Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Module--
Title produced by softwareOne-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)
Date of computationWed, 06 Nov 2013 09:56:46 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2013/Nov/06/t1383749838jsq3lk1n5rvj6mk.htm/, Retrieved Fri, 01 Nov 2024 02:23:34 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=223016, Retrieved Fri, 01 Nov 2024 02:23:34 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact90
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [Question 7] [2013-11-06 13:39:21] [e62a289106a5b580d3faaf52f3fb6acb]
- RM      [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [Workshop 5, vraag 7] [2013-11-06 14:56:46] [04383c33d6dbded00041500085efb365] [Current]
Feedback Forum

Post a new message
Dataseries X:
0 'WWE'
0 'WWE'
1 'WWE'
0 'WWE'
1 'WWE'
0 'WWE'
0 'WWE'
1 'WWE'
0 'WWE'
0 'WWE'
0 'WWE'
0 'WWE'
0 'WWE'
0 'WWE'
0 'WWE'
0 'WWE'
-1 'WWE'
0 'WWE'
0 'WWE'
1 'WWE'
0 'WWE'
0 'WWE'
0 'WWE'
1 'WWE'
1 'WWE'
1 'WWE'
0 'WWE'
0 'WWE'
1 'WWE'
1 'WWE'
0 'WWE'
1 'WWE'
1 'WWE'
0 'WWE'
0 'WWE'
0 'WWE'
0 'WWE'
0 'WWE'
0 'WWE'
0 'WWE'
0 'WWE'
0 'CSWE'
-1 'CSWE'
0 'CSWE'
1 'CSWE'
1 'CSWE'
0 'CSWE'
0 'CSWE'
0 'CSWE'
0 'CSWE'
0 'CSWE'
0 'CSWE'
1 'CSWE'
0 'CSWE'
1 'CSWE'
1 'CSWE'
1 'CSWE'
0 'CSWE'
1 'CSWE'
0 'CSWE'
1 'CSWE'
0 'CSWE'
0 'CSWE'
0 'CSWE'
1 'CSWE'
0 'CSWE'
0 'CSWE'
1 'CSWE'
1 'CSWE'
0 'CSWE'
0 'CSWE'
1 'CSWE'
1 'CSWE'
0 'CSWE'
0 'CSWE'
1 'CSWE'
0 'CSWE'
0 'CSWE'
0 'CSWE'
1 'CSWE'
1 'CSWE'
0 'C'
0 'C'
-1 'C'
0 'C'
0 'C'
0 'C'
0 'C'
1 'C'
0 'C'
0 'C'
0 'C'
1 'C'
1 'C'
0 'C'
0 'C'
0 'C'
0 'C'
0 'C'
0 'C'
1 'C'
0 'C'
1 'C'
0 'C'
0 'C'
0 'C'
0 'C'
0 'C'
0 'C'
0 'C'
0 'C'
0 'C'
0 'C'
0 'C'
0 'C'
0 'C'
0 'C'
0 'C'
0 'C'
0 'C'
 




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ fisher.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=223016&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ fisher.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=223016&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=223016&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net







ANOVA Model
Exp2_post1-pre ~ Exp2_Treat
means0.1030.3750.244

\begin{tabular}{lllllllll}
\hline
ANOVA Model \tabularnewline
Exp2_post1-pre  ~  Exp2_Treat \tabularnewline
means & 0.103 & 0.375 & 0.244 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=223016&T=1

[TABLE]
[ROW][C]ANOVA Model[/C][/ROW]
[ROW][C]Exp2_post1-pre  ~  Exp2_Treat[/C][/ROW]
[ROW][C]means[/C][C]0.103[/C][C]0.375[/C][C]0.244[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=223016&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=223016&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Model
Exp2_post1-pre ~ Exp2_Treat
means0.1030.3750.244







ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
Exp2_Treat38.4742.82512.4590
Residuals11726.5260.227

\begin{tabular}{lllllllll}
\hline
ANOVA Statistics \tabularnewline
  & Df & Sum Sq & Mean Sq & F value & Pr(>F) \tabularnewline
Exp2_Treat & 3 & 8.474 & 2.825 & 12.459 & 0 \tabularnewline
Residuals & 117 & 26.526 & 0.227 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=223016&T=2

[TABLE]
[ROW][C]ANOVA Statistics[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]Sum Sq[/C][C]Mean Sq[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]Exp2_Treat[/C][C]3[/C][C]8.474[/C][C]2.825[/C][C]12.459[/C][C]0[/C][/ROW]
[ROW][C]Residuals[/C][C]117[/C][C]26.526[/C][C]0.227[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=223016&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=223016&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
Exp2_Treat38.4742.82512.4590
Residuals11726.5260.227







Must Include Intercept to use Tukey Test

\begin{tabular}{lllllllll}
\hline
Must Include Intercept to use Tukey Test  \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=223016&T=3

[TABLE]
[ROW][C]Must Include Intercept to use Tukey Test [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=223016&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=223016&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Must Include Intercept to use Tukey Test







Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group23.6390.029
117

\begin{tabular}{lllllllll}
\hline
Levenes Test for Homogeneity of Variance \tabularnewline
  & Df & F value & Pr(>F) \tabularnewline
Group & 2 & 3.639 & 0.029 \tabularnewline
  & 117 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=223016&T=4

[TABLE]
[ROW][C]Levenes Test for Homogeneity of Variance[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]Group[/C][C]2[/C][C]3.639[/C][C]0.029[/C][/ROW]
[ROW][C] [/C][C]117[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=223016&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=223016&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group23.6390.029
117



Parameters (Session):
par1 = 1 ; par2 = 2 ; par3 = TRUE ;
Parameters (R input):
par1 = 1 ; par2 = 2 ; par3 = TRUE ; par4 = ; par5 = ; par6 = ; par7 = ; par8 = ; par9 = ; par10 = ; par11 = ; par12 = ; par13 = ; par14 = ; par15 = ; par16 = ; par17 = ; par18 = ; par19 = ; par20 = ;
R code (references can be found in the software module):
par3 <- 'FALSE'
par2 <- '2'
par1 <- '1'
cat1 <- as.numeric(par1) #
cat2<- as.numeric(par2) #
intercept<-as.logical(par3)
x <- t(x)
x1<-as.numeric(x[,cat1])
f1<-as.character(x[,cat2])
xdf<-data.frame(x1,f1)
(V1<-dimnames(y)[[1]][cat1])
(V2<-dimnames(y)[[1]][cat2])
names(xdf)<-c('Response', 'Treatment')
if(intercept == FALSE) (lmxdf<-lm(Response ~ Treatment - 1, data = xdf) ) else (lmxdf<-lm(Response ~ Treatment, data = xdf) )
(aov.xdf<-aov(lmxdf) )
(anova.xdf<-anova(lmxdf) )
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Model', length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, paste(V1, ' ~ ', V2), length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'means',,TRUE)
for(i in 1:length(lmxdf$coefficients)){
a<-table.element(a, round(lmxdf$coefficients[i], digits=3),,FALSE)
}
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Statistics', 5+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',,TRUE)
a<-table.element(a, 'Df',,FALSE)
a<-table.element(a, 'Sum Sq',,FALSE)
a<-table.element(a, 'Mean Sq',,FALSE)
a<-table.element(a, 'F value',,FALSE)
a<-table.element(a, 'Pr(>F)',,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, V2,,TRUE)
a<-table.element(a, anova.xdf$Df[1],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'F value'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3),,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residuals',,TRUE)
a<-table.element(a, anova.xdf$Df[2],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3),,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
bitmap(file='anovaplot.png')
boxplot(Response ~ Treatment, data=xdf, xlab=V2, ylab=V1)
dev.off()
if(intercept==TRUE){
'Tukey Plot'
thsd<-TukeyHSD(aov.xdf)
bitmap(file='TukeyHSDPlot.png')
plot(thsd)
dev.off()
}
if(intercept==TRUE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Tukey Honest Significant Difference Comparisons', 5,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ', 1, TRUE)
for(i in 1:4){
a<-table.element(a,colnames(thsd[[1]])[i], 1, TRUE)
}
a<-table.row.end(a)
for(i in 1:length(rownames(thsd[[1]]))){
a<-table.row.start(a)
a<-table.element(a,rownames(thsd[[1]])[i], 1, TRUE)
for(j in 1:4){
a<-table.element(a,round(thsd[[1]][i,j], digits=3), 1, FALSE)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
if(intercept==FALSE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'TukeyHSD Message', 1,TRUE)
a<-table.row.end(a)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Must Include Intercept to use Tukey Test ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
library(car)
lt.lmxdf<-leveneTest(lmxdf)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Levenes Test for Homogeneity of Variance', 4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
for (i in 1:3){
a<-table.element(a,names(lt.lmxdf)[i], 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Group', 1, TRUE)
for (i in 1:3){
a<-table.element(a,round(lt.lmxdf[[i]][1], digits=3), 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
a<-table.element(a,lt.lmxdf[[1]][2], 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')