Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 04 Dec 2009 04:22:02 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Dec/04/t12599258084ovv70shzxtwd8g.htm/, Retrieved Sun, 10 Nov 2024 19:45:05 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=63288, Retrieved Sun, 10 Nov 2024 19:45:05 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact198
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
- RMPD  [Multiple Regression] [Seatbelt] [2009-11-12 13:54:52] [b98453cac15ba1066b407e146608df68]
-    D    [Multiple Regression] [WS7] [2009-11-18 15:22:11] [cd6314e7e707a6546bd4604c9d1f2b69]
-   P       [Multiple Regression] [ws7] [2009-11-18 18:56:17] [cd6314e7e707a6546bd4604c9d1f2b69]
-   P         [Multiple Regression] [ws7] [2009-11-18 19:32:58] [cd6314e7e707a6546bd4604c9d1f2b69]
-    D          [Multiple Regression] [ws7] [2009-11-18 20:48:06] [cd6314e7e707a6546bd4604c9d1f2b69]
-   PD              [Multiple Regression] [Paper - multiple ...] [2009-12-04 11:22:02] [ea241b681aafed79da4b5b99fad98471] [Current]
-   P                 [Multiple Regression] [Paper - multiple ...] [2009-12-04 11:24:48] [cd6314e7e707a6546bd4604c9d1f2b69]
Feedback Forum

Post a new message
Dataseries X:
209465	555332	213587	216234
204045	543599	209465	213587
200237	536662	204045	209465
203666	542722	200237	204045
241476	593530	203666	200237
260307	610763	241476	203666
243324	612613	260307	241476
244460	611324	243324	260307
233575	594167	244460	243324
237217	595454	233575	244460
235243	590865	237217	233575
230354	589379	235243	237217
227184	584428	230354	235243
221678	573100	227184	230354
217142	567456	221678	227184
219452	569028	217142	221678
256446	620735	219452	217142
265845	628884	256446	219452
248624	628232	265845	256446
241114	612117	248624	265845
229245	595404	241114	248624
231805	597141	229245	241114
219277	593408	231805	229245
219313	590072	219277	231805
212610	579799	219313	219277
214771	574205	212610	219313
211142	572775	214771	212610
211457	572942	211142	214771
240048	619567	211457	211142
240636	625809	240048	211457
230580	619916	240636	240048
208795	587625	230580	240636
197922	565742	208795	230580
194596	557274	197922	208795
194581	560576	194596	197922
185686	548854	194581	194596
178106	531673	185686	194581
172608	525919	178106	185686
167302	511038	172608	178106
168053	498662	167302	172608
202300	555362	168053	167302
202388	564591	202300	168053
182516	541657	202388	202300
173476	527070	182516	202388
166444	509846	173476	182516
171297	514258	166444	173476
169701	516922	171297	166444
164182	507561	169701	171297
161914	492622	164182	169701
159612	490243	161914	164182
151001	469357	159612	161914
158114	477580	151001	159612
186530	528379	158114	151001
187069	533590	186530	158114
174330	517945	187069	186530
169362	506174	174330	187069
166827	501866	169362	174330
178037	516141	166827	169362
186412	528222	178037	166827
189226	532638	186412	178037
191563	536322	189226	186412
188906	536535	191563	189226
186005	523597	188906	191563
195309	536214	186005	188906
223532	586570	195309	186005
226899	596594	223532	195309
214126	580523	226899	223532




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 7 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=63288&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]7 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=63288&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=63288&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
Werkl[t] = -147852.690708943 + 0.580375867857886x[t] + 0.277926825333554`y-1`[t] -0.140289064798996`y-2`[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Werkl[t] =  -147852.690708943 +  0.580375867857886x[t] +  0.277926825333554`y-1`[t] -0.140289064798996`y-2`[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=63288&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Werkl[t] =  -147852.690708943 +  0.580375867857886x[t] +  0.277926825333554`y-1`[t] -0.140289064798996`y-2`[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=63288&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=63288&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Werkl[t] = -147852.690708943 + 0.580375867857886x[t] + 0.277926825333554`y-1`[t] -0.140289064798996`y-2`[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-147852.69070894318219.49076-8.115100
x0.5803758678578860.05692710.19500
`y-1`0.2779268253335540.1155692.40490.0191290.009564
`y-2`-0.1402890647989960.076182-1.84150.0702580.035129

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -147852.690708943 & 18219.49076 & -8.1151 & 0 & 0 \tabularnewline
x & 0.580375867857886 & 0.056927 & 10.195 & 0 & 0 \tabularnewline
`y-1` & 0.277926825333554 & 0.115569 & 2.4049 & 0.019129 & 0.009564 \tabularnewline
`y-2` & -0.140289064798996 & 0.076182 & -1.8415 & 0.070258 & 0.035129 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=63288&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-147852.690708943[/C][C]18219.49076[/C][C]-8.1151[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]x[/C][C]0.580375867857886[/C][C]0.056927[/C][C]10.195[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]`y-1`[/C][C]0.277926825333554[/C][C]0.115569[/C][C]2.4049[/C][C]0.019129[/C][C]0.009564[/C][/ROW]
[ROW][C]`y-2`[/C][C]-0.140289064798996[/C][C]0.076182[/C][C]-1.8415[/C][C]0.070258[/C][C]0.035129[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=63288&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=63288&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-147852.69070894318219.49076-8.115100
x0.5803758678578860.05692710.19500
`y-1`0.2779268253335540.1155692.40490.0191290.009564
`y-2`-0.1402890647989960.076182-1.84150.0702580.035129







Multiple Linear Regression - Regression Statistics
Multiple R0.96869559474749
R-squared0.938371155283192
Adjusted R-squared0.935436448391915
F-TEST (value)319.749532081892
F-TEST (DF numerator)3
F-TEST (DF denominator)63
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation7360.18421802616
Sum Squared Residuals3412855638.56672

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.96869559474749 \tabularnewline
R-squared & 0.938371155283192 \tabularnewline
Adjusted R-squared & 0.935436448391915 \tabularnewline
F-TEST (value) & 319.749532081892 \tabularnewline
F-TEST (DF numerator) & 3 \tabularnewline
F-TEST (DF denominator) & 63 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 7360.18421802616 \tabularnewline
Sum Squared Residuals & 3412855638.56672 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=63288&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.96869559474749[/C][/ROW]
[ROW][C]R-squared[/C][C]0.938371155283192[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.935436448391915[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]319.749532081892[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]3[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]63[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]7360.18421802616[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]3412855638.56672[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=63288&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=63288&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.96869559474749
R-squared0.938371155283192
Adjusted R-squared0.935436448391915
F-TEST (value)319.749532081892
F-TEST (DF numerator)3
F-TEST (DF denominator)63
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation7360.18421802616
Sum Squared Residuals3412855638.56672







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1209465203474.8919450865990.10805491365
2204045195891.0726680068153.92733199406
3200237190936.9134044699300.08659553062
4203666194156.0125440299509.98745597146
5241476225130.98148097516345.0185190247
6260307245159.96087443615147.0391255638
7243324246162.966737779-2838.96673777943
8244460238053.0475902416406.95240975902
9233575230793.7928864632781.2071135365
10237217228356.1347570298860.8652429708
11235243228232.0458676317010.95413236877
12230354226310.0470007884043.95299921197
13227184222354.7524438814829.24755611889
14221678215585.0998142826092.9001857181
15217142211223.9096512185918.09034878173
16219452211648.0160265617803.98397343887
17256446242935.87319033813510.1268096624
18265845257622.9133742158222.08662578468
19248624254666.888876508-6042.88887650801
20241114239209.3769868631904.62301313672
21229245229838.242634003-593.242634002951
22231805228601.2129032293203.7870967714
23219277228811.253371468-9534.2533714683
24219313223034.112202630-3721.11220263019
25212610218839.45768164-6229.45768163995
26214771213724.8411602991046.15883970064
27211142214435.861140156-3293.86114015606
28211457213221.022791922-1764.02279192223
29240048240877.703596932-829.703596931786
30240636252402.424571801-11766.4245718007
31230580245134.685904142-14554.6859041422
32208795223516.446629487-14721.4466294872
33197922206172.192458880-8250.19245888028
34194596201291.868514654-6695.86851465409
35194581203809.248010821-9228.2480108209
36185686197468.514614932-11782.5146149322
37178106185027.022053896-6921.0220538959
38172608180828.725205600-8220.72520560036
39167302171727.501341500-4425.50134149966
40168053163841.3991439364211.6008560645
41202300197701.8076751274598.19232487339
42202388212470.899459121-10082.8994591212
43182516194380.537264127-11864.5372641266
44173476180379.287168953-6903.28716895294
45166444170658.259015639-4214.25901563902
46171297172532.709054665-1235.70905466538
47169701176414.121953649-6713.12195364906
48164182169856.829409930-5674.82940992951
49161914159876.6175184042037.38248159614
50159612158639.820637539972.179362460882
51151001146196.4783085064804.52169149441
52158114148898.6266041219215.37339587896
53186530181566.0629610164963.9370389845
54187069191490.094159186-4421.09415918596
55174330178573.462200076-4243.46220007587
56169362168125.732225671236.26777433011
57166827166031.874915155795.125084844574
58178037174309.1520005283727.84799947241
59186412184791.8653513731620.13464862669
60189226188109.8019296061116.19807039449
61191563189855.0717955911707.92820440901
62188906190233.433417905-1327.43341790487
63186005181658.2233202134346.77667978696
64195309188547.3079698546761.69203014573
65223532220765.5249315912766.47506840876
66226899233121.891963498-6222.89196349773
67214126220771.072736230-6645.07273622968

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 209465 & 203474.891945086 & 5990.10805491365 \tabularnewline
2 & 204045 & 195891.072668006 & 8153.92733199406 \tabularnewline
3 & 200237 & 190936.913404469 & 9300.08659553062 \tabularnewline
4 & 203666 & 194156.012544029 & 9509.98745597146 \tabularnewline
5 & 241476 & 225130.981480975 & 16345.0185190247 \tabularnewline
6 & 260307 & 245159.960874436 & 15147.0391255638 \tabularnewline
7 & 243324 & 246162.966737779 & -2838.96673777943 \tabularnewline
8 & 244460 & 238053.047590241 & 6406.95240975902 \tabularnewline
9 & 233575 & 230793.792886463 & 2781.2071135365 \tabularnewline
10 & 237217 & 228356.134757029 & 8860.8652429708 \tabularnewline
11 & 235243 & 228232.045867631 & 7010.95413236877 \tabularnewline
12 & 230354 & 226310.047000788 & 4043.95299921197 \tabularnewline
13 & 227184 & 222354.752443881 & 4829.24755611889 \tabularnewline
14 & 221678 & 215585.099814282 & 6092.9001857181 \tabularnewline
15 & 217142 & 211223.909651218 & 5918.09034878173 \tabularnewline
16 & 219452 & 211648.016026561 & 7803.98397343887 \tabularnewline
17 & 256446 & 242935.873190338 & 13510.1268096624 \tabularnewline
18 & 265845 & 257622.913374215 & 8222.08662578468 \tabularnewline
19 & 248624 & 254666.888876508 & -6042.88887650801 \tabularnewline
20 & 241114 & 239209.376986863 & 1904.62301313672 \tabularnewline
21 & 229245 & 229838.242634003 & -593.242634002951 \tabularnewline
22 & 231805 & 228601.212903229 & 3203.7870967714 \tabularnewline
23 & 219277 & 228811.253371468 & -9534.2533714683 \tabularnewline
24 & 219313 & 223034.112202630 & -3721.11220263019 \tabularnewline
25 & 212610 & 218839.45768164 & -6229.45768163995 \tabularnewline
26 & 214771 & 213724.841160299 & 1046.15883970064 \tabularnewline
27 & 211142 & 214435.861140156 & -3293.86114015606 \tabularnewline
28 & 211457 & 213221.022791922 & -1764.02279192223 \tabularnewline
29 & 240048 & 240877.703596932 & -829.703596931786 \tabularnewline
30 & 240636 & 252402.424571801 & -11766.4245718007 \tabularnewline
31 & 230580 & 245134.685904142 & -14554.6859041422 \tabularnewline
32 & 208795 & 223516.446629487 & -14721.4466294872 \tabularnewline
33 & 197922 & 206172.192458880 & -8250.19245888028 \tabularnewline
34 & 194596 & 201291.868514654 & -6695.86851465409 \tabularnewline
35 & 194581 & 203809.248010821 & -9228.2480108209 \tabularnewline
36 & 185686 & 197468.514614932 & -11782.5146149322 \tabularnewline
37 & 178106 & 185027.022053896 & -6921.0220538959 \tabularnewline
38 & 172608 & 180828.725205600 & -8220.72520560036 \tabularnewline
39 & 167302 & 171727.501341500 & -4425.50134149966 \tabularnewline
40 & 168053 & 163841.399143936 & 4211.6008560645 \tabularnewline
41 & 202300 & 197701.807675127 & 4598.19232487339 \tabularnewline
42 & 202388 & 212470.899459121 & -10082.8994591212 \tabularnewline
43 & 182516 & 194380.537264127 & -11864.5372641266 \tabularnewline
44 & 173476 & 180379.287168953 & -6903.28716895294 \tabularnewline
45 & 166444 & 170658.259015639 & -4214.25901563902 \tabularnewline
46 & 171297 & 172532.709054665 & -1235.70905466538 \tabularnewline
47 & 169701 & 176414.121953649 & -6713.12195364906 \tabularnewline
48 & 164182 & 169856.829409930 & -5674.82940992951 \tabularnewline
49 & 161914 & 159876.617518404 & 2037.38248159614 \tabularnewline
50 & 159612 & 158639.820637539 & 972.179362460882 \tabularnewline
51 & 151001 & 146196.478308506 & 4804.52169149441 \tabularnewline
52 & 158114 & 148898.626604121 & 9215.37339587896 \tabularnewline
53 & 186530 & 181566.062961016 & 4963.9370389845 \tabularnewline
54 & 187069 & 191490.094159186 & -4421.09415918596 \tabularnewline
55 & 174330 & 178573.462200076 & -4243.46220007587 \tabularnewline
56 & 169362 & 168125.73222567 & 1236.26777433011 \tabularnewline
57 & 166827 & 166031.874915155 & 795.125084844574 \tabularnewline
58 & 178037 & 174309.152000528 & 3727.84799947241 \tabularnewline
59 & 186412 & 184791.865351373 & 1620.13464862669 \tabularnewline
60 & 189226 & 188109.801929606 & 1116.19807039449 \tabularnewline
61 & 191563 & 189855.071795591 & 1707.92820440901 \tabularnewline
62 & 188906 & 190233.433417905 & -1327.43341790487 \tabularnewline
63 & 186005 & 181658.223320213 & 4346.77667978696 \tabularnewline
64 & 195309 & 188547.307969854 & 6761.69203014573 \tabularnewline
65 & 223532 & 220765.524931591 & 2766.47506840876 \tabularnewline
66 & 226899 & 233121.891963498 & -6222.89196349773 \tabularnewline
67 & 214126 & 220771.072736230 & -6645.07273622968 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=63288&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]209465[/C][C]203474.891945086[/C][C]5990.10805491365[/C][/ROW]
[ROW][C]2[/C][C]204045[/C][C]195891.072668006[/C][C]8153.92733199406[/C][/ROW]
[ROW][C]3[/C][C]200237[/C][C]190936.913404469[/C][C]9300.08659553062[/C][/ROW]
[ROW][C]4[/C][C]203666[/C][C]194156.012544029[/C][C]9509.98745597146[/C][/ROW]
[ROW][C]5[/C][C]241476[/C][C]225130.981480975[/C][C]16345.0185190247[/C][/ROW]
[ROW][C]6[/C][C]260307[/C][C]245159.960874436[/C][C]15147.0391255638[/C][/ROW]
[ROW][C]7[/C][C]243324[/C][C]246162.966737779[/C][C]-2838.96673777943[/C][/ROW]
[ROW][C]8[/C][C]244460[/C][C]238053.047590241[/C][C]6406.95240975902[/C][/ROW]
[ROW][C]9[/C][C]233575[/C][C]230793.792886463[/C][C]2781.2071135365[/C][/ROW]
[ROW][C]10[/C][C]237217[/C][C]228356.134757029[/C][C]8860.8652429708[/C][/ROW]
[ROW][C]11[/C][C]235243[/C][C]228232.045867631[/C][C]7010.95413236877[/C][/ROW]
[ROW][C]12[/C][C]230354[/C][C]226310.047000788[/C][C]4043.95299921197[/C][/ROW]
[ROW][C]13[/C][C]227184[/C][C]222354.752443881[/C][C]4829.24755611889[/C][/ROW]
[ROW][C]14[/C][C]221678[/C][C]215585.099814282[/C][C]6092.9001857181[/C][/ROW]
[ROW][C]15[/C][C]217142[/C][C]211223.909651218[/C][C]5918.09034878173[/C][/ROW]
[ROW][C]16[/C][C]219452[/C][C]211648.016026561[/C][C]7803.98397343887[/C][/ROW]
[ROW][C]17[/C][C]256446[/C][C]242935.873190338[/C][C]13510.1268096624[/C][/ROW]
[ROW][C]18[/C][C]265845[/C][C]257622.913374215[/C][C]8222.08662578468[/C][/ROW]
[ROW][C]19[/C][C]248624[/C][C]254666.888876508[/C][C]-6042.88887650801[/C][/ROW]
[ROW][C]20[/C][C]241114[/C][C]239209.376986863[/C][C]1904.62301313672[/C][/ROW]
[ROW][C]21[/C][C]229245[/C][C]229838.242634003[/C][C]-593.242634002951[/C][/ROW]
[ROW][C]22[/C][C]231805[/C][C]228601.212903229[/C][C]3203.7870967714[/C][/ROW]
[ROW][C]23[/C][C]219277[/C][C]228811.253371468[/C][C]-9534.2533714683[/C][/ROW]
[ROW][C]24[/C][C]219313[/C][C]223034.112202630[/C][C]-3721.11220263019[/C][/ROW]
[ROW][C]25[/C][C]212610[/C][C]218839.45768164[/C][C]-6229.45768163995[/C][/ROW]
[ROW][C]26[/C][C]214771[/C][C]213724.841160299[/C][C]1046.15883970064[/C][/ROW]
[ROW][C]27[/C][C]211142[/C][C]214435.861140156[/C][C]-3293.86114015606[/C][/ROW]
[ROW][C]28[/C][C]211457[/C][C]213221.022791922[/C][C]-1764.02279192223[/C][/ROW]
[ROW][C]29[/C][C]240048[/C][C]240877.703596932[/C][C]-829.703596931786[/C][/ROW]
[ROW][C]30[/C][C]240636[/C][C]252402.424571801[/C][C]-11766.4245718007[/C][/ROW]
[ROW][C]31[/C][C]230580[/C][C]245134.685904142[/C][C]-14554.6859041422[/C][/ROW]
[ROW][C]32[/C][C]208795[/C][C]223516.446629487[/C][C]-14721.4466294872[/C][/ROW]
[ROW][C]33[/C][C]197922[/C][C]206172.192458880[/C][C]-8250.19245888028[/C][/ROW]
[ROW][C]34[/C][C]194596[/C][C]201291.868514654[/C][C]-6695.86851465409[/C][/ROW]
[ROW][C]35[/C][C]194581[/C][C]203809.248010821[/C][C]-9228.2480108209[/C][/ROW]
[ROW][C]36[/C][C]185686[/C][C]197468.514614932[/C][C]-11782.5146149322[/C][/ROW]
[ROW][C]37[/C][C]178106[/C][C]185027.022053896[/C][C]-6921.0220538959[/C][/ROW]
[ROW][C]38[/C][C]172608[/C][C]180828.725205600[/C][C]-8220.72520560036[/C][/ROW]
[ROW][C]39[/C][C]167302[/C][C]171727.501341500[/C][C]-4425.50134149966[/C][/ROW]
[ROW][C]40[/C][C]168053[/C][C]163841.399143936[/C][C]4211.6008560645[/C][/ROW]
[ROW][C]41[/C][C]202300[/C][C]197701.807675127[/C][C]4598.19232487339[/C][/ROW]
[ROW][C]42[/C][C]202388[/C][C]212470.899459121[/C][C]-10082.8994591212[/C][/ROW]
[ROW][C]43[/C][C]182516[/C][C]194380.537264127[/C][C]-11864.5372641266[/C][/ROW]
[ROW][C]44[/C][C]173476[/C][C]180379.287168953[/C][C]-6903.28716895294[/C][/ROW]
[ROW][C]45[/C][C]166444[/C][C]170658.259015639[/C][C]-4214.25901563902[/C][/ROW]
[ROW][C]46[/C][C]171297[/C][C]172532.709054665[/C][C]-1235.70905466538[/C][/ROW]
[ROW][C]47[/C][C]169701[/C][C]176414.121953649[/C][C]-6713.12195364906[/C][/ROW]
[ROW][C]48[/C][C]164182[/C][C]169856.829409930[/C][C]-5674.82940992951[/C][/ROW]
[ROW][C]49[/C][C]161914[/C][C]159876.617518404[/C][C]2037.38248159614[/C][/ROW]
[ROW][C]50[/C][C]159612[/C][C]158639.820637539[/C][C]972.179362460882[/C][/ROW]
[ROW][C]51[/C][C]151001[/C][C]146196.478308506[/C][C]4804.52169149441[/C][/ROW]
[ROW][C]52[/C][C]158114[/C][C]148898.626604121[/C][C]9215.37339587896[/C][/ROW]
[ROW][C]53[/C][C]186530[/C][C]181566.062961016[/C][C]4963.9370389845[/C][/ROW]
[ROW][C]54[/C][C]187069[/C][C]191490.094159186[/C][C]-4421.09415918596[/C][/ROW]
[ROW][C]55[/C][C]174330[/C][C]178573.462200076[/C][C]-4243.46220007587[/C][/ROW]
[ROW][C]56[/C][C]169362[/C][C]168125.73222567[/C][C]1236.26777433011[/C][/ROW]
[ROW][C]57[/C][C]166827[/C][C]166031.874915155[/C][C]795.125084844574[/C][/ROW]
[ROW][C]58[/C][C]178037[/C][C]174309.152000528[/C][C]3727.84799947241[/C][/ROW]
[ROW][C]59[/C][C]186412[/C][C]184791.865351373[/C][C]1620.13464862669[/C][/ROW]
[ROW][C]60[/C][C]189226[/C][C]188109.801929606[/C][C]1116.19807039449[/C][/ROW]
[ROW][C]61[/C][C]191563[/C][C]189855.071795591[/C][C]1707.92820440901[/C][/ROW]
[ROW][C]62[/C][C]188906[/C][C]190233.433417905[/C][C]-1327.43341790487[/C][/ROW]
[ROW][C]63[/C][C]186005[/C][C]181658.223320213[/C][C]4346.77667978696[/C][/ROW]
[ROW][C]64[/C][C]195309[/C][C]188547.307969854[/C][C]6761.69203014573[/C][/ROW]
[ROW][C]65[/C][C]223532[/C][C]220765.524931591[/C][C]2766.47506840876[/C][/ROW]
[ROW][C]66[/C][C]226899[/C][C]233121.891963498[/C][C]-6222.89196349773[/C][/ROW]
[ROW][C]67[/C][C]214126[/C][C]220771.072736230[/C][C]-6645.07273622968[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=63288&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=63288&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1209465203474.8919450865990.10805491365
2204045195891.0726680068153.92733199406
3200237190936.9134044699300.08659553062
4203666194156.0125440299509.98745597146
5241476225130.98148097516345.0185190247
6260307245159.96087443615147.0391255638
7243324246162.966737779-2838.96673777943
8244460238053.0475902416406.95240975902
9233575230793.7928864632781.2071135365
10237217228356.1347570298860.8652429708
11235243228232.0458676317010.95413236877
12230354226310.0470007884043.95299921197
13227184222354.7524438814829.24755611889
14221678215585.0998142826092.9001857181
15217142211223.9096512185918.09034878173
16219452211648.0160265617803.98397343887
17256446242935.87319033813510.1268096624
18265845257622.9133742158222.08662578468
19248624254666.888876508-6042.88887650801
20241114239209.3769868631904.62301313672
21229245229838.242634003-593.242634002951
22231805228601.2129032293203.7870967714
23219277228811.253371468-9534.2533714683
24219313223034.112202630-3721.11220263019
25212610218839.45768164-6229.45768163995
26214771213724.8411602991046.15883970064
27211142214435.861140156-3293.86114015606
28211457213221.022791922-1764.02279192223
29240048240877.703596932-829.703596931786
30240636252402.424571801-11766.4245718007
31230580245134.685904142-14554.6859041422
32208795223516.446629487-14721.4466294872
33197922206172.192458880-8250.19245888028
34194596201291.868514654-6695.86851465409
35194581203809.248010821-9228.2480108209
36185686197468.514614932-11782.5146149322
37178106185027.022053896-6921.0220538959
38172608180828.725205600-8220.72520560036
39167302171727.501341500-4425.50134149966
40168053163841.3991439364211.6008560645
41202300197701.8076751274598.19232487339
42202388212470.899459121-10082.8994591212
43182516194380.537264127-11864.5372641266
44173476180379.287168953-6903.28716895294
45166444170658.259015639-4214.25901563902
46171297172532.709054665-1235.70905466538
47169701176414.121953649-6713.12195364906
48164182169856.829409930-5674.82940992951
49161914159876.6175184042037.38248159614
50159612158639.820637539972.179362460882
51151001146196.4783085064804.52169149441
52158114148898.6266041219215.37339587896
53186530181566.0629610164963.9370389845
54187069191490.094159186-4421.09415918596
55174330178573.462200076-4243.46220007587
56169362168125.732225671236.26777433011
57166827166031.874915155795.125084844574
58178037174309.1520005283727.84799947241
59186412184791.8653513731620.13464862669
60189226188109.8019296061116.19807039449
61191563189855.0717955911707.92820440901
62188906190233.433417905-1327.43341790487
63186005181658.2233202134346.77667978696
64195309188547.3079698546761.69203014573
65223532220765.5249315912766.47506840876
66226899233121.891963498-6222.89196349773
67214126220771.072736230-6645.07273622968







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
70.01245353932656390.02490707865312780.987546460673436
80.1334829422976970.2669658845953930.866517057702303
90.06210352772439010.1242070554487800.93789647227561
100.04123080385708130.08246160771416260.958769196142919
110.02145954763498380.04291909526996760.978540452365016
120.01073295989098590.02146591978197190.989267040109014
130.005256151796830450.01051230359366090.99474384820317
140.002537004181368860.005074008362737720.997462995818631
150.001226953100186040.002453906200372090.998773046899814
160.000680006120506780.001360012241013560.999319993879493
170.001024176605168930.002048353210337860.998975823394831
180.001301851977974440.002603703955948880.998698148022026
190.006892320244693840.01378464048938770.993107679755306
200.006274803245666580.01254960649133320.993725196754333
210.0077783858654990.0155567717309980.992221614134501
220.01437332474726430.02874664949452850.985626675252736
230.481973283056560.963946566113120.51802671694344
240.6872997279611710.6254005440776570.312700272038829
250.8675719989410580.2648560021178840.132428001058942
260.9016512202941920.1966975594116150.0983487797058076
270.9407006712210180.1185986575579650.0592993287789824
280.9564541171774220.08709176564515540.0435458828225777
290.966344434942530.06731113011494180.0336555650574709
300.9885755169725770.02284896605484620.0114244830274231
310.9940785130992850.01184297380142920.00592148690071462
320.9969981517911620.00600369641767570.00300184820883785
330.9966827210510030.006634557897994180.00331727894899709
340.9964026166035550.007194766792890490.00359738339644524
350.997540282861980.004919434276038130.00245971713801907
360.999082838010150.001834323979701430.000917161989850717
370.9989862545018630.002027490996273150.00101374549813657
380.9994066248442670.001186750311465000.000593375155732502
390.999240151736850.001519696526300590.000759848263150295
400.9987828685361520.002434262927696160.00121713146384808
410.9978187733996550.004362453200689340.00218122660034467
420.9983430228270770.00331395434584650.00165697717292325
430.9991431110609750.001713777878050200.000856888939025102
440.9994879066767880.001024186646423510.000512093323211753
450.9995289556491220.0009420887017550750.000471044350877538
460.9994496847256290.001100630548742650.000550315274371323
470.9998513002116150.000297399576770860.00014869978838543
480.9999860267371892.79465256229865e-051.39732628114933e-05
490.9999654555379336.90889241332596e-053.45444620666298e-05
500.9999372137980890.0001255724038222296.27862019111144e-05
510.9998663267603580.0002673464792831250.000133673239641562
520.9998336654087430.0003326691825151030.000166334591257551
530.999584868154490.0008302636910191280.000415131845509564
540.998805304141380.002389391717241050.00119469585862052
550.9982752279794470.003449544041106770.00172477202055338
560.9965847735944720.006830452811055690.00341522640552784
570.995713794788540.008572410422921640.00428620521146082
580.9937591555456530.01248168890869350.00624084445434673
590.9818930558708010.03621388825839780.0181069441291989
600.9433901483489290.1132197033021430.0566098516510713

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
7 & 0.0124535393265639 & 0.0249070786531278 & 0.987546460673436 \tabularnewline
8 & 0.133482942297697 & 0.266965884595393 & 0.866517057702303 \tabularnewline
9 & 0.0621035277243901 & 0.124207055448780 & 0.93789647227561 \tabularnewline
10 & 0.0412308038570813 & 0.0824616077141626 & 0.958769196142919 \tabularnewline
11 & 0.0214595476349838 & 0.0429190952699676 & 0.978540452365016 \tabularnewline
12 & 0.0107329598909859 & 0.0214659197819719 & 0.989267040109014 \tabularnewline
13 & 0.00525615179683045 & 0.0105123035936609 & 0.99474384820317 \tabularnewline
14 & 0.00253700418136886 & 0.00507400836273772 & 0.997462995818631 \tabularnewline
15 & 0.00122695310018604 & 0.00245390620037209 & 0.998773046899814 \tabularnewline
16 & 0.00068000612050678 & 0.00136001224101356 & 0.999319993879493 \tabularnewline
17 & 0.00102417660516893 & 0.00204835321033786 & 0.998975823394831 \tabularnewline
18 & 0.00130185197797444 & 0.00260370395594888 & 0.998698148022026 \tabularnewline
19 & 0.00689232024469384 & 0.0137846404893877 & 0.993107679755306 \tabularnewline
20 & 0.00627480324566658 & 0.0125496064913332 & 0.993725196754333 \tabularnewline
21 & 0.007778385865499 & 0.015556771730998 & 0.992221614134501 \tabularnewline
22 & 0.0143733247472643 & 0.0287466494945285 & 0.985626675252736 \tabularnewline
23 & 0.48197328305656 & 0.96394656611312 & 0.51802671694344 \tabularnewline
24 & 0.687299727961171 & 0.625400544077657 & 0.312700272038829 \tabularnewline
25 & 0.867571998941058 & 0.264856002117884 & 0.132428001058942 \tabularnewline
26 & 0.901651220294192 & 0.196697559411615 & 0.0983487797058076 \tabularnewline
27 & 0.940700671221018 & 0.118598657557965 & 0.0592993287789824 \tabularnewline
28 & 0.956454117177422 & 0.0870917656451554 & 0.0435458828225777 \tabularnewline
29 & 0.96634443494253 & 0.0673111301149418 & 0.0336555650574709 \tabularnewline
30 & 0.988575516972577 & 0.0228489660548462 & 0.0114244830274231 \tabularnewline
31 & 0.994078513099285 & 0.0118429738014292 & 0.00592148690071462 \tabularnewline
32 & 0.996998151791162 & 0.0060036964176757 & 0.00300184820883785 \tabularnewline
33 & 0.996682721051003 & 0.00663455789799418 & 0.00331727894899709 \tabularnewline
34 & 0.996402616603555 & 0.00719476679289049 & 0.00359738339644524 \tabularnewline
35 & 0.99754028286198 & 0.00491943427603813 & 0.00245971713801907 \tabularnewline
36 & 0.99908283801015 & 0.00183432397970143 & 0.000917161989850717 \tabularnewline
37 & 0.998986254501863 & 0.00202749099627315 & 0.00101374549813657 \tabularnewline
38 & 0.999406624844267 & 0.00118675031146500 & 0.000593375155732502 \tabularnewline
39 & 0.99924015173685 & 0.00151969652630059 & 0.000759848263150295 \tabularnewline
40 & 0.998782868536152 & 0.00243426292769616 & 0.00121713146384808 \tabularnewline
41 & 0.997818773399655 & 0.00436245320068934 & 0.00218122660034467 \tabularnewline
42 & 0.998343022827077 & 0.0033139543458465 & 0.00165697717292325 \tabularnewline
43 & 0.999143111060975 & 0.00171377787805020 & 0.000856888939025102 \tabularnewline
44 & 0.999487906676788 & 0.00102418664642351 & 0.000512093323211753 \tabularnewline
45 & 0.999528955649122 & 0.000942088701755075 & 0.000471044350877538 \tabularnewline
46 & 0.999449684725629 & 0.00110063054874265 & 0.000550315274371323 \tabularnewline
47 & 0.999851300211615 & 0.00029739957677086 & 0.00014869978838543 \tabularnewline
48 & 0.999986026737189 & 2.79465256229865e-05 & 1.39732628114933e-05 \tabularnewline
49 & 0.999965455537933 & 6.90889241332596e-05 & 3.45444620666298e-05 \tabularnewline
50 & 0.999937213798089 & 0.000125572403822229 & 6.27862019111144e-05 \tabularnewline
51 & 0.999866326760358 & 0.000267346479283125 & 0.000133673239641562 \tabularnewline
52 & 0.999833665408743 & 0.000332669182515103 & 0.000166334591257551 \tabularnewline
53 & 0.99958486815449 & 0.000830263691019128 & 0.000415131845509564 \tabularnewline
54 & 0.99880530414138 & 0.00238939171724105 & 0.00119469585862052 \tabularnewline
55 & 0.998275227979447 & 0.00344954404110677 & 0.00172477202055338 \tabularnewline
56 & 0.996584773594472 & 0.00683045281105569 & 0.00341522640552784 \tabularnewline
57 & 0.99571379478854 & 0.00857241042292164 & 0.00428620521146082 \tabularnewline
58 & 0.993759155545653 & 0.0124816889086935 & 0.00624084445434673 \tabularnewline
59 & 0.981893055870801 & 0.0362138882583978 & 0.0181069441291989 \tabularnewline
60 & 0.943390148348929 & 0.113219703302143 & 0.0566098516510713 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=63288&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]7[/C][C]0.0124535393265639[/C][C]0.0249070786531278[/C][C]0.987546460673436[/C][/ROW]
[ROW][C]8[/C][C]0.133482942297697[/C][C]0.266965884595393[/C][C]0.866517057702303[/C][/ROW]
[ROW][C]9[/C][C]0.0621035277243901[/C][C]0.124207055448780[/C][C]0.93789647227561[/C][/ROW]
[ROW][C]10[/C][C]0.0412308038570813[/C][C]0.0824616077141626[/C][C]0.958769196142919[/C][/ROW]
[ROW][C]11[/C][C]0.0214595476349838[/C][C]0.0429190952699676[/C][C]0.978540452365016[/C][/ROW]
[ROW][C]12[/C][C]0.0107329598909859[/C][C]0.0214659197819719[/C][C]0.989267040109014[/C][/ROW]
[ROW][C]13[/C][C]0.00525615179683045[/C][C]0.0105123035936609[/C][C]0.99474384820317[/C][/ROW]
[ROW][C]14[/C][C]0.00253700418136886[/C][C]0.00507400836273772[/C][C]0.997462995818631[/C][/ROW]
[ROW][C]15[/C][C]0.00122695310018604[/C][C]0.00245390620037209[/C][C]0.998773046899814[/C][/ROW]
[ROW][C]16[/C][C]0.00068000612050678[/C][C]0.00136001224101356[/C][C]0.999319993879493[/C][/ROW]
[ROW][C]17[/C][C]0.00102417660516893[/C][C]0.00204835321033786[/C][C]0.998975823394831[/C][/ROW]
[ROW][C]18[/C][C]0.00130185197797444[/C][C]0.00260370395594888[/C][C]0.998698148022026[/C][/ROW]
[ROW][C]19[/C][C]0.00689232024469384[/C][C]0.0137846404893877[/C][C]0.993107679755306[/C][/ROW]
[ROW][C]20[/C][C]0.00627480324566658[/C][C]0.0125496064913332[/C][C]0.993725196754333[/C][/ROW]
[ROW][C]21[/C][C]0.007778385865499[/C][C]0.015556771730998[/C][C]0.992221614134501[/C][/ROW]
[ROW][C]22[/C][C]0.0143733247472643[/C][C]0.0287466494945285[/C][C]0.985626675252736[/C][/ROW]
[ROW][C]23[/C][C]0.48197328305656[/C][C]0.96394656611312[/C][C]0.51802671694344[/C][/ROW]
[ROW][C]24[/C][C]0.687299727961171[/C][C]0.625400544077657[/C][C]0.312700272038829[/C][/ROW]
[ROW][C]25[/C][C]0.867571998941058[/C][C]0.264856002117884[/C][C]0.132428001058942[/C][/ROW]
[ROW][C]26[/C][C]0.901651220294192[/C][C]0.196697559411615[/C][C]0.0983487797058076[/C][/ROW]
[ROW][C]27[/C][C]0.940700671221018[/C][C]0.118598657557965[/C][C]0.0592993287789824[/C][/ROW]
[ROW][C]28[/C][C]0.956454117177422[/C][C]0.0870917656451554[/C][C]0.0435458828225777[/C][/ROW]
[ROW][C]29[/C][C]0.96634443494253[/C][C]0.0673111301149418[/C][C]0.0336555650574709[/C][/ROW]
[ROW][C]30[/C][C]0.988575516972577[/C][C]0.0228489660548462[/C][C]0.0114244830274231[/C][/ROW]
[ROW][C]31[/C][C]0.994078513099285[/C][C]0.0118429738014292[/C][C]0.00592148690071462[/C][/ROW]
[ROW][C]32[/C][C]0.996998151791162[/C][C]0.0060036964176757[/C][C]0.00300184820883785[/C][/ROW]
[ROW][C]33[/C][C]0.996682721051003[/C][C]0.00663455789799418[/C][C]0.00331727894899709[/C][/ROW]
[ROW][C]34[/C][C]0.996402616603555[/C][C]0.00719476679289049[/C][C]0.00359738339644524[/C][/ROW]
[ROW][C]35[/C][C]0.99754028286198[/C][C]0.00491943427603813[/C][C]0.00245971713801907[/C][/ROW]
[ROW][C]36[/C][C]0.99908283801015[/C][C]0.00183432397970143[/C][C]0.000917161989850717[/C][/ROW]
[ROW][C]37[/C][C]0.998986254501863[/C][C]0.00202749099627315[/C][C]0.00101374549813657[/C][/ROW]
[ROW][C]38[/C][C]0.999406624844267[/C][C]0.00118675031146500[/C][C]0.000593375155732502[/C][/ROW]
[ROW][C]39[/C][C]0.99924015173685[/C][C]0.00151969652630059[/C][C]0.000759848263150295[/C][/ROW]
[ROW][C]40[/C][C]0.998782868536152[/C][C]0.00243426292769616[/C][C]0.00121713146384808[/C][/ROW]
[ROW][C]41[/C][C]0.997818773399655[/C][C]0.00436245320068934[/C][C]0.00218122660034467[/C][/ROW]
[ROW][C]42[/C][C]0.998343022827077[/C][C]0.0033139543458465[/C][C]0.00165697717292325[/C][/ROW]
[ROW][C]43[/C][C]0.999143111060975[/C][C]0.00171377787805020[/C][C]0.000856888939025102[/C][/ROW]
[ROW][C]44[/C][C]0.999487906676788[/C][C]0.00102418664642351[/C][C]0.000512093323211753[/C][/ROW]
[ROW][C]45[/C][C]0.999528955649122[/C][C]0.000942088701755075[/C][C]0.000471044350877538[/C][/ROW]
[ROW][C]46[/C][C]0.999449684725629[/C][C]0.00110063054874265[/C][C]0.000550315274371323[/C][/ROW]
[ROW][C]47[/C][C]0.999851300211615[/C][C]0.00029739957677086[/C][C]0.00014869978838543[/C][/ROW]
[ROW][C]48[/C][C]0.999986026737189[/C][C]2.79465256229865e-05[/C][C]1.39732628114933e-05[/C][/ROW]
[ROW][C]49[/C][C]0.999965455537933[/C][C]6.90889241332596e-05[/C][C]3.45444620666298e-05[/C][/ROW]
[ROW][C]50[/C][C]0.999937213798089[/C][C]0.000125572403822229[/C][C]6.27862019111144e-05[/C][/ROW]
[ROW][C]51[/C][C]0.999866326760358[/C][C]0.000267346479283125[/C][C]0.000133673239641562[/C][/ROW]
[ROW][C]52[/C][C]0.999833665408743[/C][C]0.000332669182515103[/C][C]0.000166334591257551[/C][/ROW]
[ROW][C]53[/C][C]0.99958486815449[/C][C]0.000830263691019128[/C][C]0.000415131845509564[/C][/ROW]
[ROW][C]54[/C][C]0.99880530414138[/C][C]0.00238939171724105[/C][C]0.00119469585862052[/C][/ROW]
[ROW][C]55[/C][C]0.998275227979447[/C][C]0.00344954404110677[/C][C]0.00172477202055338[/C][/ROW]
[ROW][C]56[/C][C]0.996584773594472[/C][C]0.00683045281105569[/C][C]0.00341522640552784[/C][/ROW]
[ROW][C]57[/C][C]0.99571379478854[/C][C]0.00857241042292164[/C][C]0.00428620521146082[/C][/ROW]
[ROW][C]58[/C][C]0.993759155545653[/C][C]0.0124816889086935[/C][C]0.00624084445434673[/C][/ROW]
[ROW][C]59[/C][C]0.981893055870801[/C][C]0.0362138882583978[/C][C]0.0181069441291989[/C][/ROW]
[ROW][C]60[/C][C]0.943390148348929[/C][C]0.113219703302143[/C][C]0.0566098516510713[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=63288&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=63288&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
70.01245353932656390.02490707865312780.987546460673436
80.1334829422976970.2669658845953930.866517057702303
90.06210352772439010.1242070554487800.93789647227561
100.04123080385708130.08246160771416260.958769196142919
110.02145954763498380.04291909526996760.978540452365016
120.01073295989098590.02146591978197190.989267040109014
130.005256151796830450.01051230359366090.99474384820317
140.002537004181368860.005074008362737720.997462995818631
150.001226953100186040.002453906200372090.998773046899814
160.000680006120506780.001360012241013560.999319993879493
170.001024176605168930.002048353210337860.998975823394831
180.001301851977974440.002603703955948880.998698148022026
190.006892320244693840.01378464048938770.993107679755306
200.006274803245666580.01254960649133320.993725196754333
210.0077783858654990.0155567717309980.992221614134501
220.01437332474726430.02874664949452850.985626675252736
230.481973283056560.963946566113120.51802671694344
240.6872997279611710.6254005440776570.312700272038829
250.8675719989410580.2648560021178840.132428001058942
260.9016512202941920.1966975594116150.0983487797058076
270.9407006712210180.1185986575579650.0592993287789824
280.9564541171774220.08709176564515540.0435458828225777
290.966344434942530.06731113011494180.0336555650574709
300.9885755169725770.02284896605484620.0114244830274231
310.9940785130992850.01184297380142920.00592148690071462
320.9969981517911620.00600369641767570.00300184820883785
330.9966827210510030.006634557897994180.00331727894899709
340.9964026166035550.007194766792890490.00359738339644524
350.997540282861980.004919434276038130.00245971713801907
360.999082838010150.001834323979701430.000917161989850717
370.9989862545018630.002027490996273150.00101374549813657
380.9994066248442670.001186750311465000.000593375155732502
390.999240151736850.001519696526300590.000759848263150295
400.9987828685361520.002434262927696160.00121713146384808
410.9978187733996550.004362453200689340.00218122660034467
420.9983430228270770.00331395434584650.00165697717292325
430.9991431110609750.001713777878050200.000856888939025102
440.9994879066767880.001024186646423510.000512093323211753
450.9995289556491220.0009420887017550750.000471044350877538
460.9994496847256290.001100630548742650.000550315274371323
470.9998513002116150.000297399576770860.00014869978838543
480.9999860267371892.79465256229865e-051.39732628114933e-05
490.9999654555379336.90889241332596e-053.45444620666298e-05
500.9999372137980890.0001255724038222296.27862019111144e-05
510.9998663267603580.0002673464792831250.000133673239641562
520.9998336654087430.0003326691825151030.000166334591257551
530.999584868154490.0008302636910191280.000415131845509564
540.998805304141380.002389391717241050.00119469585862052
550.9982752279794470.003449544041106770.00172477202055338
560.9965847735944720.006830452811055690.00341522640552784
570.995713794788540.008572410422921640.00428620521146082
580.9937591555456530.01248168890869350.00624084445434673
590.9818930558708010.03621388825839780.0181069441291989
600.9433901483489290.1132197033021430.0566098516510713







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level310.574074074074074NOK
5% type I error level430.796296296296296NOK
10% type I error level460.851851851851852NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 31 & 0.574074074074074 & NOK \tabularnewline
5% type I error level & 43 & 0.796296296296296 & NOK \tabularnewline
10% type I error level & 46 & 0.851851851851852 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=63288&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]31[/C][C]0.574074074074074[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]43[/C][C]0.796296296296296[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]46[/C][C]0.851851851851852[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=63288&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=63288&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level310.574074074074074NOK
5% type I error level430.796296296296296NOK
10% type I error level460.851851851851852NOK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}