Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationMon, 19 Jan 2015 18:44:52 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2015/Jan/19/t1421693187cireigh5361mejh.htm/, Retrieved Fri, 01 Nov 2024 00:06:43 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=274695, Retrieved Fri, 01 Nov 2024 00:06:43 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact101
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Data Series] [data set] [2008-12-01 19:54:57] [b98453cac15ba1066b407e146608df68]
- RMP   [Multiple Regression] [Unemployment] [2010-11-30 13:40:15] [b98453cac15ba1066b407e146608df68]
- RMPD      [Standard Deviation-Mean Plot] [] [2015-01-19 18:44:52] [e2c8fd7ffb6898b7e37b86d31eb23523] [Current]
Feedback Forum

Post a new message
Dataseries X:
1775
2197
2920
4240
5415
6136
6719
6234
7152
3646
2165
2803
1615
2350
3350
3536
5834
6767
5993
7276
5641
3477
2247
2466
1567
2237
2598
3729
5715
5776
5852
6878
5488
3583
2054
2282
1552
2261
2446
3519
5161
5085
5711
6057
5224
3363
1899
2115
1491
2061
2419
3430
4778
4862
6176
5664
5529
3418
1941
2402
1579
2146
2462
3695
4831
5134
6250
5760
6249
2917
1741
2359
1511
2059
2635
2867
4403
5720
4502
5749
5627
2846
1762
2429
1169
2154
2249
2687
4359
5382
4459
6398
4596
3024
1887
2070
1351
2218
2461
3028
4784
4975
4607
6249
4809
3157
1910
2228
1594
2467
2222
3607
4685
4962
5770
5480
5000
3228
1993
2288
1588
2105
2191
3591
4668
4885
5822
5599
5340
3082
2010
2301




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ fisher.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=274695&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ fisher.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=274695&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=274695&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
14283.51960.284279012985377
24212.666666666671968.44287022345661
33979.916666666671858.555766685195311
43699.416666666671655.134845280174505
53680.916666666671650.87698227524685
63760.251789.635164699024671
73509.166666666671598.460954869534238
83369.51621.986296321445229
93481.416666666671541.658814885824898
1036081504.044124110974176
113598.51581.284374401794234

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 4283.5 & 1960.28427901298 & 5377 \tabularnewline
2 & 4212.66666666667 & 1968.4428702234 & 5661 \tabularnewline
3 & 3979.91666666667 & 1858.55576668519 & 5311 \tabularnewline
4 & 3699.41666666667 & 1655.13484528017 & 4505 \tabularnewline
5 & 3680.91666666667 & 1650.8769822752 & 4685 \tabularnewline
6 & 3760.25 & 1789.63516469902 & 4671 \tabularnewline
7 & 3509.16666666667 & 1598.46095486953 & 4238 \tabularnewline
8 & 3369.5 & 1621.98629632144 & 5229 \tabularnewline
9 & 3481.41666666667 & 1541.65881488582 & 4898 \tabularnewline
10 & 3608 & 1504.04412411097 & 4176 \tabularnewline
11 & 3598.5 & 1581.28437440179 & 4234 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=274695&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]4283.5[/C][C]1960.28427901298[/C][C]5377[/C][/ROW]
[ROW][C]2[/C][C]4212.66666666667[/C][C]1968.4428702234[/C][C]5661[/C][/ROW]
[ROW][C]3[/C][C]3979.91666666667[/C][C]1858.55576668519[/C][C]5311[/C][/ROW]
[ROW][C]4[/C][C]3699.41666666667[/C][C]1655.13484528017[/C][C]4505[/C][/ROW]
[ROW][C]5[/C][C]3680.91666666667[/C][C]1650.8769822752[/C][C]4685[/C][/ROW]
[ROW][C]6[/C][C]3760.25[/C][C]1789.63516469902[/C][C]4671[/C][/ROW]
[ROW][C]7[/C][C]3509.16666666667[/C][C]1598.46095486953[/C][C]4238[/C][/ROW]
[ROW][C]8[/C][C]3369.5[/C][C]1621.98629632144[/C][C]5229[/C][/ROW]
[ROW][C]9[/C][C]3481.41666666667[/C][C]1541.65881488582[/C][C]4898[/C][/ROW]
[ROW][C]10[/C][C]3608[/C][C]1504.04412411097[/C][C]4176[/C][/ROW]
[ROW][C]11[/C][C]3598.5[/C][C]1581.28437440179[/C][C]4234[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=274695&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=274695&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
14283.51960.284279012985377
24212.666666666671968.44287022345661
33979.916666666671858.555766685195311
43699.416666666671655.134845280174505
53680.916666666671650.87698227524685
63760.251789.635164699024671
73509.166666666671598.460954869534238
83369.51621.986296321445229
93481.416666666671541.658814885824898
1036081504.044124110974176
113598.51581.284374401794234







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha-213.854351393823
beta0.511925657593744
S.D.0.0725751194602251
T-STAT7.05373496318261
p-value5.96145327527347e-05

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & -213.854351393823 \tabularnewline
beta & 0.511925657593744 \tabularnewline
S.D. & 0.0725751194602251 \tabularnewline
T-STAT & 7.05373496318261 \tabularnewline
p-value & 5.96145327527347e-05 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=274695&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]-213.854351393823[/C][/ROW]
[ROW][C]beta[/C][C]0.511925657593744[/C][/ROW]
[ROW][C]S.D.[/C][C]0.0725751194602251[/C][/ROW]
[ROW][C]T-STAT[/C][C]7.05373496318261[/C][/ROW]
[ROW][C]p-value[/C][C]5.96145327527347e-05[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=274695&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=274695&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha-213.854351393823
beta0.511925657593744
S.D.0.0725751194602251
T-STAT7.05373496318261
p-value5.96145327527347e-05







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha-1.70889296976903
beta1.11180691810504
S.D.0.172276269920456
T-STAT6.45362776091211
p-value0.000117641717123527
Lambda-0.111806918105041

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & -1.70889296976903 \tabularnewline
beta & 1.11180691810504 \tabularnewline
S.D. & 0.172276269920456 \tabularnewline
T-STAT & 6.45362776091211 \tabularnewline
p-value & 0.000117641717123527 \tabularnewline
Lambda & -0.111806918105041 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=274695&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]-1.70889296976903[/C][/ROW]
[ROW][C]beta[/C][C]1.11180691810504[/C][/ROW]
[ROW][C]S.D.[/C][C]0.172276269920456[/C][/ROW]
[ROW][C]T-STAT[/C][C]6.45362776091211[/C][/ROW]
[ROW][C]p-value[/C][C]0.000117641717123527[/C][/ROW]
[ROW][C]Lambda[/C][C]-0.111806918105041[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=274695&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=274695&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha-1.70889296976903
beta1.11180691810504
S.D.0.172276269920456
T-STAT6.45362776091211
p-value0.000117641717123527
Lambda-0.111806918105041



Parameters (Session):
par1 = 0 ; par2 = no ; par3 = 512 ;
Parameters (R input):
par1 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')