm', sdpo)
res[44,] <- c('Mean Absolute Differences between all Pairs of Observations', 'mean_abs_differences.htm', adpo)
res[45,] <- c('Gini Mean Difference', 'gini_mean_difference.htm', gmd)
res[46,] <- c('Leik Measure of Dispersion', 'leiks_d.htm', bigd)
res[47,] <- c('Index of Diversity', 'diversity.htm', iod)
res[48,] <- c('Index of Qualitative Variation', 'qualitative_variation.htm', iod*lx/(lx-1))
res[49,] <- c('Coefficient of Dispersion', 'dispersion.htm', sum(axmm)/lx/medx)
res[50,] <- c('Observations', '', lx)
res
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variability - Ungrouped Data',2,TRUE)
a<-table.row.end(a)
for (i in 1:num) {
a<-table.row.start(a)
if (res[i,1] != '') {
a<-table.element(a,hyperlink(res[i,2],res[i,1],''),header=TRUE)
} else {
a<-table.element(a,res[i,2],header=TRUE)
}
a<-table.element(a,res[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')