Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationSat, 12 Dec 2009 08:15:54 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Dec/12/t12606312686vn3h5lpkrz21qg.htm/, Retrieved Fri, 01 Nov 2024 00:01:51 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=67009, Retrieved Fri, 01 Nov 2024 00:01:51 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact168
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Explorative Data Analysis] [Run Sequence gebo...] [2008-12-12 13:32:37] [76963dc1903f0f612b6153510a3818cf]
- R  D  [Univariate Explorative Data Analysis] [Run Sequence gebo...] [2008-12-17 12:14:40] [76963dc1903f0f612b6153510a3818cf]
-         [Univariate Explorative Data Analysis] [Run Sequence Plot...] [2008-12-22 18:19:51] [1ce0d16c8f4225c977b42c8fa93bc163]
- RMP       [Standard Deviation-Mean Plot] [Identifying Integ...] [2009-11-22 12:50:05] [b98453cac15ba1066b407e146608df68]
-    D        [Standard Deviation-Mean Plot] [WS8 method 4 hete...] [2009-11-25 16:33:04] [445b292c553470d9fed8bc2796fd3a00]
-   PD          [Standard Deviation-Mean Plot] [ws 8 hetero...] [2009-11-25 22:06:28] [134dc66689e3d457a82860db6471d419]
-   P               [Standard Deviation-Mean Plot] [Paper SDMP IGP] [2009-12-12 15:15:54] [4f297b039e1043ebee7ff7a83b1eaaaa] [Current]
Feedback Forum

Post a new message
Dataseries X:
100.01
103.84
104.48
95.43
104.80
108.64
105.65
108.42
115.35
113.64
115.24
100.33
101.29
104.48
99.26
100.11
103.52
101.18
96.39
97.56
96.39
85.10
79.77
79.13
80.84
82.75
92.55
96.60
96.92
95.32
98.52
100.22
104.91
103.10
97.13
103.42
111.72
118.11
111.62
100.22
102.03
105.76
107.68
110.77
105.44
112.26
114.07
117.90
124.72
126.42
134.73
135.79
143.36
140.37
144.74
151.98
150.92
163.38
154.43
146.66
157.95
162.10
180.42
179.57
171.58
185.43
190.64
203.00
202.36
193.41
186.17
192.24
209.60
206.41
209.82
230.37
235.80
232.07
244.64
242.19
217.48
209.39
211.73
221.00
203.11
214.71
224.19
238.04
238.36
246.24
259.87
249.97
266.48
282.98
306.31
301.73
314.62
332.62
355.51
370.32
408.13
433.58
440.51
386.29
342.84
254.97
203.42
170.09
174.03
167.85
177.01
188.19
211.20
240.91
230.26
251.25
241.66




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=67009&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=67009&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=67009&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1106.3191666666676.2600151878022719.92
295.34833333333338.9201435305750925.35
396.02333333333337.5633269895936124.07
4109.7983333333335.7117515755332117.89
5143.12511.449772129530938.66
6183.73916666666714.300262208869645.05
7222.54166666666713.848736623266638.23
8252.66583333333332.5032847174596103.2
9334.40833333333386.281188809753270.42

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 106.319166666667 & 6.26001518780227 & 19.92 \tabularnewline
2 & 95.3483333333333 & 8.92014353057509 & 25.35 \tabularnewline
3 & 96.0233333333333 & 7.56332698959361 & 24.07 \tabularnewline
4 & 109.798333333333 & 5.71175157553321 & 17.89 \tabularnewline
5 & 143.125 & 11.4497721295309 & 38.66 \tabularnewline
6 & 183.739166666667 & 14.3002622088696 & 45.05 \tabularnewline
7 & 222.541666666667 & 13.8487366232666 & 38.23 \tabularnewline
8 & 252.665833333333 & 32.5032847174596 & 103.2 \tabularnewline
9 & 334.408333333333 & 86.281188809753 & 270.42 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=67009&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]106.319166666667[/C][C]6.26001518780227[/C][C]19.92[/C][/ROW]
[ROW][C]2[/C][C]95.3483333333333[/C][C]8.92014353057509[/C][C]25.35[/C][/ROW]
[ROW][C]3[/C][C]96.0233333333333[/C][C]7.56332698959361[/C][C]24.07[/C][/ROW]
[ROW][C]4[/C][C]109.798333333333[/C][C]5.71175157553321[/C][C]17.89[/C][/ROW]
[ROW][C]5[/C][C]143.125[/C][C]11.4497721295309[/C][C]38.66[/C][/ROW]
[ROW][C]6[/C][C]183.739166666667[/C][C]14.3002622088696[/C][C]45.05[/C][/ROW]
[ROW][C]7[/C][C]222.541666666667[/C][C]13.8487366232666[/C][C]38.23[/C][/ROW]
[ROW][C]8[/C][C]252.665833333333[/C][C]32.5032847174596[/C][C]103.2[/C][/ROW]
[ROW][C]9[/C][C]334.408333333333[/C][C]86.281188809753[/C][C]270.42[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=67009&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=67009&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1106.3191666666676.2600151878022719.92
295.34833333333338.9201435305750925.35
396.02333333333337.5633269895936124.07
4109.7983333333335.7117515755332117.89
5143.12511.449772129530938.66
6183.73916666666714.300262208869645.05
7222.54166666666713.848736623266638.23
8252.66583333333332.5032847174596103.2
9334.40833333333386.281188809753270.42







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha-25.7005255404872
beta0.270823550537291
S.D.0.0559715167650007
T-STAT4.83859588215838
p-value0.00188078879011415

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & -25.7005255404872 \tabularnewline
beta & 0.270823550537291 \tabularnewline
S.D. & 0.0559715167650007 \tabularnewline
T-STAT & 4.83859588215838 \tabularnewline
p-value & 0.00188078879011415 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=67009&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]-25.7005255404872[/C][/ROW]
[ROW][C]beta[/C][C]0.270823550537291[/C][/ROW]
[ROW][C]S.D.[/C][C]0.0559715167650007[/C][/ROW]
[ROW][C]T-STAT[/C][C]4.83859588215838[/C][/ROW]
[ROW][C]p-value[/C][C]0.00188078879011415[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=67009&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=67009&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha-25.7005255404872
beta0.270823550537291
S.D.0.0559715167650007
T-STAT4.83859588215838
p-value0.00188078879011415







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha-6.04442273671118
beta1.71430685480952
S.D.0.290808482639666
T-STAT5.8949685347854
p-value0.000602532396120366
Lambda-0.71430685480952

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & -6.04442273671118 \tabularnewline
beta & 1.71430685480952 \tabularnewline
S.D. & 0.290808482639666 \tabularnewline
T-STAT & 5.8949685347854 \tabularnewline
p-value & 0.000602532396120366 \tabularnewline
Lambda & -0.71430685480952 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=67009&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]-6.04442273671118[/C][/ROW]
[ROW][C]beta[/C][C]1.71430685480952[/C][/ROW]
[ROW][C]S.D.[/C][C]0.290808482639666[/C][/ROW]
[ROW][C]T-STAT[/C][C]5.8949685347854[/C][/ROW]
[ROW][C]p-value[/C][C]0.000602532396120366[/C][/ROW]
[ROW][C]Lambda[/C][C]-0.71430685480952[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=67009&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=67009&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha-6.04442273671118
beta1.71430685480952
S.D.0.290808482639666
T-STAT5.8949685347854
p-value0.000602532396120366
Lambda-0.71430685480952



Parameters (Session):
par1 = 12 ; par2 = 0 ; par3 = 1 ; par4 = 12 ;
Parameters (R input):
par1 = 12 ; par2 = 0 ; par3 = 1 ; par4 = 12 ; par5 = ; par6 = ; par7 = ; par8 = ; par9 = ; par10 = ; par11 = ; par12 = ; par13 = ; par14 = ; par15 = ; par16 = ; par17 = ; par18 = ; par19 = ; par20 = ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')