Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_bootstrapplot.wasp
Title produced by softwareBlocked Bootstrap Plot - Central Tendency
Date of computationMon, 15 Dec 2014 21:23:22 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Dec/15/t14186786391xkpblmlma5bwyy.htm/, Retrieved Thu, 31 Oct 2024 23:25:03 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=269044, Retrieved Thu, 31 Oct 2024 23:25:03 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact110
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Blocked Bootstrap Plot - Central Tendency] [] [2014-11-17 20:21:15] [8ae5f3921d0f515f24933d117e773272]
- R P     [Blocked Bootstrap Plot - Central Tendency] [] [2014-12-15 21:23:22] [77e76d07a5b02a0482982fb19d5d5436] [Current]
Feedback Forum

Post a new message
Dataseries X:
21.94
21.95
21.96
22.1
22.13
22.18
22.18
22.27
22.3
22.04
22.05
22.06
22.06
22.06
21.97
22.03
22.08
22.13
22.13
22.4
22.4
22.12
22.22
22.14
22.14
22.19
22.29
22.24
22.26
22.29
22.29
22.29
22.29
22.35
22.39
22.43
22.43
22.11
22.12
22.05
22.05
22.08
22.08
22.09
22.09
22.24
22.25
22.24
22.24
22.25
22.28
22.23
22.29
22.31
22.31
22.31
22.39
22.42
22.42
22.42
22.15
21.95
21.96
21.97
21.66
21.66
21.68
21.75
21.55
21.59
21.54
21.54




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ fisher.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269044&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ fisher.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269044&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269044&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net







Estimation Results of Blocked Bootstrap
statisticQ1EstimateQ3S.D.IQR
mean22.083472222222222.125694444444422.17458333333330.06609905027247920.0911111111111111
median22.11522.1422.2250.06798184559618180.109999999999999
midrange21.98521.98521.990.07966206467501710.00500000000000256

\begin{tabular}{lllllllll}
\hline
Estimation Results of Blocked Bootstrap \tabularnewline
statistic & Q1 & Estimate & Q3 & S.D. & IQR \tabularnewline
mean & 22.0834722222222 & 22.1256944444444 & 22.1745833333333 & 0.0660990502724792 & 0.0911111111111111 \tabularnewline
median & 22.115 & 22.14 & 22.225 & 0.0679818455961818 & 0.109999999999999 \tabularnewline
midrange & 21.985 & 21.985 & 21.99 & 0.0796620646750171 & 0.00500000000000256 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269044&T=1

[TABLE]
[ROW][C]Estimation Results of Blocked Bootstrap[/C][/ROW]
[ROW][C]statistic[/C][C]Q1[/C][C]Estimate[/C][C]Q3[/C][C]S.D.[/C][C]IQR[/C][/ROW]
[ROW][C]mean[/C][C]22.0834722222222[/C][C]22.1256944444444[/C][C]22.1745833333333[/C][C]0.0660990502724792[/C][C]0.0911111111111111[/C][/ROW]
[ROW][C]median[/C][C]22.115[/C][C]22.14[/C][C]22.225[/C][C]0.0679818455961818[/C][C]0.109999999999999[/C][/ROW]
[ROW][C]midrange[/C][C]21.985[/C][C]21.985[/C][C]21.99[/C][C]0.0796620646750171[/C][C]0.00500000000000256[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269044&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269044&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimation Results of Blocked Bootstrap
statisticQ1EstimateQ3S.D.IQR
mean22.083472222222222.125694444444422.17458333333330.06609905027247920.0911111111111111
median22.11522.1422.2250.06798184559618180.109999999999999
midrange21.98521.98521.990.07966206467501710.00500000000000256



Parameters (Session):
par1 = 750 ; par2 = 12 ;
Parameters (R input):
par1 = 750 ; par2 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
if (par1 < 10) par1 = 10
if (par1 > 5000) par1 = 5000
if (par2 < 3) par2 = 3
if (par2 > length(x)) par2 = length(x)
library(lattice)
library(boot)
boot.stat <- function(s)
{
s.mean <- mean(s)
s.median <- median(s)
s.midrange <- (max(s) + min(s)) / 2
c(s.mean, s.median, s.midrange)
}
(r <- tsboot(x, boot.stat, R=par1, l=12, sim='fixed'))
bitmap(file='plot1.png')
plot(r$t[,1],type='p',ylab='simulated values',main='Simulation of Mean')
grid()
dev.off()
bitmap(file='plot2.png')
plot(r$t[,2],type='p',ylab='simulated values',main='Simulation of Median')
grid()
dev.off()
bitmap(file='plot3.png')
plot(r$t[,3],type='p',ylab='simulated values',main='Simulation of Midrange')
grid()
dev.off()
bitmap(file='plot4.png')
densityplot(~r$t[,1],col='black',main='Density Plot',xlab='mean')
dev.off()
bitmap(file='plot5.png')
densityplot(~r$t[,2],col='black',main='Density Plot',xlab='median')
dev.off()
bitmap(file='plot6.png')
densityplot(~r$t[,3],col='black',main='Density Plot',xlab='midrange')
dev.off()
z <- data.frame(cbind(r$t[,1],r$t[,2],r$t[,3]))
colnames(z) <- list('mean','median','midrange')
bitmap(file='plot7.png')
boxplot(z,notch=TRUE,ylab='simulated values',main='Bootstrap Simulation - Central Tendency')
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimation Results of Blocked Bootstrap',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'statistic',header=TRUE)
a<-table.element(a,'Q1',header=TRUE)
a<-table.element(a,'Estimate',header=TRUE)
a<-table.element(a,'Q3',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'IQR',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
q1 <- quantile(r$t[,1],0.25)[[1]]
q3 <- quantile(r$t[,1],0.75)[[1]]
a<-table.element(a,q1)
a<-table.element(a,r$t0[1])
a<-table.element(a,q3)
a<-table.element(a,sqrt(var(r$t[,1])))
a<-table.element(a,q3-q1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'median',header=TRUE)
q1 <- quantile(r$t[,2],0.25)[[1]]
q3 <- quantile(r$t[,2],0.75)[[1]]
a<-table.element(a,q1)
a<-table.element(a,r$t0[2])
a<-table.element(a,q3)
a<-table.element(a,sqrt(var(r$t[,2])))
a<-table.element(a,q3-q1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'midrange',header=TRUE)
q1 <- quantile(r$t[,3],0.25)[[1]]
q3 <- quantile(r$t[,3],0.75)[[1]]
a<-table.element(a,q1)
a<-table.element(a,r$t0[3])
a<-table.element(a,q3)
a<-table.element(a,sqrt(var(r$t[,3])))
a<-table.element(a,q3-q1)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')