Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_One Factor ANOVA.wasp
Title produced by softwareOne-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)
Date of computationThu, 24 Nov 2011 09:45:25 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Nov/24/t1322145940giylo2i2wjn7fmd.htm/, Retrieved Fri, 01 Nov 2024 01:04:35 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=146888, Retrieved Fri, 01 Nov 2024 01:04:35 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact160
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Chi Square Measure of Association- Free Statistics Software (Calculator)] [One Way ANOVA wit...] [2009-11-29 13:09:19] [98fd0e87c3eb04e0cc2efde01dbafab6]
-   PD  [Chi Square Measure of Association- Free Statistics Software (Calculator)] [One Way ANOVA for...] [2009-12-01 13:05:10] [3fdd735c61ad38cbc9b3393dc997cdb7]
- R P     [Chi Square Measure of Association- Free Statistics Software (Calculator)] [CARE date with Tu...] [2009-12-01 18:33:48] [98fd0e87c3eb04e0cc2efde01dbafab6]
-   P       [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [CARE Data with Tu...] [2010-11-23 12:09:38] [3fdd735c61ad38cbc9b3393dc997cdb7]
- RM          [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [IQ and Mothers Age] [2011-11-21 16:34:08] [98fd0e87c3eb04e0cc2efde01dbafab6]
- R  D          [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [30 months v year 7] [2011-11-24 13:50:55] [74be16979710d4c4e7c6647856088456]
-    D            [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [Verbal IQ v age] [2011-11-24 14:40:38] [a4caa626434360c3dd87349f301be56d]
-                   [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [Verbal IQ v Age] [2011-11-24 14:43:51] [a4caa626434360c3dd87349f301be56d]
-                       [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [Verbal IQ] [2011-11-24 14:45:25] [0a2565fd5e770bdc06b465fc72a06913] [Current]
-    D                    [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [Verbal IQ v year 7] [2011-11-24 14:49:08] [a4caa626434360c3dd87349f301be56d]
-    D                      [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [MC30VRB Rank] [2011-11-24 15:14:38] [a4caa626434360c3dd87349f301be56d]
-    D                        [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [WISCRY7V Rank v y...] [2011-11-24 15:19:24] [a4caa626434360c3dd87349f301be56d]
Feedback Forum

Post a new message
Dataseries X:
36	1
36	2
56	2
48	3
32	1
44	1
39	2
34	3
41	1
50	3
39	1
62	3
52	2
37	1
50	2
41	2
55	2
41	1
56	3
39	2
52	1
46	1
44	1
48	1
41	2
50	3
50	2
44	2
52	2
54	2
44	2
52	3
37	2
52	2
50	2
36	1
50	2
52	2
55	2
31	1
36	2
49	1
42	2
37	2
41	2
30	2
52	2
30	1
41	1
44	2
66	2
48	1
43	3
57	1
46	1
54	1
48	2
48	2
52	2
62	1
58	1
58	2
62	2
48	2
46	2
34	2
66	3
52	2
55	1
55	1
57	2
56	2
55	2
56	3
54	2
55	2
46	3
52	1
32	2
44	1
46	2
59	2
46	2
46	2
54	3
66	3
56	2
59	2
57	2
52	2
48	2
44	2
41	1
50	1
48	1
48	3
59	2
34	2
46	2
54	2
55	1
54	2
59	2
44	2
54	1
52	2
66	3
44	2
57	1
39	1
60	1
45	1
41	2
50	2
39	3
43	2
48	2
37	2
58	3
46	1
43	3
44	1
34	2
30	2
50	2
39	1
37	2
55	1
48	3
41	3
39	2
36	2
43	1
50	3
55	2
43	1
60	1
48	1
30	1
43	2
39	3
52	2
39	2
39	1
56	2
59	1
46	1
57	2
50	2
54	2
50	2
60	3
59	3
41	3
48	2
59	2
60	2
56	1
56	2
51	1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ wold.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=146888&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ wold.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=146888&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=146888&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net







ANOVA Model
MC30VRB ~ MVIQ
means46.6531.4524.347

\begin{tabular}{lllllllll}
\hline
ANOVA Model \tabularnewline
MC30VRB  ~  MVIQ \tabularnewline
means & 46.653 & 1.452 & 4.347 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=146888&T=1

[TABLE]
[ROW][C]ANOVA Model[/C][/ROW]
[ROW][C]MC30VRB  ~  MVIQ[/C][/ROW]
[ROW][C]means[/C][C]46.653[/C][C]1.452[/C][C]4.347[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=146888&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=146888&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Model
MC30VRB ~ MVIQ
means46.6531.4524.347







ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
MVIQ2312.815156.4072.2110.113
Residuals15711105.1670.734

\begin{tabular}{lllllllll}
\hline
ANOVA Statistics \tabularnewline
  & Df & Sum Sq & Mean Sq & F value & Pr(>F) \tabularnewline
MVIQ & 2 & 312.815 & 156.407 & 2.211 & 0.113 \tabularnewline
Residuals & 157 & 11105.16 & 70.734 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=146888&T=2

[TABLE]
[ROW][C]ANOVA Statistics[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]Sum Sq[/C][C]Mean Sq[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]MVIQ[/C][C]2[/C][C]312.815[/C][C]156.407[/C][C]2.211[/C][C]0.113[/C][/ROW]
[ROW][C]Residuals[/C][C]157[/C][C]11105.16[/C][C]70.734[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=146888&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=146888&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
MVIQ2312.815156.4072.2110.113
Residuals15711105.1670.734







Tukey Honest Significant Difference Comparisons
difflwruprp adj
2-11.452-2.115.0130.6
3-14.347-0.5449.2380.093
3-22.895-1.6267.4170.287

\begin{tabular}{lllllllll}
\hline
Tukey Honest Significant Difference Comparisons \tabularnewline
  & diff & lwr & upr & p adj \tabularnewline
2-1 & 1.452 & -2.11 & 5.013 & 0.6 \tabularnewline
3-1 & 4.347 & -0.544 & 9.238 & 0.093 \tabularnewline
3-2 & 2.895 & -1.626 & 7.417 & 0.287 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=146888&T=3

[TABLE]
[ROW][C]Tukey Honest Significant Difference Comparisons[/C][/ROW]
[ROW][C] [/C][C]diff[/C][C]lwr[/C][C]upr[/C][C]p adj[/C][/ROW]
[ROW][C]2-1[/C][C]1.452[/C][C]-2.11[/C][C]5.013[/C][C]0.6[/C][/ROW]
[ROW][C]3-1[/C][C]4.347[/C][C]-0.544[/C][C]9.238[/C][C]0.093[/C][/ROW]
[ROW][C]3-2[/C][C]2.895[/C][C]-1.626[/C][C]7.417[/C][C]0.287[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=146888&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=146888&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Tukey Honest Significant Difference Comparisons
difflwruprp adj
2-11.452-2.115.0130.6
3-14.347-0.5449.2380.093
3-22.895-1.6267.4170.287







Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group20.1870.829
157

\begin{tabular}{lllllllll}
\hline
Levenes Test for Homogeneity of Variance \tabularnewline
  & Df & F value & Pr(>F) \tabularnewline
Group & 2 & 0.187 & 0.829 \tabularnewline
  & 157 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=146888&T=4

[TABLE]
[ROW][C]Levenes Test for Homogeneity of Variance[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]Group[/C][C]2[/C][C]0.187[/C][C]0.829[/C][/ROW]
[ROW][C] [/C][C]157[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=146888&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=146888&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group20.1870.829
157



Parameters (Session):
par1 = 1 ; par2 = 2 ; par3 = TRUE ;
Parameters (R input):
par1 = 1 ; par2 = 2 ; par3 = TRUE ;
R code (references can be found in the software module):
cat1 <- as.numeric(par1) #
cat2<- as.numeric(par2) #
intercept<-as.logical(par3)
x <- t(x)
x1<-as.numeric(x[,cat1])
f1<-as.character(x[,cat2])
xdf<-data.frame(x1,f1)
(V1<-dimnames(y)[[1]][cat1])
(V2<-dimnames(y)[[1]][cat2])
names(xdf)<-c('Response', 'Treatment')
if(intercept == FALSE) (lmxdf<-lm(Response ~ Treatment - 1, data = xdf) ) else (lmxdf<-lm(Response ~ Treatment, data = xdf) )
(aov.xdf<-aov(lmxdf) )
(anova.xdf<-anova(lmxdf) )
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Model', length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, paste(V1, ' ~ ', V2), length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'means',,TRUE)
for(i in 1:length(lmxdf$coefficients)){
a<-table.element(a, round(lmxdf$coefficients[i], digits=3),,FALSE)
}
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Statistics', 5+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',,TRUE)
a<-table.element(a, 'Df',,FALSE)
a<-table.element(a, 'Sum Sq',,FALSE)
a<-table.element(a, 'Mean Sq',,FALSE)
a<-table.element(a, 'F value',,FALSE)
a<-table.element(a, 'Pr(>F)',,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, V2,,TRUE)
a<-table.element(a, anova.xdf$Df[1],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'F value'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3),,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residuals',,TRUE)
a<-table.element(a, anova.xdf$Df[2],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3),,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
bitmap(file='anovaplot.png')
boxplot(Response ~ Treatment, data=xdf, xlab=V2, ylab=V1)
dev.off()
if(intercept==TRUE){
thsd<-TukeyHSD(aov.xdf)
bitmap(file='TukeyHSDPlot.png')
plot(thsd)
dev.off()
}
if(intercept==TRUE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Tukey Honest Significant Difference Comparisons', 5,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ', 1, TRUE)
for(i in 1:4){
a<-table.element(a,colnames(thsd[[1]])[i], 1, TRUE)
}
a<-table.row.end(a)
for(i in 1:length(rownames(thsd[[1]]))){
a<-table.row.start(a)
a<-table.element(a,rownames(thsd[[1]])[i], 1, TRUE)
for(j in 1:4){
a<-table.element(a,round(thsd[[1]][i,j], digits=3), 1, FALSE)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
if(intercept==FALSE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'TukeyHSD Message', 1,TRUE)
a<-table.row.end(a)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Must Include Intercept to use Tukey Test ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
library(car)
lt.lmxdf<-levene.test(lmxdf)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Levenes Test for Homogeneity of Variance', 4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
for (i in 1:3){
a<-table.element(a,names(lt.lmxdf)[i], 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Group', 1, TRUE)
for (i in 1:3){
a<-table.element(a,round(lt.lmxdf[[i]][1], digits=3), 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
a<-table.element(a,lt.lmxdf[[1]][2], 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')