Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationMon, 15 Dec 2014 14:44:25 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Dec/15/t14186546802dle3008h8b3q2c.htm/, Retrieved Fri, 01 Nov 2024 00:03:33 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=268530, Retrieved Fri, 01 Nov 2024 00:03:33 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact113
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2014-12-15 14:44:25] [d33b7eb92cfcc384850e3711242e8bfe] [Current]
Feedback Forum

Post a new message
Dataseries X:
23	52
16	16
33	46
32	56
37	52
14	55
52	50
75	59
72	60
15	52
29	44
13	67
40	52
19	55
24	37
121	54
93	72
36	51
23	48
85	60
41	50
46	63
18	33
35	67
17	46
4	54
28	59
44	61
10	33
38	47
57	69
23	52
36	55
22	41
40	73
31	52
11	50
38	51
24	60
37	56
37	56
22	29
15	66
2	66
43	73
31	55
29	64
45	40
25	46
4	58
31	43
-4	61
66	51
61	50
32	52
31	54
39	66
19	61
31	80
36	51
42	56
21	56
21	56
25	53
32	47
26	25
28	47
32	46
41	50
29	39
33	51
17	58
13	35
32	58
30	60
34	62
59	63
13	53
23	46
10	67
5	59
31	64
19	38
32	50
30	48
25	48
48	47
35	66
67	47
15	63
22	58
18	44
33	51
46	43
24	55
14	38
12	45
38	50
12	54
28	57
41	60
12	55
31	56
33	49
34	37
21	59
20	46
44	51
52	58
7	64
29	53
11	48
26	51
24	47
7	59
60	62
13	62
20	51
52	64
28	52
25	67
39	50
9	54
19	58
13	56
60	63
19	31
34	65
14	71
17	50
45	57
66	47
48	47
29	57
-2	43
51	41
2	63
24	63
40	56
20	51
19	50
16	22
20	41
40	59
27	56
25	66
49	53
39	42
61	52
19	54
67	44
45	62
30	53
8	50
19	36
52	76
22	66
17	62
33	59
34	47
22	55
30	58
25	60
38	44
26	57




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 6 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=268530&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]6 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=268530&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=268530&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Multiple Linear Regression - Estimated Regression Equation
PRH[t] = + 17.5574 + 0.248779AMS.I[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
PRH[t] =  +  17.5574 +  0.248779AMS.I[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=268530&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]PRH[t] =  +  17.5574 +  0.248779AMS.I[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=268530&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=268530&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
PRH[t] = + 17.5574 + 0.248779AMS.I[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)17.55747.555652.3240.02137380.0106869
AMS.I0.2487790.1394941.7830.07637460.0381873

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 17.5574 & 7.55565 & 2.324 & 0.0213738 & 0.0106869 \tabularnewline
AMS.I & 0.248779 & 0.139494 & 1.783 & 0.0763746 & 0.0381873 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=268530&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]17.5574[/C][C]7.55565[/C][C]2.324[/C][C]0.0213738[/C][C]0.0106869[/C][/ROW]
[ROW][C]AMS.I[/C][C]0.248779[/C][C]0.139494[/C][C]1.783[/C][C]0.0763746[/C][C]0.0381873[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=268530&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=268530&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)17.55747.555652.3240.02137380.0106869
AMS.I0.2487790.1394941.7830.07637460.0381873







Multiple Linear Regression - Regression Statistics
Multiple R0.138347
R-squared0.0191399
Adjusted R-squared0.0131223
F-TEST (value)3.18068
F-TEST (DF numerator)1
F-TEST (DF denominator)163
p-value0.0763746
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation17.9504
Sum Squared Residuals52521.5

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.138347 \tabularnewline
R-squared & 0.0191399 \tabularnewline
Adjusted R-squared & 0.0131223 \tabularnewline
F-TEST (value) & 3.18068 \tabularnewline
F-TEST (DF numerator) & 1 \tabularnewline
F-TEST (DF denominator) & 163 \tabularnewline
p-value & 0.0763746 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 17.9504 \tabularnewline
Sum Squared Residuals & 52521.5 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=268530&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.138347[/C][/ROW]
[ROW][C]R-squared[/C][C]0.0191399[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.0131223[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]3.18068[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]1[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]163[/C][/ROW]
[ROW][C]p-value[/C][C]0.0763746[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]17.9504[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]52521.5[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=268530&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=268530&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.138347
R-squared0.0191399
Adjusted R-squared0.0131223
F-TEST (value)3.18068
F-TEST (DF numerator)1
F-TEST (DF denominator)163
p-value0.0763746
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation17.9504
Sum Squared Residuals52521.5







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
12330.4939-7.49393
21621.5379-5.53787
33329.00123.99875
43231.4890.510956
53730.49396.50607
61431.2403-17.2403
75229.996422.0036
87532.235442.7646
97232.484239.5158
101530.4939-15.4939
112928.50370.496309
121334.2256-21.2256
134030.49399.50607
141931.2403-12.2403
152426.7622-2.76223
1612130.991590.0085
179335.469557.5305
183630.24515.75485
192329.4988-6.49881
208532.484252.5158
214129.996411.0036
224633.230512.7695
231825.7671-7.76712
243534.22560.774383
251729.0012-12.0012
26430.9915-26.9915
272832.2354-4.23538
284432.732911.2671
291025.7671-15.7671
303829.258.74997
315734.723222.2768
322330.4939-7.49393
333631.24034.75974
342227.7574-5.75735
354035.71834.28171
363130.49390.506074
371129.9964-18.9964
383830.24517.75485
392432.4842-8.48416
403731.4895.51096
413731.4895.51096
422224.772-2.772
431533.9768-18.9768
44233.9768-31.9768
454335.71837.28171
463131.2403-0.240264
472933.4793-4.47928
484527.508617.4914
492529.0012-4.00125
50431.9866-27.9866
513128.25492.74509
52-432.7329-36.7329
536630.245135.7549
546129.996431.0036
553230.49391.50607
563130.99150.00851525
573933.97685.02316
581932.7329-13.7329
593137.4597-6.45975
603630.24515.75485
614231.48910.511
622131.489-10.489
632131.489-10.489
642530.7427-5.74271
653229.252.74997
662623.77692.22312
672829.25-1.25003
683229.00122.99875
694129.996411.0036
702927.25981.74021
713330.24512.75485
721731.9866-14.9866
731326.2647-13.2647
743231.98660.0133976
753032.4842-2.48416
763432.98171.01828
775933.230525.7695
781330.7427-17.7427
792329.0012-6.00125
801034.2256-24.2256
81532.2354-27.2354
823133.4793-2.47928
831927.011-8.01101
843229.99642.00363
853029.49880.501192
862529.4988-4.49881
874829.2518.75
883533.97681.02316
896729.2537.75
901533.2305-18.2305
912231.9866-9.9866
921828.5037-10.5037
933330.24512.75485
944628.254917.7451
952431.2403-7.24026
961427.011-13.011
971228.7525-16.7525
983829.99648.00363
991230.9915-18.9915
1002831.7378-3.73782
1014132.48428.51584
1021231.2403-19.2403
1033131.489-0.489044
1043329.74763.25241
1053426.76227.23777
1062132.2354-11.2354
1072029.0012-9.00125
1084430.245113.7549
1095231.986620.0134
110733.4793-26.4793
1112930.7427-1.74271
1121129.4988-18.4988
1132630.2451-4.24515
1142429.25-5.25003
115732.2354-25.2354
1166032.981727.0183
1171332.9817-19.9817
1182030.2451-10.2451
1195233.479318.5207
1202830.4939-2.49393
1212534.2256-9.22562
1223929.99649.00363
123930.9915-21.9915
1241931.9866-12.9866
1251331.489-18.489
1266033.230526.7695
1271925.2696-6.26956
1283433.72810.271942
1291435.2207-21.2207
1301729.9964-12.9964
1314531.737813.2622
1326629.2536.75
1334829.2518.75
1342931.7378-2.73782
135-228.2549-30.2549
1365127.757423.2426
137233.2305-31.2305
1382433.2305-9.2305
1394031.4898.51096
1402030.2451-10.2451
1411929.9964-10.9964
1421623.0305-7.03054
1432027.7574-7.75735
1444032.23547.76462
1452731.489-4.48904
1462533.9768-8.97684
1474930.742718.2573
1483928.006110.9939
1496130.493930.5061
1501930.9915-11.9915
1516728.503738.4963
1524532.981712.0183
1533030.7427-0.742705
154829.9964-21.9964
1551926.5135-7.51346
1565236.464615.5354
1572233.9768-11.9768
1581732.9817-15.9817
1593332.23540.764618
1603429.254.74997
1612231.2403-9.24026
1623031.9866-1.9866
1632532.4842-7.48416
1643828.50379.49631
1652631.7378-5.73782

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 23 & 30.4939 & -7.49393 \tabularnewline
2 & 16 & 21.5379 & -5.53787 \tabularnewline
3 & 33 & 29.0012 & 3.99875 \tabularnewline
4 & 32 & 31.489 & 0.510956 \tabularnewline
5 & 37 & 30.4939 & 6.50607 \tabularnewline
6 & 14 & 31.2403 & -17.2403 \tabularnewline
7 & 52 & 29.9964 & 22.0036 \tabularnewline
8 & 75 & 32.2354 & 42.7646 \tabularnewline
9 & 72 & 32.4842 & 39.5158 \tabularnewline
10 & 15 & 30.4939 & -15.4939 \tabularnewline
11 & 29 & 28.5037 & 0.496309 \tabularnewline
12 & 13 & 34.2256 & -21.2256 \tabularnewline
13 & 40 & 30.4939 & 9.50607 \tabularnewline
14 & 19 & 31.2403 & -12.2403 \tabularnewline
15 & 24 & 26.7622 & -2.76223 \tabularnewline
16 & 121 & 30.9915 & 90.0085 \tabularnewline
17 & 93 & 35.4695 & 57.5305 \tabularnewline
18 & 36 & 30.2451 & 5.75485 \tabularnewline
19 & 23 & 29.4988 & -6.49881 \tabularnewline
20 & 85 & 32.4842 & 52.5158 \tabularnewline
21 & 41 & 29.9964 & 11.0036 \tabularnewline
22 & 46 & 33.2305 & 12.7695 \tabularnewline
23 & 18 & 25.7671 & -7.76712 \tabularnewline
24 & 35 & 34.2256 & 0.774383 \tabularnewline
25 & 17 & 29.0012 & -12.0012 \tabularnewline
26 & 4 & 30.9915 & -26.9915 \tabularnewline
27 & 28 & 32.2354 & -4.23538 \tabularnewline
28 & 44 & 32.7329 & 11.2671 \tabularnewline
29 & 10 & 25.7671 & -15.7671 \tabularnewline
30 & 38 & 29.25 & 8.74997 \tabularnewline
31 & 57 & 34.7232 & 22.2768 \tabularnewline
32 & 23 & 30.4939 & -7.49393 \tabularnewline
33 & 36 & 31.2403 & 4.75974 \tabularnewline
34 & 22 & 27.7574 & -5.75735 \tabularnewline
35 & 40 & 35.7183 & 4.28171 \tabularnewline
36 & 31 & 30.4939 & 0.506074 \tabularnewline
37 & 11 & 29.9964 & -18.9964 \tabularnewline
38 & 38 & 30.2451 & 7.75485 \tabularnewline
39 & 24 & 32.4842 & -8.48416 \tabularnewline
40 & 37 & 31.489 & 5.51096 \tabularnewline
41 & 37 & 31.489 & 5.51096 \tabularnewline
42 & 22 & 24.772 & -2.772 \tabularnewline
43 & 15 & 33.9768 & -18.9768 \tabularnewline
44 & 2 & 33.9768 & -31.9768 \tabularnewline
45 & 43 & 35.7183 & 7.28171 \tabularnewline
46 & 31 & 31.2403 & -0.240264 \tabularnewline
47 & 29 & 33.4793 & -4.47928 \tabularnewline
48 & 45 & 27.5086 & 17.4914 \tabularnewline
49 & 25 & 29.0012 & -4.00125 \tabularnewline
50 & 4 & 31.9866 & -27.9866 \tabularnewline
51 & 31 & 28.2549 & 2.74509 \tabularnewline
52 & -4 & 32.7329 & -36.7329 \tabularnewline
53 & 66 & 30.2451 & 35.7549 \tabularnewline
54 & 61 & 29.9964 & 31.0036 \tabularnewline
55 & 32 & 30.4939 & 1.50607 \tabularnewline
56 & 31 & 30.9915 & 0.00851525 \tabularnewline
57 & 39 & 33.9768 & 5.02316 \tabularnewline
58 & 19 & 32.7329 & -13.7329 \tabularnewline
59 & 31 & 37.4597 & -6.45975 \tabularnewline
60 & 36 & 30.2451 & 5.75485 \tabularnewline
61 & 42 & 31.489 & 10.511 \tabularnewline
62 & 21 & 31.489 & -10.489 \tabularnewline
63 & 21 & 31.489 & -10.489 \tabularnewline
64 & 25 & 30.7427 & -5.74271 \tabularnewline
65 & 32 & 29.25 & 2.74997 \tabularnewline
66 & 26 & 23.7769 & 2.22312 \tabularnewline
67 & 28 & 29.25 & -1.25003 \tabularnewline
68 & 32 & 29.0012 & 2.99875 \tabularnewline
69 & 41 & 29.9964 & 11.0036 \tabularnewline
70 & 29 & 27.2598 & 1.74021 \tabularnewline
71 & 33 & 30.2451 & 2.75485 \tabularnewline
72 & 17 & 31.9866 & -14.9866 \tabularnewline
73 & 13 & 26.2647 & -13.2647 \tabularnewline
74 & 32 & 31.9866 & 0.0133976 \tabularnewline
75 & 30 & 32.4842 & -2.48416 \tabularnewline
76 & 34 & 32.9817 & 1.01828 \tabularnewline
77 & 59 & 33.2305 & 25.7695 \tabularnewline
78 & 13 & 30.7427 & -17.7427 \tabularnewline
79 & 23 & 29.0012 & -6.00125 \tabularnewline
80 & 10 & 34.2256 & -24.2256 \tabularnewline
81 & 5 & 32.2354 & -27.2354 \tabularnewline
82 & 31 & 33.4793 & -2.47928 \tabularnewline
83 & 19 & 27.011 & -8.01101 \tabularnewline
84 & 32 & 29.9964 & 2.00363 \tabularnewline
85 & 30 & 29.4988 & 0.501192 \tabularnewline
86 & 25 & 29.4988 & -4.49881 \tabularnewline
87 & 48 & 29.25 & 18.75 \tabularnewline
88 & 35 & 33.9768 & 1.02316 \tabularnewline
89 & 67 & 29.25 & 37.75 \tabularnewline
90 & 15 & 33.2305 & -18.2305 \tabularnewline
91 & 22 & 31.9866 & -9.9866 \tabularnewline
92 & 18 & 28.5037 & -10.5037 \tabularnewline
93 & 33 & 30.2451 & 2.75485 \tabularnewline
94 & 46 & 28.2549 & 17.7451 \tabularnewline
95 & 24 & 31.2403 & -7.24026 \tabularnewline
96 & 14 & 27.011 & -13.011 \tabularnewline
97 & 12 & 28.7525 & -16.7525 \tabularnewline
98 & 38 & 29.9964 & 8.00363 \tabularnewline
99 & 12 & 30.9915 & -18.9915 \tabularnewline
100 & 28 & 31.7378 & -3.73782 \tabularnewline
101 & 41 & 32.4842 & 8.51584 \tabularnewline
102 & 12 & 31.2403 & -19.2403 \tabularnewline
103 & 31 & 31.489 & -0.489044 \tabularnewline
104 & 33 & 29.7476 & 3.25241 \tabularnewline
105 & 34 & 26.7622 & 7.23777 \tabularnewline
106 & 21 & 32.2354 & -11.2354 \tabularnewline
107 & 20 & 29.0012 & -9.00125 \tabularnewline
108 & 44 & 30.2451 & 13.7549 \tabularnewline
109 & 52 & 31.9866 & 20.0134 \tabularnewline
110 & 7 & 33.4793 & -26.4793 \tabularnewline
111 & 29 & 30.7427 & -1.74271 \tabularnewline
112 & 11 & 29.4988 & -18.4988 \tabularnewline
113 & 26 & 30.2451 & -4.24515 \tabularnewline
114 & 24 & 29.25 & -5.25003 \tabularnewline
115 & 7 & 32.2354 & -25.2354 \tabularnewline
116 & 60 & 32.9817 & 27.0183 \tabularnewline
117 & 13 & 32.9817 & -19.9817 \tabularnewline
118 & 20 & 30.2451 & -10.2451 \tabularnewline
119 & 52 & 33.4793 & 18.5207 \tabularnewline
120 & 28 & 30.4939 & -2.49393 \tabularnewline
121 & 25 & 34.2256 & -9.22562 \tabularnewline
122 & 39 & 29.9964 & 9.00363 \tabularnewline
123 & 9 & 30.9915 & -21.9915 \tabularnewline
124 & 19 & 31.9866 & -12.9866 \tabularnewline
125 & 13 & 31.489 & -18.489 \tabularnewline
126 & 60 & 33.2305 & 26.7695 \tabularnewline
127 & 19 & 25.2696 & -6.26956 \tabularnewline
128 & 34 & 33.7281 & 0.271942 \tabularnewline
129 & 14 & 35.2207 & -21.2207 \tabularnewline
130 & 17 & 29.9964 & -12.9964 \tabularnewline
131 & 45 & 31.7378 & 13.2622 \tabularnewline
132 & 66 & 29.25 & 36.75 \tabularnewline
133 & 48 & 29.25 & 18.75 \tabularnewline
134 & 29 & 31.7378 & -2.73782 \tabularnewline
135 & -2 & 28.2549 & -30.2549 \tabularnewline
136 & 51 & 27.7574 & 23.2426 \tabularnewline
137 & 2 & 33.2305 & -31.2305 \tabularnewline
138 & 24 & 33.2305 & -9.2305 \tabularnewline
139 & 40 & 31.489 & 8.51096 \tabularnewline
140 & 20 & 30.2451 & -10.2451 \tabularnewline
141 & 19 & 29.9964 & -10.9964 \tabularnewline
142 & 16 & 23.0305 & -7.03054 \tabularnewline
143 & 20 & 27.7574 & -7.75735 \tabularnewline
144 & 40 & 32.2354 & 7.76462 \tabularnewline
145 & 27 & 31.489 & -4.48904 \tabularnewline
146 & 25 & 33.9768 & -8.97684 \tabularnewline
147 & 49 & 30.7427 & 18.2573 \tabularnewline
148 & 39 & 28.0061 & 10.9939 \tabularnewline
149 & 61 & 30.4939 & 30.5061 \tabularnewline
150 & 19 & 30.9915 & -11.9915 \tabularnewline
151 & 67 & 28.5037 & 38.4963 \tabularnewline
152 & 45 & 32.9817 & 12.0183 \tabularnewline
153 & 30 & 30.7427 & -0.742705 \tabularnewline
154 & 8 & 29.9964 & -21.9964 \tabularnewline
155 & 19 & 26.5135 & -7.51346 \tabularnewline
156 & 52 & 36.4646 & 15.5354 \tabularnewline
157 & 22 & 33.9768 & -11.9768 \tabularnewline
158 & 17 & 32.9817 & -15.9817 \tabularnewline
159 & 33 & 32.2354 & 0.764618 \tabularnewline
160 & 34 & 29.25 & 4.74997 \tabularnewline
161 & 22 & 31.2403 & -9.24026 \tabularnewline
162 & 30 & 31.9866 & -1.9866 \tabularnewline
163 & 25 & 32.4842 & -7.48416 \tabularnewline
164 & 38 & 28.5037 & 9.49631 \tabularnewline
165 & 26 & 31.7378 & -5.73782 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=268530&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]23[/C][C]30.4939[/C][C]-7.49393[/C][/ROW]
[ROW][C]2[/C][C]16[/C][C]21.5379[/C][C]-5.53787[/C][/ROW]
[ROW][C]3[/C][C]33[/C][C]29.0012[/C][C]3.99875[/C][/ROW]
[ROW][C]4[/C][C]32[/C][C]31.489[/C][C]0.510956[/C][/ROW]
[ROW][C]5[/C][C]37[/C][C]30.4939[/C][C]6.50607[/C][/ROW]
[ROW][C]6[/C][C]14[/C][C]31.2403[/C][C]-17.2403[/C][/ROW]
[ROW][C]7[/C][C]52[/C][C]29.9964[/C][C]22.0036[/C][/ROW]
[ROW][C]8[/C][C]75[/C][C]32.2354[/C][C]42.7646[/C][/ROW]
[ROW][C]9[/C][C]72[/C][C]32.4842[/C][C]39.5158[/C][/ROW]
[ROW][C]10[/C][C]15[/C][C]30.4939[/C][C]-15.4939[/C][/ROW]
[ROW][C]11[/C][C]29[/C][C]28.5037[/C][C]0.496309[/C][/ROW]
[ROW][C]12[/C][C]13[/C][C]34.2256[/C][C]-21.2256[/C][/ROW]
[ROW][C]13[/C][C]40[/C][C]30.4939[/C][C]9.50607[/C][/ROW]
[ROW][C]14[/C][C]19[/C][C]31.2403[/C][C]-12.2403[/C][/ROW]
[ROW][C]15[/C][C]24[/C][C]26.7622[/C][C]-2.76223[/C][/ROW]
[ROW][C]16[/C][C]121[/C][C]30.9915[/C][C]90.0085[/C][/ROW]
[ROW][C]17[/C][C]93[/C][C]35.4695[/C][C]57.5305[/C][/ROW]
[ROW][C]18[/C][C]36[/C][C]30.2451[/C][C]5.75485[/C][/ROW]
[ROW][C]19[/C][C]23[/C][C]29.4988[/C][C]-6.49881[/C][/ROW]
[ROW][C]20[/C][C]85[/C][C]32.4842[/C][C]52.5158[/C][/ROW]
[ROW][C]21[/C][C]41[/C][C]29.9964[/C][C]11.0036[/C][/ROW]
[ROW][C]22[/C][C]46[/C][C]33.2305[/C][C]12.7695[/C][/ROW]
[ROW][C]23[/C][C]18[/C][C]25.7671[/C][C]-7.76712[/C][/ROW]
[ROW][C]24[/C][C]35[/C][C]34.2256[/C][C]0.774383[/C][/ROW]
[ROW][C]25[/C][C]17[/C][C]29.0012[/C][C]-12.0012[/C][/ROW]
[ROW][C]26[/C][C]4[/C][C]30.9915[/C][C]-26.9915[/C][/ROW]
[ROW][C]27[/C][C]28[/C][C]32.2354[/C][C]-4.23538[/C][/ROW]
[ROW][C]28[/C][C]44[/C][C]32.7329[/C][C]11.2671[/C][/ROW]
[ROW][C]29[/C][C]10[/C][C]25.7671[/C][C]-15.7671[/C][/ROW]
[ROW][C]30[/C][C]38[/C][C]29.25[/C][C]8.74997[/C][/ROW]
[ROW][C]31[/C][C]57[/C][C]34.7232[/C][C]22.2768[/C][/ROW]
[ROW][C]32[/C][C]23[/C][C]30.4939[/C][C]-7.49393[/C][/ROW]
[ROW][C]33[/C][C]36[/C][C]31.2403[/C][C]4.75974[/C][/ROW]
[ROW][C]34[/C][C]22[/C][C]27.7574[/C][C]-5.75735[/C][/ROW]
[ROW][C]35[/C][C]40[/C][C]35.7183[/C][C]4.28171[/C][/ROW]
[ROW][C]36[/C][C]31[/C][C]30.4939[/C][C]0.506074[/C][/ROW]
[ROW][C]37[/C][C]11[/C][C]29.9964[/C][C]-18.9964[/C][/ROW]
[ROW][C]38[/C][C]38[/C][C]30.2451[/C][C]7.75485[/C][/ROW]
[ROW][C]39[/C][C]24[/C][C]32.4842[/C][C]-8.48416[/C][/ROW]
[ROW][C]40[/C][C]37[/C][C]31.489[/C][C]5.51096[/C][/ROW]
[ROW][C]41[/C][C]37[/C][C]31.489[/C][C]5.51096[/C][/ROW]
[ROW][C]42[/C][C]22[/C][C]24.772[/C][C]-2.772[/C][/ROW]
[ROW][C]43[/C][C]15[/C][C]33.9768[/C][C]-18.9768[/C][/ROW]
[ROW][C]44[/C][C]2[/C][C]33.9768[/C][C]-31.9768[/C][/ROW]
[ROW][C]45[/C][C]43[/C][C]35.7183[/C][C]7.28171[/C][/ROW]
[ROW][C]46[/C][C]31[/C][C]31.2403[/C][C]-0.240264[/C][/ROW]
[ROW][C]47[/C][C]29[/C][C]33.4793[/C][C]-4.47928[/C][/ROW]
[ROW][C]48[/C][C]45[/C][C]27.5086[/C][C]17.4914[/C][/ROW]
[ROW][C]49[/C][C]25[/C][C]29.0012[/C][C]-4.00125[/C][/ROW]
[ROW][C]50[/C][C]4[/C][C]31.9866[/C][C]-27.9866[/C][/ROW]
[ROW][C]51[/C][C]31[/C][C]28.2549[/C][C]2.74509[/C][/ROW]
[ROW][C]52[/C][C]-4[/C][C]32.7329[/C][C]-36.7329[/C][/ROW]
[ROW][C]53[/C][C]66[/C][C]30.2451[/C][C]35.7549[/C][/ROW]
[ROW][C]54[/C][C]61[/C][C]29.9964[/C][C]31.0036[/C][/ROW]
[ROW][C]55[/C][C]32[/C][C]30.4939[/C][C]1.50607[/C][/ROW]
[ROW][C]56[/C][C]31[/C][C]30.9915[/C][C]0.00851525[/C][/ROW]
[ROW][C]57[/C][C]39[/C][C]33.9768[/C][C]5.02316[/C][/ROW]
[ROW][C]58[/C][C]19[/C][C]32.7329[/C][C]-13.7329[/C][/ROW]
[ROW][C]59[/C][C]31[/C][C]37.4597[/C][C]-6.45975[/C][/ROW]
[ROW][C]60[/C][C]36[/C][C]30.2451[/C][C]5.75485[/C][/ROW]
[ROW][C]61[/C][C]42[/C][C]31.489[/C][C]10.511[/C][/ROW]
[ROW][C]62[/C][C]21[/C][C]31.489[/C][C]-10.489[/C][/ROW]
[ROW][C]63[/C][C]21[/C][C]31.489[/C][C]-10.489[/C][/ROW]
[ROW][C]64[/C][C]25[/C][C]30.7427[/C][C]-5.74271[/C][/ROW]
[ROW][C]65[/C][C]32[/C][C]29.25[/C][C]2.74997[/C][/ROW]
[ROW][C]66[/C][C]26[/C][C]23.7769[/C][C]2.22312[/C][/ROW]
[ROW][C]67[/C][C]28[/C][C]29.25[/C][C]-1.25003[/C][/ROW]
[ROW][C]68[/C][C]32[/C][C]29.0012[/C][C]2.99875[/C][/ROW]
[ROW][C]69[/C][C]41[/C][C]29.9964[/C][C]11.0036[/C][/ROW]
[ROW][C]70[/C][C]29[/C][C]27.2598[/C][C]1.74021[/C][/ROW]
[ROW][C]71[/C][C]33[/C][C]30.2451[/C][C]2.75485[/C][/ROW]
[ROW][C]72[/C][C]17[/C][C]31.9866[/C][C]-14.9866[/C][/ROW]
[ROW][C]73[/C][C]13[/C][C]26.2647[/C][C]-13.2647[/C][/ROW]
[ROW][C]74[/C][C]32[/C][C]31.9866[/C][C]0.0133976[/C][/ROW]
[ROW][C]75[/C][C]30[/C][C]32.4842[/C][C]-2.48416[/C][/ROW]
[ROW][C]76[/C][C]34[/C][C]32.9817[/C][C]1.01828[/C][/ROW]
[ROW][C]77[/C][C]59[/C][C]33.2305[/C][C]25.7695[/C][/ROW]
[ROW][C]78[/C][C]13[/C][C]30.7427[/C][C]-17.7427[/C][/ROW]
[ROW][C]79[/C][C]23[/C][C]29.0012[/C][C]-6.00125[/C][/ROW]
[ROW][C]80[/C][C]10[/C][C]34.2256[/C][C]-24.2256[/C][/ROW]
[ROW][C]81[/C][C]5[/C][C]32.2354[/C][C]-27.2354[/C][/ROW]
[ROW][C]82[/C][C]31[/C][C]33.4793[/C][C]-2.47928[/C][/ROW]
[ROW][C]83[/C][C]19[/C][C]27.011[/C][C]-8.01101[/C][/ROW]
[ROW][C]84[/C][C]32[/C][C]29.9964[/C][C]2.00363[/C][/ROW]
[ROW][C]85[/C][C]30[/C][C]29.4988[/C][C]0.501192[/C][/ROW]
[ROW][C]86[/C][C]25[/C][C]29.4988[/C][C]-4.49881[/C][/ROW]
[ROW][C]87[/C][C]48[/C][C]29.25[/C][C]18.75[/C][/ROW]
[ROW][C]88[/C][C]35[/C][C]33.9768[/C][C]1.02316[/C][/ROW]
[ROW][C]89[/C][C]67[/C][C]29.25[/C][C]37.75[/C][/ROW]
[ROW][C]90[/C][C]15[/C][C]33.2305[/C][C]-18.2305[/C][/ROW]
[ROW][C]91[/C][C]22[/C][C]31.9866[/C][C]-9.9866[/C][/ROW]
[ROW][C]92[/C][C]18[/C][C]28.5037[/C][C]-10.5037[/C][/ROW]
[ROW][C]93[/C][C]33[/C][C]30.2451[/C][C]2.75485[/C][/ROW]
[ROW][C]94[/C][C]46[/C][C]28.2549[/C][C]17.7451[/C][/ROW]
[ROW][C]95[/C][C]24[/C][C]31.2403[/C][C]-7.24026[/C][/ROW]
[ROW][C]96[/C][C]14[/C][C]27.011[/C][C]-13.011[/C][/ROW]
[ROW][C]97[/C][C]12[/C][C]28.7525[/C][C]-16.7525[/C][/ROW]
[ROW][C]98[/C][C]38[/C][C]29.9964[/C][C]8.00363[/C][/ROW]
[ROW][C]99[/C][C]12[/C][C]30.9915[/C][C]-18.9915[/C][/ROW]
[ROW][C]100[/C][C]28[/C][C]31.7378[/C][C]-3.73782[/C][/ROW]
[ROW][C]101[/C][C]41[/C][C]32.4842[/C][C]8.51584[/C][/ROW]
[ROW][C]102[/C][C]12[/C][C]31.2403[/C][C]-19.2403[/C][/ROW]
[ROW][C]103[/C][C]31[/C][C]31.489[/C][C]-0.489044[/C][/ROW]
[ROW][C]104[/C][C]33[/C][C]29.7476[/C][C]3.25241[/C][/ROW]
[ROW][C]105[/C][C]34[/C][C]26.7622[/C][C]7.23777[/C][/ROW]
[ROW][C]106[/C][C]21[/C][C]32.2354[/C][C]-11.2354[/C][/ROW]
[ROW][C]107[/C][C]20[/C][C]29.0012[/C][C]-9.00125[/C][/ROW]
[ROW][C]108[/C][C]44[/C][C]30.2451[/C][C]13.7549[/C][/ROW]
[ROW][C]109[/C][C]52[/C][C]31.9866[/C][C]20.0134[/C][/ROW]
[ROW][C]110[/C][C]7[/C][C]33.4793[/C][C]-26.4793[/C][/ROW]
[ROW][C]111[/C][C]29[/C][C]30.7427[/C][C]-1.74271[/C][/ROW]
[ROW][C]112[/C][C]11[/C][C]29.4988[/C][C]-18.4988[/C][/ROW]
[ROW][C]113[/C][C]26[/C][C]30.2451[/C][C]-4.24515[/C][/ROW]
[ROW][C]114[/C][C]24[/C][C]29.25[/C][C]-5.25003[/C][/ROW]
[ROW][C]115[/C][C]7[/C][C]32.2354[/C][C]-25.2354[/C][/ROW]
[ROW][C]116[/C][C]60[/C][C]32.9817[/C][C]27.0183[/C][/ROW]
[ROW][C]117[/C][C]13[/C][C]32.9817[/C][C]-19.9817[/C][/ROW]
[ROW][C]118[/C][C]20[/C][C]30.2451[/C][C]-10.2451[/C][/ROW]
[ROW][C]119[/C][C]52[/C][C]33.4793[/C][C]18.5207[/C][/ROW]
[ROW][C]120[/C][C]28[/C][C]30.4939[/C][C]-2.49393[/C][/ROW]
[ROW][C]121[/C][C]25[/C][C]34.2256[/C][C]-9.22562[/C][/ROW]
[ROW][C]122[/C][C]39[/C][C]29.9964[/C][C]9.00363[/C][/ROW]
[ROW][C]123[/C][C]9[/C][C]30.9915[/C][C]-21.9915[/C][/ROW]
[ROW][C]124[/C][C]19[/C][C]31.9866[/C][C]-12.9866[/C][/ROW]
[ROW][C]125[/C][C]13[/C][C]31.489[/C][C]-18.489[/C][/ROW]
[ROW][C]126[/C][C]60[/C][C]33.2305[/C][C]26.7695[/C][/ROW]
[ROW][C]127[/C][C]19[/C][C]25.2696[/C][C]-6.26956[/C][/ROW]
[ROW][C]128[/C][C]34[/C][C]33.7281[/C][C]0.271942[/C][/ROW]
[ROW][C]129[/C][C]14[/C][C]35.2207[/C][C]-21.2207[/C][/ROW]
[ROW][C]130[/C][C]17[/C][C]29.9964[/C][C]-12.9964[/C][/ROW]
[ROW][C]131[/C][C]45[/C][C]31.7378[/C][C]13.2622[/C][/ROW]
[ROW][C]132[/C][C]66[/C][C]29.25[/C][C]36.75[/C][/ROW]
[ROW][C]133[/C][C]48[/C][C]29.25[/C][C]18.75[/C][/ROW]
[ROW][C]134[/C][C]29[/C][C]31.7378[/C][C]-2.73782[/C][/ROW]
[ROW][C]135[/C][C]-2[/C][C]28.2549[/C][C]-30.2549[/C][/ROW]
[ROW][C]136[/C][C]51[/C][C]27.7574[/C][C]23.2426[/C][/ROW]
[ROW][C]137[/C][C]2[/C][C]33.2305[/C][C]-31.2305[/C][/ROW]
[ROW][C]138[/C][C]24[/C][C]33.2305[/C][C]-9.2305[/C][/ROW]
[ROW][C]139[/C][C]40[/C][C]31.489[/C][C]8.51096[/C][/ROW]
[ROW][C]140[/C][C]20[/C][C]30.2451[/C][C]-10.2451[/C][/ROW]
[ROW][C]141[/C][C]19[/C][C]29.9964[/C][C]-10.9964[/C][/ROW]
[ROW][C]142[/C][C]16[/C][C]23.0305[/C][C]-7.03054[/C][/ROW]
[ROW][C]143[/C][C]20[/C][C]27.7574[/C][C]-7.75735[/C][/ROW]
[ROW][C]144[/C][C]40[/C][C]32.2354[/C][C]7.76462[/C][/ROW]
[ROW][C]145[/C][C]27[/C][C]31.489[/C][C]-4.48904[/C][/ROW]
[ROW][C]146[/C][C]25[/C][C]33.9768[/C][C]-8.97684[/C][/ROW]
[ROW][C]147[/C][C]49[/C][C]30.7427[/C][C]18.2573[/C][/ROW]
[ROW][C]148[/C][C]39[/C][C]28.0061[/C][C]10.9939[/C][/ROW]
[ROW][C]149[/C][C]61[/C][C]30.4939[/C][C]30.5061[/C][/ROW]
[ROW][C]150[/C][C]19[/C][C]30.9915[/C][C]-11.9915[/C][/ROW]
[ROW][C]151[/C][C]67[/C][C]28.5037[/C][C]38.4963[/C][/ROW]
[ROW][C]152[/C][C]45[/C][C]32.9817[/C][C]12.0183[/C][/ROW]
[ROW][C]153[/C][C]30[/C][C]30.7427[/C][C]-0.742705[/C][/ROW]
[ROW][C]154[/C][C]8[/C][C]29.9964[/C][C]-21.9964[/C][/ROW]
[ROW][C]155[/C][C]19[/C][C]26.5135[/C][C]-7.51346[/C][/ROW]
[ROW][C]156[/C][C]52[/C][C]36.4646[/C][C]15.5354[/C][/ROW]
[ROW][C]157[/C][C]22[/C][C]33.9768[/C][C]-11.9768[/C][/ROW]
[ROW][C]158[/C][C]17[/C][C]32.9817[/C][C]-15.9817[/C][/ROW]
[ROW][C]159[/C][C]33[/C][C]32.2354[/C][C]0.764618[/C][/ROW]
[ROW][C]160[/C][C]34[/C][C]29.25[/C][C]4.74997[/C][/ROW]
[ROW][C]161[/C][C]22[/C][C]31.2403[/C][C]-9.24026[/C][/ROW]
[ROW][C]162[/C][C]30[/C][C]31.9866[/C][C]-1.9866[/C][/ROW]
[ROW][C]163[/C][C]25[/C][C]32.4842[/C][C]-7.48416[/C][/ROW]
[ROW][C]164[/C][C]38[/C][C]28.5037[/C][C]9.49631[/C][/ROW]
[ROW][C]165[/C][C]26[/C][C]31.7378[/C][C]-5.73782[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=268530&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=268530&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
12330.4939-7.49393
21621.5379-5.53787
33329.00123.99875
43231.4890.510956
53730.49396.50607
61431.2403-17.2403
75229.996422.0036
87532.235442.7646
97232.484239.5158
101530.4939-15.4939
112928.50370.496309
121334.2256-21.2256
134030.49399.50607
141931.2403-12.2403
152426.7622-2.76223
1612130.991590.0085
179335.469557.5305
183630.24515.75485
192329.4988-6.49881
208532.484252.5158
214129.996411.0036
224633.230512.7695
231825.7671-7.76712
243534.22560.774383
251729.0012-12.0012
26430.9915-26.9915
272832.2354-4.23538
284432.732911.2671
291025.7671-15.7671
303829.258.74997
315734.723222.2768
322330.4939-7.49393
333631.24034.75974
342227.7574-5.75735
354035.71834.28171
363130.49390.506074
371129.9964-18.9964
383830.24517.75485
392432.4842-8.48416
403731.4895.51096
413731.4895.51096
422224.772-2.772
431533.9768-18.9768
44233.9768-31.9768
454335.71837.28171
463131.2403-0.240264
472933.4793-4.47928
484527.508617.4914
492529.0012-4.00125
50431.9866-27.9866
513128.25492.74509
52-432.7329-36.7329
536630.245135.7549
546129.996431.0036
553230.49391.50607
563130.99150.00851525
573933.97685.02316
581932.7329-13.7329
593137.4597-6.45975
603630.24515.75485
614231.48910.511
622131.489-10.489
632131.489-10.489
642530.7427-5.74271
653229.252.74997
662623.77692.22312
672829.25-1.25003
683229.00122.99875
694129.996411.0036
702927.25981.74021
713330.24512.75485
721731.9866-14.9866
731326.2647-13.2647
743231.98660.0133976
753032.4842-2.48416
763432.98171.01828
775933.230525.7695
781330.7427-17.7427
792329.0012-6.00125
801034.2256-24.2256
81532.2354-27.2354
823133.4793-2.47928
831927.011-8.01101
843229.99642.00363
853029.49880.501192
862529.4988-4.49881
874829.2518.75
883533.97681.02316
896729.2537.75
901533.2305-18.2305
912231.9866-9.9866
921828.5037-10.5037
933330.24512.75485
944628.254917.7451
952431.2403-7.24026
961427.011-13.011
971228.7525-16.7525
983829.99648.00363
991230.9915-18.9915
1002831.7378-3.73782
1014132.48428.51584
1021231.2403-19.2403
1033131.489-0.489044
1043329.74763.25241
1053426.76227.23777
1062132.2354-11.2354
1072029.0012-9.00125
1084430.245113.7549
1095231.986620.0134
110733.4793-26.4793
1112930.7427-1.74271
1121129.4988-18.4988
1132630.2451-4.24515
1142429.25-5.25003
115732.2354-25.2354
1166032.981727.0183
1171332.9817-19.9817
1182030.2451-10.2451
1195233.479318.5207
1202830.4939-2.49393
1212534.2256-9.22562
1223929.99649.00363
123930.9915-21.9915
1241931.9866-12.9866
1251331.489-18.489
1266033.230526.7695
1271925.2696-6.26956
1283433.72810.271942
1291435.2207-21.2207
1301729.9964-12.9964
1314531.737813.2622
1326629.2536.75
1334829.2518.75
1342931.7378-2.73782
135-228.2549-30.2549
1365127.757423.2426
137233.2305-31.2305
1382433.2305-9.2305
1394031.4898.51096
1402030.2451-10.2451
1411929.9964-10.9964
1421623.0305-7.03054
1432027.7574-7.75735
1444032.23547.76462
1452731.489-4.48904
1462533.9768-8.97684
1474930.742718.2573
1483928.006110.9939
1496130.493930.5061
1501930.9915-11.9915
1516728.503738.4963
1524532.981712.0183
1533030.7427-0.742705
154829.9964-21.9964
1551926.5135-7.51346
1565236.464615.5354
1572233.9768-11.9768
1581732.9817-15.9817
1593332.23540.764618
1603429.254.74997
1612231.2403-9.24026
1623031.9866-1.9866
1632532.4842-7.48416
1643828.50379.49631
1652631.7378-5.73782







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
50.05204460.1040890.947955
60.1138660.2277330.886134
70.2656640.5313280.734336
80.6773880.6452240.322612
90.7659940.4680110.234006
100.8093380.3813240.190662
110.7368950.526210.263105
120.8535920.2928160.146408
130.8021570.3956850.197843
140.7861270.4277450.213873
150.7228420.5543150.277158
160.9998090.0003825510.000191276
170.9999774.61656e-052.30828e-05
180.9999568.76837e-054.38419e-05
190.9999340.0001329126.6456e-05
200.9999921.63644e-058.18219e-06
210.9999852.97746e-051.48873e-05
220.9999774.60909e-052.30454e-05
230.9999598.18026e-054.09013e-05
240.9999578.64574e-054.32287e-05
250.9999470.0001056475.28237e-05
260.9999843.15874e-051.57937e-05
270.9999794.22079e-052.1104e-05
280.9999666.74188e-053.37094e-05
290.9999549.20384e-054.60192e-05
300.9999250.000149157.45748e-05
310.9999150.0001703958.51977e-05
320.9998850.0002301410.00011507
330.9998170.0003660760.000183038
340.9997130.0005743120.000287156
350.9996670.0006666270.000333313
360.9994860.001028410.000514203
370.9995610.0008771290.000438565
380.9993450.001310380.000655189
390.9992530.001494260.000747129
400.9988970.00220580.0011029
410.9983960.003208090.00160404
420.997760.004479580.00223979
430.9985280.00294380.0014719
440.9995890.0008221920.000411096
450.999440.001120920.000560461
460.9991650.001670360.000835181
470.9988770.002245660.00112283
480.9988370.002326890.00116345
490.9983280.003343840.00167192
500.9991260.00174780.000873898
510.9987140.002572460.00128623
520.9996730.0006537520.000326876
530.9999010.0001983689.91838e-05
540.9999578.50184e-054.25092e-05
550.9999320.0001351636.75817e-05
560.9998940.0002114620.000105731
570.9998450.0003101480.000155074
580.9998230.0003541880.000177094
590.9997630.0004740760.000237038
600.9996540.0006925450.000346272
610.9995480.0009047410.000452371
620.999420.001159030.000579517
630.9992590.001481730.000740864
640.9989610.002077420.00103871
650.9985030.002993130.00149657
660.9978720.004255650.00212783
670.9969930.006013830.00300691
680.995820.008360.00418
690.9948680.01026360.00513179
700.9929540.0140930.0070465
710.9905190.0189620.00948099
720.9897240.02055140.0102757
730.9884320.0231360.011568
740.9846860.03062840.0153142
750.9800630.03987320.0199366
760.9742940.05141110.0257055
770.9816880.03662470.0183124
780.9816770.0366450.0183225
790.976780.04643920.0232196
800.9811340.03773130.0188657
810.9868270.0263450.0131725
820.9826850.034630.017315
830.978720.04256070.0212803
840.972390.05521950.0276097
850.9644320.07113620.0355681
860.9553750.08925040.0446252
870.956560.08687960.0434398
880.9457980.1084030.0542015
890.9781550.04368940.0218447
900.9778930.04421350.0221068
910.9731840.05363120.0268156
920.9682770.06344580.0317229
930.9596180.08076450.0403822
940.9599980.08000310.0400015
950.9507390.09852140.0492607
960.9454020.1091970.0545984
970.9442030.1115940.0557971
980.9334690.1330630.0665313
990.9348010.1303980.0651992
1000.9192630.1614740.0807369
1010.9067110.1865780.0932889
1020.9087420.1825170.0912583
1030.8880730.2238550.111927
1040.8650560.2698870.134944
1050.841740.316520.15826
1060.821970.3560590.17803
1070.7980570.4038860.201943
1080.7857650.428470.214235
1090.8009930.3980140.199007
1100.8322020.3355960.167798
1110.8001960.3996090.199804
1120.8023070.3953860.197693
1130.7683450.463310.231655
1140.7328380.5343240.267162
1150.767810.4643810.23219
1160.8229360.3541280.177064
1170.8270390.3459230.172961
1180.8046010.3907980.195399
1190.8155830.3688350.184417
1200.7799390.4401230.220061
1210.7468470.5063060.253153
1220.7152110.5695780.284789
1230.7360410.5279190.263959
1240.7133190.5733620.286681
1250.7165840.5668320.283416
1260.7818180.4363650.218182
1270.7549510.4900980.245049
1280.7111430.5777140.288857
1290.7143140.5713720.285686
1300.6961270.6077460.303873
1310.6746140.6507710.325386
1320.8200640.3598720.179936
1330.8268350.3463310.173165
1340.7861310.4277380.213869
1350.8738360.2523280.126164
1360.8940130.2119730.105987
1370.9469150.106170.0530852
1380.9336130.1327730.0663866
1390.9160310.1679380.0839688
1400.8996260.2007470.100374
1410.8838910.2322180.116109
1420.8654290.2691420.134571
1430.8475970.3048050.152403
1440.8104020.3791950.189598
1450.7627520.4744950.237248
1460.7143340.5713320.285666
1470.7059070.5881850.294093
1480.6474310.7051390.352569
1490.7877060.4245880.212294
1500.753720.4925610.24628
1510.9771580.04568490.0228425
1520.9777540.0444910.0222455
1530.9608260.07834760.0391738
1540.9747380.05052450.0252622
1550.954640.090720.04536
1560.9995330.0009336050.000466803
1570.9982540.003492040.00174602
1580.9971850.005629350.00281468
1590.9963890.007222280.00361114
1600.9814660.0370680.018534

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
5 & 0.0520446 & 0.104089 & 0.947955 \tabularnewline
6 & 0.113866 & 0.227733 & 0.886134 \tabularnewline
7 & 0.265664 & 0.531328 & 0.734336 \tabularnewline
8 & 0.677388 & 0.645224 & 0.322612 \tabularnewline
9 & 0.765994 & 0.468011 & 0.234006 \tabularnewline
10 & 0.809338 & 0.381324 & 0.190662 \tabularnewline
11 & 0.736895 & 0.52621 & 0.263105 \tabularnewline
12 & 0.853592 & 0.292816 & 0.146408 \tabularnewline
13 & 0.802157 & 0.395685 & 0.197843 \tabularnewline
14 & 0.786127 & 0.427745 & 0.213873 \tabularnewline
15 & 0.722842 & 0.554315 & 0.277158 \tabularnewline
16 & 0.999809 & 0.000382551 & 0.000191276 \tabularnewline
17 & 0.999977 & 4.61656e-05 & 2.30828e-05 \tabularnewline
18 & 0.999956 & 8.76837e-05 & 4.38419e-05 \tabularnewline
19 & 0.999934 & 0.000132912 & 6.6456e-05 \tabularnewline
20 & 0.999992 & 1.63644e-05 & 8.18219e-06 \tabularnewline
21 & 0.999985 & 2.97746e-05 & 1.48873e-05 \tabularnewline
22 & 0.999977 & 4.60909e-05 & 2.30454e-05 \tabularnewline
23 & 0.999959 & 8.18026e-05 & 4.09013e-05 \tabularnewline
24 & 0.999957 & 8.64574e-05 & 4.32287e-05 \tabularnewline
25 & 0.999947 & 0.000105647 & 5.28237e-05 \tabularnewline
26 & 0.999984 & 3.15874e-05 & 1.57937e-05 \tabularnewline
27 & 0.999979 & 4.22079e-05 & 2.1104e-05 \tabularnewline
28 & 0.999966 & 6.74188e-05 & 3.37094e-05 \tabularnewline
29 & 0.999954 & 9.20384e-05 & 4.60192e-05 \tabularnewline
30 & 0.999925 & 0.00014915 & 7.45748e-05 \tabularnewline
31 & 0.999915 & 0.000170395 & 8.51977e-05 \tabularnewline
32 & 0.999885 & 0.000230141 & 0.00011507 \tabularnewline
33 & 0.999817 & 0.000366076 & 0.000183038 \tabularnewline
34 & 0.999713 & 0.000574312 & 0.000287156 \tabularnewline
35 & 0.999667 & 0.000666627 & 0.000333313 \tabularnewline
36 & 0.999486 & 0.00102841 & 0.000514203 \tabularnewline
37 & 0.999561 & 0.000877129 & 0.000438565 \tabularnewline
38 & 0.999345 & 0.00131038 & 0.000655189 \tabularnewline
39 & 0.999253 & 0.00149426 & 0.000747129 \tabularnewline
40 & 0.998897 & 0.0022058 & 0.0011029 \tabularnewline
41 & 0.998396 & 0.00320809 & 0.00160404 \tabularnewline
42 & 0.99776 & 0.00447958 & 0.00223979 \tabularnewline
43 & 0.998528 & 0.0029438 & 0.0014719 \tabularnewline
44 & 0.999589 & 0.000822192 & 0.000411096 \tabularnewline
45 & 0.99944 & 0.00112092 & 0.000560461 \tabularnewline
46 & 0.999165 & 0.00167036 & 0.000835181 \tabularnewline
47 & 0.998877 & 0.00224566 & 0.00112283 \tabularnewline
48 & 0.998837 & 0.00232689 & 0.00116345 \tabularnewline
49 & 0.998328 & 0.00334384 & 0.00167192 \tabularnewline
50 & 0.999126 & 0.0017478 & 0.000873898 \tabularnewline
51 & 0.998714 & 0.00257246 & 0.00128623 \tabularnewline
52 & 0.999673 & 0.000653752 & 0.000326876 \tabularnewline
53 & 0.999901 & 0.000198368 & 9.91838e-05 \tabularnewline
54 & 0.999957 & 8.50184e-05 & 4.25092e-05 \tabularnewline
55 & 0.999932 & 0.000135163 & 6.75817e-05 \tabularnewline
56 & 0.999894 & 0.000211462 & 0.000105731 \tabularnewline
57 & 0.999845 & 0.000310148 & 0.000155074 \tabularnewline
58 & 0.999823 & 0.000354188 & 0.000177094 \tabularnewline
59 & 0.999763 & 0.000474076 & 0.000237038 \tabularnewline
60 & 0.999654 & 0.000692545 & 0.000346272 \tabularnewline
61 & 0.999548 & 0.000904741 & 0.000452371 \tabularnewline
62 & 0.99942 & 0.00115903 & 0.000579517 \tabularnewline
63 & 0.999259 & 0.00148173 & 0.000740864 \tabularnewline
64 & 0.998961 & 0.00207742 & 0.00103871 \tabularnewline
65 & 0.998503 & 0.00299313 & 0.00149657 \tabularnewline
66 & 0.997872 & 0.00425565 & 0.00212783 \tabularnewline
67 & 0.996993 & 0.00601383 & 0.00300691 \tabularnewline
68 & 0.99582 & 0.00836 & 0.00418 \tabularnewline
69 & 0.994868 & 0.0102636 & 0.00513179 \tabularnewline
70 & 0.992954 & 0.014093 & 0.0070465 \tabularnewline
71 & 0.990519 & 0.018962 & 0.00948099 \tabularnewline
72 & 0.989724 & 0.0205514 & 0.0102757 \tabularnewline
73 & 0.988432 & 0.023136 & 0.011568 \tabularnewline
74 & 0.984686 & 0.0306284 & 0.0153142 \tabularnewline
75 & 0.980063 & 0.0398732 & 0.0199366 \tabularnewline
76 & 0.974294 & 0.0514111 & 0.0257055 \tabularnewline
77 & 0.981688 & 0.0366247 & 0.0183124 \tabularnewline
78 & 0.981677 & 0.036645 & 0.0183225 \tabularnewline
79 & 0.97678 & 0.0464392 & 0.0232196 \tabularnewline
80 & 0.981134 & 0.0377313 & 0.0188657 \tabularnewline
81 & 0.986827 & 0.026345 & 0.0131725 \tabularnewline
82 & 0.982685 & 0.03463 & 0.017315 \tabularnewline
83 & 0.97872 & 0.0425607 & 0.0212803 \tabularnewline
84 & 0.97239 & 0.0552195 & 0.0276097 \tabularnewline
85 & 0.964432 & 0.0711362 & 0.0355681 \tabularnewline
86 & 0.955375 & 0.0892504 & 0.0446252 \tabularnewline
87 & 0.95656 & 0.0868796 & 0.0434398 \tabularnewline
88 & 0.945798 & 0.108403 & 0.0542015 \tabularnewline
89 & 0.978155 & 0.0436894 & 0.0218447 \tabularnewline
90 & 0.977893 & 0.0442135 & 0.0221068 \tabularnewline
91 & 0.973184 & 0.0536312 & 0.0268156 \tabularnewline
92 & 0.968277 & 0.0634458 & 0.0317229 \tabularnewline
93 & 0.959618 & 0.0807645 & 0.0403822 \tabularnewline
94 & 0.959998 & 0.0800031 & 0.0400015 \tabularnewline
95 & 0.950739 & 0.0985214 & 0.0492607 \tabularnewline
96 & 0.945402 & 0.109197 & 0.0545984 \tabularnewline
97 & 0.944203 & 0.111594 & 0.0557971 \tabularnewline
98 & 0.933469 & 0.133063 & 0.0665313 \tabularnewline
99 & 0.934801 & 0.130398 & 0.0651992 \tabularnewline
100 & 0.919263 & 0.161474 & 0.0807369 \tabularnewline
101 & 0.906711 & 0.186578 & 0.0932889 \tabularnewline
102 & 0.908742 & 0.182517 & 0.0912583 \tabularnewline
103 & 0.888073 & 0.223855 & 0.111927 \tabularnewline
104 & 0.865056 & 0.269887 & 0.134944 \tabularnewline
105 & 0.84174 & 0.31652 & 0.15826 \tabularnewline
106 & 0.82197 & 0.356059 & 0.17803 \tabularnewline
107 & 0.798057 & 0.403886 & 0.201943 \tabularnewline
108 & 0.785765 & 0.42847 & 0.214235 \tabularnewline
109 & 0.800993 & 0.398014 & 0.199007 \tabularnewline
110 & 0.832202 & 0.335596 & 0.167798 \tabularnewline
111 & 0.800196 & 0.399609 & 0.199804 \tabularnewline
112 & 0.802307 & 0.395386 & 0.197693 \tabularnewline
113 & 0.768345 & 0.46331 & 0.231655 \tabularnewline
114 & 0.732838 & 0.534324 & 0.267162 \tabularnewline
115 & 0.76781 & 0.464381 & 0.23219 \tabularnewline
116 & 0.822936 & 0.354128 & 0.177064 \tabularnewline
117 & 0.827039 & 0.345923 & 0.172961 \tabularnewline
118 & 0.804601 & 0.390798 & 0.195399 \tabularnewline
119 & 0.815583 & 0.368835 & 0.184417 \tabularnewline
120 & 0.779939 & 0.440123 & 0.220061 \tabularnewline
121 & 0.746847 & 0.506306 & 0.253153 \tabularnewline
122 & 0.715211 & 0.569578 & 0.284789 \tabularnewline
123 & 0.736041 & 0.527919 & 0.263959 \tabularnewline
124 & 0.713319 & 0.573362 & 0.286681 \tabularnewline
125 & 0.716584 & 0.566832 & 0.283416 \tabularnewline
126 & 0.781818 & 0.436365 & 0.218182 \tabularnewline
127 & 0.754951 & 0.490098 & 0.245049 \tabularnewline
128 & 0.711143 & 0.577714 & 0.288857 \tabularnewline
129 & 0.714314 & 0.571372 & 0.285686 \tabularnewline
130 & 0.696127 & 0.607746 & 0.303873 \tabularnewline
131 & 0.674614 & 0.650771 & 0.325386 \tabularnewline
132 & 0.820064 & 0.359872 & 0.179936 \tabularnewline
133 & 0.826835 & 0.346331 & 0.173165 \tabularnewline
134 & 0.786131 & 0.427738 & 0.213869 \tabularnewline
135 & 0.873836 & 0.252328 & 0.126164 \tabularnewline
136 & 0.894013 & 0.211973 & 0.105987 \tabularnewline
137 & 0.946915 & 0.10617 & 0.0530852 \tabularnewline
138 & 0.933613 & 0.132773 & 0.0663866 \tabularnewline
139 & 0.916031 & 0.167938 & 0.0839688 \tabularnewline
140 & 0.899626 & 0.200747 & 0.100374 \tabularnewline
141 & 0.883891 & 0.232218 & 0.116109 \tabularnewline
142 & 0.865429 & 0.269142 & 0.134571 \tabularnewline
143 & 0.847597 & 0.304805 & 0.152403 \tabularnewline
144 & 0.810402 & 0.379195 & 0.189598 \tabularnewline
145 & 0.762752 & 0.474495 & 0.237248 \tabularnewline
146 & 0.714334 & 0.571332 & 0.285666 \tabularnewline
147 & 0.705907 & 0.588185 & 0.294093 \tabularnewline
148 & 0.647431 & 0.705139 & 0.352569 \tabularnewline
149 & 0.787706 & 0.424588 & 0.212294 \tabularnewline
150 & 0.75372 & 0.492561 & 0.24628 \tabularnewline
151 & 0.977158 & 0.0456849 & 0.0228425 \tabularnewline
152 & 0.977754 & 0.044491 & 0.0222455 \tabularnewline
153 & 0.960826 & 0.0783476 & 0.0391738 \tabularnewline
154 & 0.974738 & 0.0505245 & 0.0252622 \tabularnewline
155 & 0.95464 & 0.09072 & 0.04536 \tabularnewline
156 & 0.999533 & 0.000933605 & 0.000466803 \tabularnewline
157 & 0.998254 & 0.00349204 & 0.00174602 \tabularnewline
158 & 0.997185 & 0.00562935 & 0.00281468 \tabularnewline
159 & 0.996389 & 0.00722228 & 0.00361114 \tabularnewline
160 & 0.981466 & 0.037068 & 0.018534 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=268530&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]5[/C][C]0.0520446[/C][C]0.104089[/C][C]0.947955[/C][/ROW]
[ROW][C]6[/C][C]0.113866[/C][C]0.227733[/C][C]0.886134[/C][/ROW]
[ROW][C]7[/C][C]0.265664[/C][C]0.531328[/C][C]0.734336[/C][/ROW]
[ROW][C]8[/C][C]0.677388[/C][C]0.645224[/C][C]0.322612[/C][/ROW]
[ROW][C]9[/C][C]0.765994[/C][C]0.468011[/C][C]0.234006[/C][/ROW]
[ROW][C]10[/C][C]0.809338[/C][C]0.381324[/C][C]0.190662[/C][/ROW]
[ROW][C]11[/C][C]0.736895[/C][C]0.52621[/C][C]0.263105[/C][/ROW]
[ROW][C]12[/C][C]0.853592[/C][C]0.292816[/C][C]0.146408[/C][/ROW]
[ROW][C]13[/C][C]0.802157[/C][C]0.395685[/C][C]0.197843[/C][/ROW]
[ROW][C]14[/C][C]0.786127[/C][C]0.427745[/C][C]0.213873[/C][/ROW]
[ROW][C]15[/C][C]0.722842[/C][C]0.554315[/C][C]0.277158[/C][/ROW]
[ROW][C]16[/C][C]0.999809[/C][C]0.000382551[/C][C]0.000191276[/C][/ROW]
[ROW][C]17[/C][C]0.999977[/C][C]4.61656e-05[/C][C]2.30828e-05[/C][/ROW]
[ROW][C]18[/C][C]0.999956[/C][C]8.76837e-05[/C][C]4.38419e-05[/C][/ROW]
[ROW][C]19[/C][C]0.999934[/C][C]0.000132912[/C][C]6.6456e-05[/C][/ROW]
[ROW][C]20[/C][C]0.999992[/C][C]1.63644e-05[/C][C]8.18219e-06[/C][/ROW]
[ROW][C]21[/C][C]0.999985[/C][C]2.97746e-05[/C][C]1.48873e-05[/C][/ROW]
[ROW][C]22[/C][C]0.999977[/C][C]4.60909e-05[/C][C]2.30454e-05[/C][/ROW]
[ROW][C]23[/C][C]0.999959[/C][C]8.18026e-05[/C][C]4.09013e-05[/C][/ROW]
[ROW][C]24[/C][C]0.999957[/C][C]8.64574e-05[/C][C]4.32287e-05[/C][/ROW]
[ROW][C]25[/C][C]0.999947[/C][C]0.000105647[/C][C]5.28237e-05[/C][/ROW]
[ROW][C]26[/C][C]0.999984[/C][C]3.15874e-05[/C][C]1.57937e-05[/C][/ROW]
[ROW][C]27[/C][C]0.999979[/C][C]4.22079e-05[/C][C]2.1104e-05[/C][/ROW]
[ROW][C]28[/C][C]0.999966[/C][C]6.74188e-05[/C][C]3.37094e-05[/C][/ROW]
[ROW][C]29[/C][C]0.999954[/C][C]9.20384e-05[/C][C]4.60192e-05[/C][/ROW]
[ROW][C]30[/C][C]0.999925[/C][C]0.00014915[/C][C]7.45748e-05[/C][/ROW]
[ROW][C]31[/C][C]0.999915[/C][C]0.000170395[/C][C]8.51977e-05[/C][/ROW]
[ROW][C]32[/C][C]0.999885[/C][C]0.000230141[/C][C]0.00011507[/C][/ROW]
[ROW][C]33[/C][C]0.999817[/C][C]0.000366076[/C][C]0.000183038[/C][/ROW]
[ROW][C]34[/C][C]0.999713[/C][C]0.000574312[/C][C]0.000287156[/C][/ROW]
[ROW][C]35[/C][C]0.999667[/C][C]0.000666627[/C][C]0.000333313[/C][/ROW]
[ROW][C]36[/C][C]0.999486[/C][C]0.00102841[/C][C]0.000514203[/C][/ROW]
[ROW][C]37[/C][C]0.999561[/C][C]0.000877129[/C][C]0.000438565[/C][/ROW]
[ROW][C]38[/C][C]0.999345[/C][C]0.00131038[/C][C]0.000655189[/C][/ROW]
[ROW][C]39[/C][C]0.999253[/C][C]0.00149426[/C][C]0.000747129[/C][/ROW]
[ROW][C]40[/C][C]0.998897[/C][C]0.0022058[/C][C]0.0011029[/C][/ROW]
[ROW][C]41[/C][C]0.998396[/C][C]0.00320809[/C][C]0.00160404[/C][/ROW]
[ROW][C]42[/C][C]0.99776[/C][C]0.00447958[/C][C]0.00223979[/C][/ROW]
[ROW][C]43[/C][C]0.998528[/C][C]0.0029438[/C][C]0.0014719[/C][/ROW]
[ROW][C]44[/C][C]0.999589[/C][C]0.000822192[/C][C]0.000411096[/C][/ROW]
[ROW][C]45[/C][C]0.99944[/C][C]0.00112092[/C][C]0.000560461[/C][/ROW]
[ROW][C]46[/C][C]0.999165[/C][C]0.00167036[/C][C]0.000835181[/C][/ROW]
[ROW][C]47[/C][C]0.998877[/C][C]0.00224566[/C][C]0.00112283[/C][/ROW]
[ROW][C]48[/C][C]0.998837[/C][C]0.00232689[/C][C]0.00116345[/C][/ROW]
[ROW][C]49[/C][C]0.998328[/C][C]0.00334384[/C][C]0.00167192[/C][/ROW]
[ROW][C]50[/C][C]0.999126[/C][C]0.0017478[/C][C]0.000873898[/C][/ROW]
[ROW][C]51[/C][C]0.998714[/C][C]0.00257246[/C][C]0.00128623[/C][/ROW]
[ROW][C]52[/C][C]0.999673[/C][C]0.000653752[/C][C]0.000326876[/C][/ROW]
[ROW][C]53[/C][C]0.999901[/C][C]0.000198368[/C][C]9.91838e-05[/C][/ROW]
[ROW][C]54[/C][C]0.999957[/C][C]8.50184e-05[/C][C]4.25092e-05[/C][/ROW]
[ROW][C]55[/C][C]0.999932[/C][C]0.000135163[/C][C]6.75817e-05[/C][/ROW]
[ROW][C]56[/C][C]0.999894[/C][C]0.000211462[/C][C]0.000105731[/C][/ROW]
[ROW][C]57[/C][C]0.999845[/C][C]0.000310148[/C][C]0.000155074[/C][/ROW]
[ROW][C]58[/C][C]0.999823[/C][C]0.000354188[/C][C]0.000177094[/C][/ROW]
[ROW][C]59[/C][C]0.999763[/C][C]0.000474076[/C][C]0.000237038[/C][/ROW]
[ROW][C]60[/C][C]0.999654[/C][C]0.000692545[/C][C]0.000346272[/C][/ROW]
[ROW][C]61[/C][C]0.999548[/C][C]0.000904741[/C][C]0.000452371[/C][/ROW]
[ROW][C]62[/C][C]0.99942[/C][C]0.00115903[/C][C]0.000579517[/C][/ROW]
[ROW][C]63[/C][C]0.999259[/C][C]0.00148173[/C][C]0.000740864[/C][/ROW]
[ROW][C]64[/C][C]0.998961[/C][C]0.00207742[/C][C]0.00103871[/C][/ROW]
[ROW][C]65[/C][C]0.998503[/C][C]0.00299313[/C][C]0.00149657[/C][/ROW]
[ROW][C]66[/C][C]0.997872[/C][C]0.00425565[/C][C]0.00212783[/C][/ROW]
[ROW][C]67[/C][C]0.996993[/C][C]0.00601383[/C][C]0.00300691[/C][/ROW]
[ROW][C]68[/C][C]0.99582[/C][C]0.00836[/C][C]0.00418[/C][/ROW]
[ROW][C]69[/C][C]0.994868[/C][C]0.0102636[/C][C]0.00513179[/C][/ROW]
[ROW][C]70[/C][C]0.992954[/C][C]0.014093[/C][C]0.0070465[/C][/ROW]
[ROW][C]71[/C][C]0.990519[/C][C]0.018962[/C][C]0.00948099[/C][/ROW]
[ROW][C]72[/C][C]0.989724[/C][C]0.0205514[/C][C]0.0102757[/C][/ROW]
[ROW][C]73[/C][C]0.988432[/C][C]0.023136[/C][C]0.011568[/C][/ROW]
[ROW][C]74[/C][C]0.984686[/C][C]0.0306284[/C][C]0.0153142[/C][/ROW]
[ROW][C]75[/C][C]0.980063[/C][C]0.0398732[/C][C]0.0199366[/C][/ROW]
[ROW][C]76[/C][C]0.974294[/C][C]0.0514111[/C][C]0.0257055[/C][/ROW]
[ROW][C]77[/C][C]0.981688[/C][C]0.0366247[/C][C]0.0183124[/C][/ROW]
[ROW][C]78[/C][C]0.981677[/C][C]0.036645[/C][C]0.0183225[/C][/ROW]
[ROW][C]79[/C][C]0.97678[/C][C]0.0464392[/C][C]0.0232196[/C][/ROW]
[ROW][C]80[/C][C]0.981134[/C][C]0.0377313[/C][C]0.0188657[/C][/ROW]
[ROW][C]81[/C][C]0.986827[/C][C]0.026345[/C][C]0.0131725[/C][/ROW]
[ROW][C]82[/C][C]0.982685[/C][C]0.03463[/C][C]0.017315[/C][/ROW]
[ROW][C]83[/C][C]0.97872[/C][C]0.0425607[/C][C]0.0212803[/C][/ROW]
[ROW][C]84[/C][C]0.97239[/C][C]0.0552195[/C][C]0.0276097[/C][/ROW]
[ROW][C]85[/C][C]0.964432[/C][C]0.0711362[/C][C]0.0355681[/C][/ROW]
[ROW][C]86[/C][C]0.955375[/C][C]0.0892504[/C][C]0.0446252[/C][/ROW]
[ROW][C]87[/C][C]0.95656[/C][C]0.0868796[/C][C]0.0434398[/C][/ROW]
[ROW][C]88[/C][C]0.945798[/C][C]0.108403[/C][C]0.0542015[/C][/ROW]
[ROW][C]89[/C][C]0.978155[/C][C]0.0436894[/C][C]0.0218447[/C][/ROW]
[ROW][C]90[/C][C]0.977893[/C][C]0.0442135[/C][C]0.0221068[/C][/ROW]
[ROW][C]91[/C][C]0.973184[/C][C]0.0536312[/C][C]0.0268156[/C][/ROW]
[ROW][C]92[/C][C]0.968277[/C][C]0.0634458[/C][C]0.0317229[/C][/ROW]
[ROW][C]93[/C][C]0.959618[/C][C]0.0807645[/C][C]0.0403822[/C][/ROW]
[ROW][C]94[/C][C]0.959998[/C][C]0.0800031[/C][C]0.0400015[/C][/ROW]
[ROW][C]95[/C][C]0.950739[/C][C]0.0985214[/C][C]0.0492607[/C][/ROW]
[ROW][C]96[/C][C]0.945402[/C][C]0.109197[/C][C]0.0545984[/C][/ROW]
[ROW][C]97[/C][C]0.944203[/C][C]0.111594[/C][C]0.0557971[/C][/ROW]
[ROW][C]98[/C][C]0.933469[/C][C]0.133063[/C][C]0.0665313[/C][/ROW]
[ROW][C]99[/C][C]0.934801[/C][C]0.130398[/C][C]0.0651992[/C][/ROW]
[ROW][C]100[/C][C]0.919263[/C][C]0.161474[/C][C]0.0807369[/C][/ROW]
[ROW][C]101[/C][C]0.906711[/C][C]0.186578[/C][C]0.0932889[/C][/ROW]
[ROW][C]102[/C][C]0.908742[/C][C]0.182517[/C][C]0.0912583[/C][/ROW]
[ROW][C]103[/C][C]0.888073[/C][C]0.223855[/C][C]0.111927[/C][/ROW]
[ROW][C]104[/C][C]0.865056[/C][C]0.269887[/C][C]0.134944[/C][/ROW]
[ROW][C]105[/C][C]0.84174[/C][C]0.31652[/C][C]0.15826[/C][/ROW]
[ROW][C]106[/C][C]0.82197[/C][C]0.356059[/C][C]0.17803[/C][/ROW]
[ROW][C]107[/C][C]0.798057[/C][C]0.403886[/C][C]0.201943[/C][/ROW]
[ROW][C]108[/C][C]0.785765[/C][C]0.42847[/C][C]0.214235[/C][/ROW]
[ROW][C]109[/C][C]0.800993[/C][C]0.398014[/C][C]0.199007[/C][/ROW]
[ROW][C]110[/C][C]0.832202[/C][C]0.335596[/C][C]0.167798[/C][/ROW]
[ROW][C]111[/C][C]0.800196[/C][C]0.399609[/C][C]0.199804[/C][/ROW]
[ROW][C]112[/C][C]0.802307[/C][C]0.395386[/C][C]0.197693[/C][/ROW]
[ROW][C]113[/C][C]0.768345[/C][C]0.46331[/C][C]0.231655[/C][/ROW]
[ROW][C]114[/C][C]0.732838[/C][C]0.534324[/C][C]0.267162[/C][/ROW]
[ROW][C]115[/C][C]0.76781[/C][C]0.464381[/C][C]0.23219[/C][/ROW]
[ROW][C]116[/C][C]0.822936[/C][C]0.354128[/C][C]0.177064[/C][/ROW]
[ROW][C]117[/C][C]0.827039[/C][C]0.345923[/C][C]0.172961[/C][/ROW]
[ROW][C]118[/C][C]0.804601[/C][C]0.390798[/C][C]0.195399[/C][/ROW]
[ROW][C]119[/C][C]0.815583[/C][C]0.368835[/C][C]0.184417[/C][/ROW]
[ROW][C]120[/C][C]0.779939[/C][C]0.440123[/C][C]0.220061[/C][/ROW]
[ROW][C]121[/C][C]0.746847[/C][C]0.506306[/C][C]0.253153[/C][/ROW]
[ROW][C]122[/C][C]0.715211[/C][C]0.569578[/C][C]0.284789[/C][/ROW]
[ROW][C]123[/C][C]0.736041[/C][C]0.527919[/C][C]0.263959[/C][/ROW]
[ROW][C]124[/C][C]0.713319[/C][C]0.573362[/C][C]0.286681[/C][/ROW]
[ROW][C]125[/C][C]0.716584[/C][C]0.566832[/C][C]0.283416[/C][/ROW]
[ROW][C]126[/C][C]0.781818[/C][C]0.436365[/C][C]0.218182[/C][/ROW]
[ROW][C]127[/C][C]0.754951[/C][C]0.490098[/C][C]0.245049[/C][/ROW]
[ROW][C]128[/C][C]0.711143[/C][C]0.577714[/C][C]0.288857[/C][/ROW]
[ROW][C]129[/C][C]0.714314[/C][C]0.571372[/C][C]0.285686[/C][/ROW]
[ROW][C]130[/C][C]0.696127[/C][C]0.607746[/C][C]0.303873[/C][/ROW]
[ROW][C]131[/C][C]0.674614[/C][C]0.650771[/C][C]0.325386[/C][/ROW]
[ROW][C]132[/C][C]0.820064[/C][C]0.359872[/C][C]0.179936[/C][/ROW]
[ROW][C]133[/C][C]0.826835[/C][C]0.346331[/C][C]0.173165[/C][/ROW]
[ROW][C]134[/C][C]0.786131[/C][C]0.427738[/C][C]0.213869[/C][/ROW]
[ROW][C]135[/C][C]0.873836[/C][C]0.252328[/C][C]0.126164[/C][/ROW]
[ROW][C]136[/C][C]0.894013[/C][C]0.211973[/C][C]0.105987[/C][/ROW]
[ROW][C]137[/C][C]0.946915[/C][C]0.10617[/C][C]0.0530852[/C][/ROW]
[ROW][C]138[/C][C]0.933613[/C][C]0.132773[/C][C]0.0663866[/C][/ROW]
[ROW][C]139[/C][C]0.916031[/C][C]0.167938[/C][C]0.0839688[/C][/ROW]
[ROW][C]140[/C][C]0.899626[/C][C]0.200747[/C][C]0.100374[/C][/ROW]
[ROW][C]141[/C][C]0.883891[/C][C]0.232218[/C][C]0.116109[/C][/ROW]
[ROW][C]142[/C][C]0.865429[/C][C]0.269142[/C][C]0.134571[/C][/ROW]
[ROW][C]143[/C][C]0.847597[/C][C]0.304805[/C][C]0.152403[/C][/ROW]
[ROW][C]144[/C][C]0.810402[/C][C]0.379195[/C][C]0.189598[/C][/ROW]
[ROW][C]145[/C][C]0.762752[/C][C]0.474495[/C][C]0.237248[/C][/ROW]
[ROW][C]146[/C][C]0.714334[/C][C]0.571332[/C][C]0.285666[/C][/ROW]
[ROW][C]147[/C][C]0.705907[/C][C]0.588185[/C][C]0.294093[/C][/ROW]
[ROW][C]148[/C][C]0.647431[/C][C]0.705139[/C][C]0.352569[/C][/ROW]
[ROW][C]149[/C][C]0.787706[/C][C]0.424588[/C][C]0.212294[/C][/ROW]
[ROW][C]150[/C][C]0.75372[/C][C]0.492561[/C][C]0.24628[/C][/ROW]
[ROW][C]151[/C][C]0.977158[/C][C]0.0456849[/C][C]0.0228425[/C][/ROW]
[ROW][C]152[/C][C]0.977754[/C][C]0.044491[/C][C]0.0222455[/C][/ROW]
[ROW][C]153[/C][C]0.960826[/C][C]0.0783476[/C][C]0.0391738[/C][/ROW]
[ROW][C]154[/C][C]0.974738[/C][C]0.0505245[/C][C]0.0252622[/C][/ROW]
[ROW][C]155[/C][C]0.95464[/C][C]0.09072[/C][C]0.04536[/C][/ROW]
[ROW][C]156[/C][C]0.999533[/C][C]0.000933605[/C][C]0.000466803[/C][/ROW]
[ROW][C]157[/C][C]0.998254[/C][C]0.00349204[/C][C]0.00174602[/C][/ROW]
[ROW][C]158[/C][C]0.997185[/C][C]0.00562935[/C][C]0.00281468[/C][/ROW]
[ROW][C]159[/C][C]0.996389[/C][C]0.00722228[/C][C]0.00361114[/C][/ROW]
[ROW][C]160[/C][C]0.981466[/C][C]0.037068[/C][C]0.018534[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=268530&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=268530&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
50.05204460.1040890.947955
60.1138660.2277330.886134
70.2656640.5313280.734336
80.6773880.6452240.322612
90.7659940.4680110.234006
100.8093380.3813240.190662
110.7368950.526210.263105
120.8535920.2928160.146408
130.8021570.3956850.197843
140.7861270.4277450.213873
150.7228420.5543150.277158
160.9998090.0003825510.000191276
170.9999774.61656e-052.30828e-05
180.9999568.76837e-054.38419e-05
190.9999340.0001329126.6456e-05
200.9999921.63644e-058.18219e-06
210.9999852.97746e-051.48873e-05
220.9999774.60909e-052.30454e-05
230.9999598.18026e-054.09013e-05
240.9999578.64574e-054.32287e-05
250.9999470.0001056475.28237e-05
260.9999843.15874e-051.57937e-05
270.9999794.22079e-052.1104e-05
280.9999666.74188e-053.37094e-05
290.9999549.20384e-054.60192e-05
300.9999250.000149157.45748e-05
310.9999150.0001703958.51977e-05
320.9998850.0002301410.00011507
330.9998170.0003660760.000183038
340.9997130.0005743120.000287156
350.9996670.0006666270.000333313
360.9994860.001028410.000514203
370.9995610.0008771290.000438565
380.9993450.001310380.000655189
390.9992530.001494260.000747129
400.9988970.00220580.0011029
410.9983960.003208090.00160404
420.997760.004479580.00223979
430.9985280.00294380.0014719
440.9995890.0008221920.000411096
450.999440.001120920.000560461
460.9991650.001670360.000835181
470.9988770.002245660.00112283
480.9988370.002326890.00116345
490.9983280.003343840.00167192
500.9991260.00174780.000873898
510.9987140.002572460.00128623
520.9996730.0006537520.000326876
530.9999010.0001983689.91838e-05
540.9999578.50184e-054.25092e-05
550.9999320.0001351636.75817e-05
560.9998940.0002114620.000105731
570.9998450.0003101480.000155074
580.9998230.0003541880.000177094
590.9997630.0004740760.000237038
600.9996540.0006925450.000346272
610.9995480.0009047410.000452371
620.999420.001159030.000579517
630.9992590.001481730.000740864
640.9989610.002077420.00103871
650.9985030.002993130.00149657
660.9978720.004255650.00212783
670.9969930.006013830.00300691
680.995820.008360.00418
690.9948680.01026360.00513179
700.9929540.0140930.0070465
710.9905190.0189620.00948099
720.9897240.02055140.0102757
730.9884320.0231360.011568
740.9846860.03062840.0153142
750.9800630.03987320.0199366
760.9742940.05141110.0257055
770.9816880.03662470.0183124
780.9816770.0366450.0183225
790.976780.04643920.0232196
800.9811340.03773130.0188657
810.9868270.0263450.0131725
820.9826850.034630.017315
830.978720.04256070.0212803
840.972390.05521950.0276097
850.9644320.07113620.0355681
860.9553750.08925040.0446252
870.956560.08687960.0434398
880.9457980.1084030.0542015
890.9781550.04368940.0218447
900.9778930.04421350.0221068
910.9731840.05363120.0268156
920.9682770.06344580.0317229
930.9596180.08076450.0403822
940.9599980.08000310.0400015
950.9507390.09852140.0492607
960.9454020.1091970.0545984
970.9442030.1115940.0557971
980.9334690.1330630.0665313
990.9348010.1303980.0651992
1000.9192630.1614740.0807369
1010.9067110.1865780.0932889
1020.9087420.1825170.0912583
1030.8880730.2238550.111927
1040.8650560.2698870.134944
1050.841740.316520.15826
1060.821970.3560590.17803
1070.7980570.4038860.201943
1080.7857650.428470.214235
1090.8009930.3980140.199007
1100.8322020.3355960.167798
1110.8001960.3996090.199804
1120.8023070.3953860.197693
1130.7683450.463310.231655
1140.7328380.5343240.267162
1150.767810.4643810.23219
1160.8229360.3541280.177064
1170.8270390.3459230.172961
1180.8046010.3907980.195399
1190.8155830.3688350.184417
1200.7799390.4401230.220061
1210.7468470.5063060.253153
1220.7152110.5695780.284789
1230.7360410.5279190.263959
1240.7133190.5733620.286681
1250.7165840.5668320.283416
1260.7818180.4363650.218182
1270.7549510.4900980.245049
1280.7111430.5777140.288857
1290.7143140.5713720.285686
1300.6961270.6077460.303873
1310.6746140.6507710.325386
1320.8200640.3598720.179936
1330.8268350.3463310.173165
1340.7861310.4277380.213869
1350.8738360.2523280.126164
1360.8940130.2119730.105987
1370.9469150.106170.0530852
1380.9336130.1327730.0663866
1390.9160310.1679380.0839688
1400.8996260.2007470.100374
1410.8838910.2322180.116109
1420.8654290.2691420.134571
1430.8475970.3048050.152403
1440.8104020.3791950.189598
1450.7627520.4744950.237248
1460.7143340.5713320.285666
1470.7059070.5881850.294093
1480.6474310.7051390.352569
1490.7877060.4245880.212294
1500.753720.4925610.24628
1510.9771580.04568490.0228425
1520.9777540.0444910.0222455
1530.9608260.07834760.0391738
1540.9747380.05052450.0252622
1550.954640.090720.04536
1560.9995330.0009336050.000466803
1570.9982540.003492040.00174602
1580.9971850.005629350.00281468
1590.9963890.007222280.00361114
1600.9814660.0370680.018534







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level570.365385NOK
5% type I error level760.487179NOK
10% type I error level890.570513NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 57 & 0.365385 & NOK \tabularnewline
5% type I error level & 76 & 0.487179 & NOK \tabularnewline
10% type I error level & 89 & 0.570513 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=268530&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]57[/C][C]0.365385[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]76[/C][C]0.487179[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]89[/C][C]0.570513[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=268530&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=268530&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level570.365385NOK
5% type I error level760.487179NOK
10% type I error level890.570513NOK



Parameters (Session):
par1 = grey ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,signif(mysum$coefficients[i,1],6))
a<-table.element(a, signif(mysum$coefficients[i,2],6))
a<-table.element(a, signif(mysum$coefficients[i,3],4))
a<-table.element(a, signif(mysum$coefficients[i,4],6))
a<-table.element(a, signif(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, signif(sqrt(mysum$r.squared),6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, signif(mysum$r.squared,6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, signif(mysum$adj.r.squared,6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[1],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, signif(mysum$sigma,6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, signif(sum(myerror*myerror),6))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,signif(x[i],6))
a<-table.element(a,signif(x[i]-mysum$resid[i],6))
a<-table.element(a,signif(mysum$resid[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,signif(gqarr[mypoint-kp3+1,1],6))
a<-table.element(a,signif(gqarr[mypoint-kp3+1,2],6))
a<-table.element(a,signif(gqarr[mypoint-kp3+1,3],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,signif(numsignificant1/numgqtests,6))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}