Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 18 Nov 2009 12:32:58 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/18/t125857287910fc31bzdlxl6ti.htm/, Retrieved Tue, 12 Nov 2024 22:22:36 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=57603, Retrieved Tue, 12 Nov 2024 22:22:36 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact191
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
- RMPD  [Multiple Regression] [Seatbelt] [2009-11-12 13:54:52] [b98453cac15ba1066b407e146608df68]
-    D    [Multiple Regression] [WS7] [2009-11-18 15:22:11] [cd6314e7e707a6546bd4604c9d1f2b69]
-   P       [Multiple Regression] [ws7] [2009-11-18 18:56:17] [cd6314e7e707a6546bd4604c9d1f2b69]
-   P           [Multiple Regression] [ws7] [2009-11-18 19:32:58] [ea241b681aafed79da4b5b99fad98471] [Current]
-    D            [Multiple Regression] [ws7] [2009-11-18 20:48:06] [cd6314e7e707a6546bd4604c9d1f2b69]
-    D              [Multiple Regression] [verbetering ws7] [2009-11-27 09:33:35] [7c2a5b25a196bd646844b8f5223c9b3e]
-   PD              [Multiple Regression] [Paper - multiple ...] [2009-12-04 11:22:02] [cd6314e7e707a6546bd4604c9d1f2b69]
-   P                 [Multiple Regression] [Paper - multiple ...] [2009-12-04 11:24:48] [cd6314e7e707a6546bd4604c9d1f2b69]
Feedback Forum

Post a new message
Dataseries X:
216234	562325
213587	560854
209465	555332
204045	543599
200237	536662
203666	542722
241476	593530
260307	610763
243324	612613
244460	611324
233575	594167
237217	595454
235243	590865
230354	589379
227184	584428
221678	573100
217142	567456
219452	569028
256446	620735
265845	628884
248624	628232
241114	612117
229245	595404
231805	597141
219277	593408
219313	590072
212610	579799
214771	574205
211142	572775
211457	572942
240048	619567
240636	625809
230580	619916
208795	587625
197922	565742
194596	557274
194581	560576
185686	548854
178106	531673
172608	525919
167302	511038
168053	498662
202300	555362
202388	564591
182516	541657
173476	527070
166444	509846
171297	514258
169701	516922
164182	507561
161914	492622
159612	490243
151001	469357
158114	477580
186530	528379
187069	533590
174330	517945
169362	506174
166827	501866
178037	516141
186412	528222
189226	532638
191563	536322
188906	536535
186005	523597
195309	536214
223532	586570
226899	596594
214126	580523




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57603&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57603&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57603&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
Y[t] = -133727.514270307 + 0.618935182546662X[t] -1755.19220226771M1[t] -2352.19962173868M2[t] -645.253981753101M3[t] + 141.872350504839M4[t] + 2030.7627839215M5[t] + 4441.33958694601M6[t] + 5371.03914127785M7[t] + 5271.76700348223M8[t] -3329.24764649524M9[t] -3512.30395609849M10[t] -2366.35555749082M11[t] -217.867281983915t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Y[t] =  -133727.514270307 +  0.618935182546662X[t] -1755.19220226771M1[t] -2352.19962173868M2[t] -645.253981753101M3[t] +  141.872350504839M4[t] +  2030.7627839215M5[t] +  4441.33958694601M6[t] +  5371.03914127785M7[t] +  5271.76700348223M8[t] -3329.24764649524M9[t] -3512.30395609849M10[t] -2366.35555749082M11[t] -217.867281983915t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57603&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Y[t] =  -133727.514270307 +  0.618935182546662X[t] -1755.19220226771M1[t] -2352.19962173868M2[t] -645.253981753101M3[t] +  141.872350504839M4[t] +  2030.7627839215M5[t] +  4441.33958694601M6[t] +  5371.03914127785M7[t] +  5271.76700348223M8[t] -3329.24764649524M9[t] -3512.30395609849M10[t] -2366.35555749082M11[t] -217.867281983915t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57603&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57603&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Y[t] = -133727.514270307 + 0.618935182546662X[t] -1755.19220226771M1[t] -2352.19962173868M2[t] -645.253981753101M3[t] + 141.872350504839M4[t] + 2030.7627839215M5[t] + 4441.33958694601M6[t] + 5371.03914127785M7[t] + 5271.76700348223M8[t] -3329.24764649524M9[t] -3512.30395609849M10[t] -2366.35555749082M11[t] -217.867281983915t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-133727.51427030718975.798968-7.047300
X0.6189351825466620.03118919.844700
M1-1755.192202267714023.176626-0.43630.6643480.332174
M2-2352.199621738684024.298764-0.58450.5612750.280637
M3-645.2539817531014038.840255-0.15980.8736540.436827
M4141.8723505048394055.9633720.0350.9722230.486112
M52030.76278392154104.9566220.49470.6227750.311388
M64441.339586946014081.4071231.08820.2812580.140629
M75371.039141277854118.6952731.30410.1976430.098822
M85271.767003482234204.1673071.25390.2151680.107584
M9-3329.247646495244133.399667-0.80550.4240290.212014
M10-3512.303956098494208.720832-0.83450.4075930.203796
M11-2366.355557490824197.296154-0.56380.5751950.287597
t-217.86728198391554.973963-3.96310.0002150.000108

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -133727.514270307 & 18975.798968 & -7.0473 & 0 & 0 \tabularnewline
X & 0.618935182546662 & 0.031189 & 19.8447 & 0 & 0 \tabularnewline
M1 & -1755.19220226771 & 4023.176626 & -0.4363 & 0.664348 & 0.332174 \tabularnewline
M2 & -2352.19962173868 & 4024.298764 & -0.5845 & 0.561275 & 0.280637 \tabularnewline
M3 & -645.253981753101 & 4038.840255 & -0.1598 & 0.873654 & 0.436827 \tabularnewline
M4 & 141.872350504839 & 4055.963372 & 0.035 & 0.972223 & 0.486112 \tabularnewline
M5 & 2030.7627839215 & 4104.956622 & 0.4947 & 0.622775 & 0.311388 \tabularnewline
M6 & 4441.33958694601 & 4081.407123 & 1.0882 & 0.281258 & 0.140629 \tabularnewline
M7 & 5371.03914127785 & 4118.695273 & 1.3041 & 0.197643 & 0.098822 \tabularnewline
M8 & 5271.76700348223 & 4204.167307 & 1.2539 & 0.215168 & 0.107584 \tabularnewline
M9 & -3329.24764649524 & 4133.399667 & -0.8055 & 0.424029 & 0.212014 \tabularnewline
M10 & -3512.30395609849 & 4208.720832 & -0.8345 & 0.407593 & 0.203796 \tabularnewline
M11 & -2366.35555749082 & 4197.296154 & -0.5638 & 0.575195 & 0.287597 \tabularnewline
t & -217.867281983915 & 54.973963 & -3.9631 & 0.000215 & 0.000108 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57603&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-133727.514270307[/C][C]18975.798968[/C][C]-7.0473[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]X[/C][C]0.618935182546662[/C][C]0.031189[/C][C]19.8447[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M1[/C][C]-1755.19220226771[/C][C]4023.176626[/C][C]-0.4363[/C][C]0.664348[/C][C]0.332174[/C][/ROW]
[ROW][C]M2[/C][C]-2352.19962173868[/C][C]4024.298764[/C][C]-0.5845[/C][C]0.561275[/C][C]0.280637[/C][/ROW]
[ROW][C]M3[/C][C]-645.253981753101[/C][C]4038.840255[/C][C]-0.1598[/C][C]0.873654[/C][C]0.436827[/C][/ROW]
[ROW][C]M4[/C][C]141.872350504839[/C][C]4055.963372[/C][C]0.035[/C][C]0.972223[/C][C]0.486112[/C][/ROW]
[ROW][C]M5[/C][C]2030.7627839215[/C][C]4104.956622[/C][C]0.4947[/C][C]0.622775[/C][C]0.311388[/C][/ROW]
[ROW][C]M6[/C][C]4441.33958694601[/C][C]4081.407123[/C][C]1.0882[/C][C]0.281258[/C][C]0.140629[/C][/ROW]
[ROW][C]M7[/C][C]5371.03914127785[/C][C]4118.695273[/C][C]1.3041[/C][C]0.197643[/C][C]0.098822[/C][/ROW]
[ROW][C]M8[/C][C]5271.76700348223[/C][C]4204.167307[/C][C]1.2539[/C][C]0.215168[/C][C]0.107584[/C][/ROW]
[ROW][C]M9[/C][C]-3329.24764649524[/C][C]4133.399667[/C][C]-0.8055[/C][C]0.424029[/C][C]0.212014[/C][/ROW]
[ROW][C]M10[/C][C]-3512.30395609849[/C][C]4208.720832[/C][C]-0.8345[/C][C]0.407593[/C][C]0.203796[/C][/ROW]
[ROW][C]M11[/C][C]-2366.35555749082[/C][C]4197.296154[/C][C]-0.5638[/C][C]0.575195[/C][C]0.287597[/C][/ROW]
[ROW][C]t[/C][C]-217.867281983915[/C][C]54.973963[/C][C]-3.9631[/C][C]0.000215[/C][C]0.000108[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57603&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57603&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-133727.51427030718975.798968-7.047300
X0.6189351825466620.03118919.844700
M1-1755.192202267714023.176626-0.43630.6643480.332174
M2-2352.199621738684024.298764-0.58450.5612750.280637
M3-645.2539817531014038.840255-0.15980.8736540.436827
M4141.8723505048394055.9633720.0350.9722230.486112
M52030.76278392154104.9566220.49470.6227750.311388
M64441.339586946014081.4071231.08820.2812580.140629
M75371.039141277854118.6952731.30410.1976430.098822
M85271.767003482234204.1673071.25390.2151680.107584
M9-3329.247646495244133.399667-0.80550.4240290.212014
M10-3512.303956098494208.720832-0.83450.4075930.203796
M11-2366.355557490824197.296154-0.56380.5751950.287597
t-217.86728198391554.973963-3.96310.0002150.000108







Multiple Linear Regression - Regression Statistics
Multiple R0.977991520492774
R-squared0.956467414155768
Adjusted R-squared0.946177893865313
F-TEST (value)92.9554913306353
F-TEST (DF numerator)13
F-TEST (DF denominator)55
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation6633.49154690541
Sum Squared Residuals2420176555.65760

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.977991520492774 \tabularnewline
R-squared & 0.956467414155768 \tabularnewline
Adjusted R-squared & 0.946177893865313 \tabularnewline
F-TEST (value) & 92.9554913306353 \tabularnewline
F-TEST (DF numerator) & 13 \tabularnewline
F-TEST (DF denominator) & 55 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 6633.49154690541 \tabularnewline
Sum Squared Residuals & 2420176555.65760 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57603&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.977991520492774[/C][/ROW]
[ROW][C]R-squared[/C][C]0.956467414155768[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.946177893865313[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]92.9554913306353[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]13[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]55[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]6633.49154690541[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]2420176555.65760[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57603&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57603&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.977991520492774
R-squared0.956467414155768
Adjusted R-squared0.946177893865313
F-TEST (value)92.9554913306353
F-TEST (DF numerator)13
F-TEST (DF denominator)55
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation6633.49154690541
Sum Squared Residuals2420176555.65760







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1216234212342.1527709923891.84722900816
2213587210616.8244160112970.17558398852
3209465208688.142695990776.857304009579
4204045201995.4352494442049.56475055554
5200237199372.905039551864.094960448992
6203666205316.361766824-1650.36176682438
7241476237475.0527940034000.94720599689
8260307247824.0233750512482.9766249498
9243324240150.17153083173.82846919986
10244460238951.440488915508.55951108968
11233575229260.4506785814314.549321419
12237217232205.5085340255011.49146597453
13235243227392.1554970677850.8445029328
14230354225657.5431143484696.45688565202
15227184224082.2733835613101.72661643888
16221678217640.2346859474037.76531405344
17217142215817.9876670861324.01233291406
18219452218983.66329509468.336704910103
19256446251698.7770513784747.22294862193
20265845256425.3404341719419.65956582871
21248624247202.9127631891421.08723681053
22241114236827.8487048634286.15129513716
23229245227411.6661155841833.33388441576
24231805230635.2448031751169.75519682530
25219277226351.700282476-7074.70028247639
26219313223472.057812046-4159.05781204584
27212610218602.815039746-5992.81503974564
28214771215709.750678854-938.750678853642
29211142216495.696519245-5353.69651924466
30211457218791.768215771-7334.76821577055
31240048248361.453374357-8313.45337435659
32240636251907.707364033-11271.7073640333
33230580239441.440401324-8861.44040132445
34208795219054.480830123-10259.4808301230
35197922206438.403347078-8516.40334707818
36194596203345.74849678-8749.74849677994
37194581203416.412985297-8835.4129852974
38185686195346.380074031-9660.38007403054
39178106186201.533060698-8095.533060698
40172608183209.439070599-10601.4390705985
41167302175670.087770554-8368.08777055441
42168053170202.855472398-2149.85547239752
43202300206008.312595141-3708.31259514118
44202388211403.325975085-9015.32597508479
45182516188389.784566598-5873.78456659825
46173476178960.453467203-5484.45346720292
47166444169227.994999643-2783.99499964297
48171297174107.225300546-2810.22530054576
49169701173783.009142598-4082.00914259843
50164182167174.282197324-2992.28219732425
51161914159417.0878632612496.91213673867
52159612158513.9001142571098.09988574315
53151001147257.843043023743.15695697999
54158114154540.0565701423573.94342985818
55186530186693.177180678-163.177180677613
56187069189601.308997149-2532.30899714874
57174330171099.1861342453230.81386575518
58169362163412.7765089015949.2234910991
59166827161674.4848591145152.51514088637
60178037172658.2728654745378.72713452586
61186412178162.5693215698249.43067843126
62189226180080.912386249145.08761376009
63191563183850.1479567437712.85204325652
64188906184551.24020094354.75979910005
65186005178214.4799605447790.52003945602
66195309188216.2946797767092.70532022419
67223532220095.2270044433436.77299555655
68226899225982.293854512916.706145488341
69214126207216.5046038436909.49539615713

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 216234 & 212342.152770992 & 3891.84722900816 \tabularnewline
2 & 213587 & 210616.824416011 & 2970.17558398852 \tabularnewline
3 & 209465 & 208688.142695990 & 776.857304009579 \tabularnewline
4 & 204045 & 201995.435249444 & 2049.56475055554 \tabularnewline
5 & 200237 & 199372.905039551 & 864.094960448992 \tabularnewline
6 & 203666 & 205316.361766824 & -1650.36176682438 \tabularnewline
7 & 241476 & 237475.052794003 & 4000.94720599689 \tabularnewline
8 & 260307 & 247824.02337505 & 12482.9766249498 \tabularnewline
9 & 243324 & 240150.1715308 & 3173.82846919986 \tabularnewline
10 & 244460 & 238951.44048891 & 5508.55951108968 \tabularnewline
11 & 233575 & 229260.450678581 & 4314.549321419 \tabularnewline
12 & 237217 & 232205.508534025 & 5011.49146597453 \tabularnewline
13 & 235243 & 227392.155497067 & 7850.8445029328 \tabularnewline
14 & 230354 & 225657.543114348 & 4696.45688565202 \tabularnewline
15 & 227184 & 224082.273383561 & 3101.72661643888 \tabularnewline
16 & 221678 & 217640.234685947 & 4037.76531405344 \tabularnewline
17 & 217142 & 215817.987667086 & 1324.01233291406 \tabularnewline
18 & 219452 & 218983.66329509 & 468.336704910103 \tabularnewline
19 & 256446 & 251698.777051378 & 4747.22294862193 \tabularnewline
20 & 265845 & 256425.340434171 & 9419.65956582871 \tabularnewline
21 & 248624 & 247202.912763189 & 1421.08723681053 \tabularnewline
22 & 241114 & 236827.848704863 & 4286.15129513716 \tabularnewline
23 & 229245 & 227411.666115584 & 1833.33388441576 \tabularnewline
24 & 231805 & 230635.244803175 & 1169.75519682530 \tabularnewline
25 & 219277 & 226351.700282476 & -7074.70028247639 \tabularnewline
26 & 219313 & 223472.057812046 & -4159.05781204584 \tabularnewline
27 & 212610 & 218602.815039746 & -5992.81503974564 \tabularnewline
28 & 214771 & 215709.750678854 & -938.750678853642 \tabularnewline
29 & 211142 & 216495.696519245 & -5353.69651924466 \tabularnewline
30 & 211457 & 218791.768215771 & -7334.76821577055 \tabularnewline
31 & 240048 & 248361.453374357 & -8313.45337435659 \tabularnewline
32 & 240636 & 251907.707364033 & -11271.7073640333 \tabularnewline
33 & 230580 & 239441.440401324 & -8861.44040132445 \tabularnewline
34 & 208795 & 219054.480830123 & -10259.4808301230 \tabularnewline
35 & 197922 & 206438.403347078 & -8516.40334707818 \tabularnewline
36 & 194596 & 203345.74849678 & -8749.74849677994 \tabularnewline
37 & 194581 & 203416.412985297 & -8835.4129852974 \tabularnewline
38 & 185686 & 195346.380074031 & -9660.38007403054 \tabularnewline
39 & 178106 & 186201.533060698 & -8095.533060698 \tabularnewline
40 & 172608 & 183209.439070599 & -10601.4390705985 \tabularnewline
41 & 167302 & 175670.087770554 & -8368.08777055441 \tabularnewline
42 & 168053 & 170202.855472398 & -2149.85547239752 \tabularnewline
43 & 202300 & 206008.312595141 & -3708.31259514118 \tabularnewline
44 & 202388 & 211403.325975085 & -9015.32597508479 \tabularnewline
45 & 182516 & 188389.784566598 & -5873.78456659825 \tabularnewline
46 & 173476 & 178960.453467203 & -5484.45346720292 \tabularnewline
47 & 166444 & 169227.994999643 & -2783.99499964297 \tabularnewline
48 & 171297 & 174107.225300546 & -2810.22530054576 \tabularnewline
49 & 169701 & 173783.009142598 & -4082.00914259843 \tabularnewline
50 & 164182 & 167174.282197324 & -2992.28219732425 \tabularnewline
51 & 161914 & 159417.087863261 & 2496.91213673867 \tabularnewline
52 & 159612 & 158513.900114257 & 1098.09988574315 \tabularnewline
53 & 151001 & 147257.84304302 & 3743.15695697999 \tabularnewline
54 & 158114 & 154540.056570142 & 3573.94342985818 \tabularnewline
55 & 186530 & 186693.177180678 & -163.177180677613 \tabularnewline
56 & 187069 & 189601.308997149 & -2532.30899714874 \tabularnewline
57 & 174330 & 171099.186134245 & 3230.81386575518 \tabularnewline
58 & 169362 & 163412.776508901 & 5949.2234910991 \tabularnewline
59 & 166827 & 161674.484859114 & 5152.51514088637 \tabularnewline
60 & 178037 & 172658.272865474 & 5378.72713452586 \tabularnewline
61 & 186412 & 178162.569321569 & 8249.43067843126 \tabularnewline
62 & 189226 & 180080.91238624 & 9145.08761376009 \tabularnewline
63 & 191563 & 183850.147956743 & 7712.85204325652 \tabularnewline
64 & 188906 & 184551.2402009 & 4354.75979910005 \tabularnewline
65 & 186005 & 178214.479960544 & 7790.52003945602 \tabularnewline
66 & 195309 & 188216.294679776 & 7092.70532022419 \tabularnewline
67 & 223532 & 220095.227004443 & 3436.77299555655 \tabularnewline
68 & 226899 & 225982.293854512 & 916.706145488341 \tabularnewline
69 & 214126 & 207216.504603843 & 6909.49539615713 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57603&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]216234[/C][C]212342.152770992[/C][C]3891.84722900816[/C][/ROW]
[ROW][C]2[/C][C]213587[/C][C]210616.824416011[/C][C]2970.17558398852[/C][/ROW]
[ROW][C]3[/C][C]209465[/C][C]208688.142695990[/C][C]776.857304009579[/C][/ROW]
[ROW][C]4[/C][C]204045[/C][C]201995.435249444[/C][C]2049.56475055554[/C][/ROW]
[ROW][C]5[/C][C]200237[/C][C]199372.905039551[/C][C]864.094960448992[/C][/ROW]
[ROW][C]6[/C][C]203666[/C][C]205316.361766824[/C][C]-1650.36176682438[/C][/ROW]
[ROW][C]7[/C][C]241476[/C][C]237475.052794003[/C][C]4000.94720599689[/C][/ROW]
[ROW][C]8[/C][C]260307[/C][C]247824.02337505[/C][C]12482.9766249498[/C][/ROW]
[ROW][C]9[/C][C]243324[/C][C]240150.1715308[/C][C]3173.82846919986[/C][/ROW]
[ROW][C]10[/C][C]244460[/C][C]238951.44048891[/C][C]5508.55951108968[/C][/ROW]
[ROW][C]11[/C][C]233575[/C][C]229260.450678581[/C][C]4314.549321419[/C][/ROW]
[ROW][C]12[/C][C]237217[/C][C]232205.508534025[/C][C]5011.49146597453[/C][/ROW]
[ROW][C]13[/C][C]235243[/C][C]227392.155497067[/C][C]7850.8445029328[/C][/ROW]
[ROW][C]14[/C][C]230354[/C][C]225657.543114348[/C][C]4696.45688565202[/C][/ROW]
[ROW][C]15[/C][C]227184[/C][C]224082.273383561[/C][C]3101.72661643888[/C][/ROW]
[ROW][C]16[/C][C]221678[/C][C]217640.234685947[/C][C]4037.76531405344[/C][/ROW]
[ROW][C]17[/C][C]217142[/C][C]215817.987667086[/C][C]1324.01233291406[/C][/ROW]
[ROW][C]18[/C][C]219452[/C][C]218983.66329509[/C][C]468.336704910103[/C][/ROW]
[ROW][C]19[/C][C]256446[/C][C]251698.777051378[/C][C]4747.22294862193[/C][/ROW]
[ROW][C]20[/C][C]265845[/C][C]256425.340434171[/C][C]9419.65956582871[/C][/ROW]
[ROW][C]21[/C][C]248624[/C][C]247202.912763189[/C][C]1421.08723681053[/C][/ROW]
[ROW][C]22[/C][C]241114[/C][C]236827.848704863[/C][C]4286.15129513716[/C][/ROW]
[ROW][C]23[/C][C]229245[/C][C]227411.666115584[/C][C]1833.33388441576[/C][/ROW]
[ROW][C]24[/C][C]231805[/C][C]230635.244803175[/C][C]1169.75519682530[/C][/ROW]
[ROW][C]25[/C][C]219277[/C][C]226351.700282476[/C][C]-7074.70028247639[/C][/ROW]
[ROW][C]26[/C][C]219313[/C][C]223472.057812046[/C][C]-4159.05781204584[/C][/ROW]
[ROW][C]27[/C][C]212610[/C][C]218602.815039746[/C][C]-5992.81503974564[/C][/ROW]
[ROW][C]28[/C][C]214771[/C][C]215709.750678854[/C][C]-938.750678853642[/C][/ROW]
[ROW][C]29[/C][C]211142[/C][C]216495.696519245[/C][C]-5353.69651924466[/C][/ROW]
[ROW][C]30[/C][C]211457[/C][C]218791.768215771[/C][C]-7334.76821577055[/C][/ROW]
[ROW][C]31[/C][C]240048[/C][C]248361.453374357[/C][C]-8313.45337435659[/C][/ROW]
[ROW][C]32[/C][C]240636[/C][C]251907.707364033[/C][C]-11271.7073640333[/C][/ROW]
[ROW][C]33[/C][C]230580[/C][C]239441.440401324[/C][C]-8861.44040132445[/C][/ROW]
[ROW][C]34[/C][C]208795[/C][C]219054.480830123[/C][C]-10259.4808301230[/C][/ROW]
[ROW][C]35[/C][C]197922[/C][C]206438.403347078[/C][C]-8516.40334707818[/C][/ROW]
[ROW][C]36[/C][C]194596[/C][C]203345.74849678[/C][C]-8749.74849677994[/C][/ROW]
[ROW][C]37[/C][C]194581[/C][C]203416.412985297[/C][C]-8835.4129852974[/C][/ROW]
[ROW][C]38[/C][C]185686[/C][C]195346.380074031[/C][C]-9660.38007403054[/C][/ROW]
[ROW][C]39[/C][C]178106[/C][C]186201.533060698[/C][C]-8095.533060698[/C][/ROW]
[ROW][C]40[/C][C]172608[/C][C]183209.439070599[/C][C]-10601.4390705985[/C][/ROW]
[ROW][C]41[/C][C]167302[/C][C]175670.087770554[/C][C]-8368.08777055441[/C][/ROW]
[ROW][C]42[/C][C]168053[/C][C]170202.855472398[/C][C]-2149.85547239752[/C][/ROW]
[ROW][C]43[/C][C]202300[/C][C]206008.312595141[/C][C]-3708.31259514118[/C][/ROW]
[ROW][C]44[/C][C]202388[/C][C]211403.325975085[/C][C]-9015.32597508479[/C][/ROW]
[ROW][C]45[/C][C]182516[/C][C]188389.784566598[/C][C]-5873.78456659825[/C][/ROW]
[ROW][C]46[/C][C]173476[/C][C]178960.453467203[/C][C]-5484.45346720292[/C][/ROW]
[ROW][C]47[/C][C]166444[/C][C]169227.994999643[/C][C]-2783.99499964297[/C][/ROW]
[ROW][C]48[/C][C]171297[/C][C]174107.225300546[/C][C]-2810.22530054576[/C][/ROW]
[ROW][C]49[/C][C]169701[/C][C]173783.009142598[/C][C]-4082.00914259843[/C][/ROW]
[ROW][C]50[/C][C]164182[/C][C]167174.282197324[/C][C]-2992.28219732425[/C][/ROW]
[ROW][C]51[/C][C]161914[/C][C]159417.087863261[/C][C]2496.91213673867[/C][/ROW]
[ROW][C]52[/C][C]159612[/C][C]158513.900114257[/C][C]1098.09988574315[/C][/ROW]
[ROW][C]53[/C][C]151001[/C][C]147257.84304302[/C][C]3743.15695697999[/C][/ROW]
[ROW][C]54[/C][C]158114[/C][C]154540.056570142[/C][C]3573.94342985818[/C][/ROW]
[ROW][C]55[/C][C]186530[/C][C]186693.177180678[/C][C]-163.177180677613[/C][/ROW]
[ROW][C]56[/C][C]187069[/C][C]189601.308997149[/C][C]-2532.30899714874[/C][/ROW]
[ROW][C]57[/C][C]174330[/C][C]171099.186134245[/C][C]3230.81386575518[/C][/ROW]
[ROW][C]58[/C][C]169362[/C][C]163412.776508901[/C][C]5949.2234910991[/C][/ROW]
[ROW][C]59[/C][C]166827[/C][C]161674.484859114[/C][C]5152.51514088637[/C][/ROW]
[ROW][C]60[/C][C]178037[/C][C]172658.272865474[/C][C]5378.72713452586[/C][/ROW]
[ROW][C]61[/C][C]186412[/C][C]178162.569321569[/C][C]8249.43067843126[/C][/ROW]
[ROW][C]62[/C][C]189226[/C][C]180080.91238624[/C][C]9145.08761376009[/C][/ROW]
[ROW][C]63[/C][C]191563[/C][C]183850.147956743[/C][C]7712.85204325652[/C][/ROW]
[ROW][C]64[/C][C]188906[/C][C]184551.2402009[/C][C]4354.75979910005[/C][/ROW]
[ROW][C]65[/C][C]186005[/C][C]178214.479960544[/C][C]7790.52003945602[/C][/ROW]
[ROW][C]66[/C][C]195309[/C][C]188216.294679776[/C][C]7092.70532022419[/C][/ROW]
[ROW][C]67[/C][C]223532[/C][C]220095.227004443[/C][C]3436.77299555655[/C][/ROW]
[ROW][C]68[/C][C]226899[/C][C]225982.293854512[/C][C]916.706145488341[/C][/ROW]
[ROW][C]69[/C][C]214126[/C][C]207216.504603843[/C][C]6909.49539615713[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57603&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57603&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1216234212342.1527709923891.84722900816
2213587210616.8244160112970.17558398852
3209465208688.142695990776.857304009579
4204045201995.4352494442049.56475055554
5200237199372.905039551864.094960448992
6203666205316.361766824-1650.36176682438
7241476237475.0527940034000.94720599689
8260307247824.0233750512482.9766249498
9243324240150.17153083173.82846919986
10244460238951.440488915508.55951108968
11233575229260.4506785814314.549321419
12237217232205.5085340255011.49146597453
13235243227392.1554970677850.8445029328
14230354225657.5431143484696.45688565202
15227184224082.2733835613101.72661643888
16221678217640.2346859474037.76531405344
17217142215817.9876670861324.01233291406
18219452218983.66329509468.336704910103
19256446251698.7770513784747.22294862193
20265845256425.3404341719419.65956582871
21248624247202.9127631891421.08723681053
22241114236827.8487048634286.15129513716
23229245227411.6661155841833.33388441576
24231805230635.2448031751169.75519682530
25219277226351.700282476-7074.70028247639
26219313223472.057812046-4159.05781204584
27212610218602.815039746-5992.81503974564
28214771215709.750678854-938.750678853642
29211142216495.696519245-5353.69651924466
30211457218791.768215771-7334.76821577055
31240048248361.453374357-8313.45337435659
32240636251907.707364033-11271.7073640333
33230580239441.440401324-8861.44040132445
34208795219054.480830123-10259.4808301230
35197922206438.403347078-8516.40334707818
36194596203345.74849678-8749.74849677994
37194581203416.412985297-8835.4129852974
38185686195346.380074031-9660.38007403054
39178106186201.533060698-8095.533060698
40172608183209.439070599-10601.4390705985
41167302175670.087770554-8368.08777055441
42168053170202.855472398-2149.85547239752
43202300206008.312595141-3708.31259514118
44202388211403.325975085-9015.32597508479
45182516188389.784566598-5873.78456659825
46173476178960.453467203-5484.45346720292
47166444169227.994999643-2783.99499964297
48171297174107.225300546-2810.22530054576
49169701173783.009142598-4082.00914259843
50164182167174.282197324-2992.28219732425
51161914159417.0878632612496.91213673867
52159612158513.9001142571098.09988574315
53151001147257.843043023743.15695697999
54158114154540.0565701423573.94342985818
55186530186693.177180678-163.177180677613
56187069189601.308997149-2532.30899714874
57174330171099.1861342453230.81386575518
58169362163412.7765089015949.2234910991
59166827161674.4848591145152.51514088637
60178037172658.2728654745378.72713452586
61186412178162.5693215698249.43067843126
62189226180080.912386249145.08761376009
63191563183850.1479567437712.85204325652
64188906184551.24020094354.75979910005
65186005178214.4799605447790.52003945602
66195309188216.2946797767092.70532022419
67223532220095.2270044433436.77299555655
68226899225982.293854512916.706145488341
69214126207216.5046038436909.49539615713







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.001679208212620120.003358416425240230.99832079178738
180.0005851654311293380.001170330862258680.99941483456887
190.0002273084939209140.0004546169878418280.999772691506079
200.0003605788671068270.0007211577342136540.999639421132893
210.0001340747951710820.0002681495903421630.99986592520483
220.0004719706026696750.000943941205339350.99952802939733
230.0002713509060626390.0005427018121252780.999728649093937
240.0002908140839051920.0005816281678103840.999709185916095
250.1372080678670880.2744161357341760.862791932132912
260.1402009413506780.2804018827013570.859799058649322
270.1019787575756800.2039575151513590.89802124242432
280.2721563827213530.5443127654427060.727843617278647
290.3060246810251310.6120493620502630.693975318974869
300.2528194619079420.5056389238158840.747180538092058
310.4298951582812920.8597903165625840.570104841718708
320.9349190669405970.1301618661188060.0650809330594032
330.959571856475020.080856287049960.04042814352498
340.9634693377545580.07306132449088420.0365306622454421
350.98048268440640.03903463118719990.0195173155935999
360.9855968229901920.02880635401961550.0144031770098077
370.9871243979177880.02575120416442410.0128756020822121
380.9838389249100820.0323221501798360.016161075089918
390.9867114434609810.02657711307803730.0132885565390186
400.9787075465997570.04258490680048580.0212924534002429
410.9811249815434970.03775003691300550.0188750184565027
420.9924358051051180.01512838978976460.00756419489488232
430.9982427688690520.003514462261896140.00175723113094807
440.9992905150761740.001418969847652770.000709484923826384
450.9991296048958430.001740790208313390.000870395104156696
460.9977022794614770.004595441077046490.00229772053852325
470.9983582835751350.00328343284972990.00164171642486495
480.999741750712460.0005164985750785040.000258249287539252
490.9990272171804560.001945565639087110.000972782819543553
500.9999768353418994.63293162030479e-052.31646581015240e-05
510.9999932303447451.35393105103059e-056.76965525515294e-06
520.9999766772121594.66455756827535e-052.33227878413767e-05

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
17 & 0.00167920821262012 & 0.00335841642524023 & 0.99832079178738 \tabularnewline
18 & 0.000585165431129338 & 0.00117033086225868 & 0.99941483456887 \tabularnewline
19 & 0.000227308493920914 & 0.000454616987841828 & 0.999772691506079 \tabularnewline
20 & 0.000360578867106827 & 0.000721157734213654 & 0.999639421132893 \tabularnewline
21 & 0.000134074795171082 & 0.000268149590342163 & 0.99986592520483 \tabularnewline
22 & 0.000471970602669675 & 0.00094394120533935 & 0.99952802939733 \tabularnewline
23 & 0.000271350906062639 & 0.000542701812125278 & 0.999728649093937 \tabularnewline
24 & 0.000290814083905192 & 0.000581628167810384 & 0.999709185916095 \tabularnewline
25 & 0.137208067867088 & 0.274416135734176 & 0.862791932132912 \tabularnewline
26 & 0.140200941350678 & 0.280401882701357 & 0.859799058649322 \tabularnewline
27 & 0.101978757575680 & 0.203957515151359 & 0.89802124242432 \tabularnewline
28 & 0.272156382721353 & 0.544312765442706 & 0.727843617278647 \tabularnewline
29 & 0.306024681025131 & 0.612049362050263 & 0.693975318974869 \tabularnewline
30 & 0.252819461907942 & 0.505638923815884 & 0.747180538092058 \tabularnewline
31 & 0.429895158281292 & 0.859790316562584 & 0.570104841718708 \tabularnewline
32 & 0.934919066940597 & 0.130161866118806 & 0.0650809330594032 \tabularnewline
33 & 0.95957185647502 & 0.08085628704996 & 0.04042814352498 \tabularnewline
34 & 0.963469337754558 & 0.0730613244908842 & 0.0365306622454421 \tabularnewline
35 & 0.9804826844064 & 0.0390346311871999 & 0.0195173155935999 \tabularnewline
36 & 0.985596822990192 & 0.0288063540196155 & 0.0144031770098077 \tabularnewline
37 & 0.987124397917788 & 0.0257512041644241 & 0.0128756020822121 \tabularnewline
38 & 0.983838924910082 & 0.032322150179836 & 0.016161075089918 \tabularnewline
39 & 0.986711443460981 & 0.0265771130780373 & 0.0132885565390186 \tabularnewline
40 & 0.978707546599757 & 0.0425849068004858 & 0.0212924534002429 \tabularnewline
41 & 0.981124981543497 & 0.0377500369130055 & 0.0188750184565027 \tabularnewline
42 & 0.992435805105118 & 0.0151283897897646 & 0.00756419489488232 \tabularnewline
43 & 0.998242768869052 & 0.00351446226189614 & 0.00175723113094807 \tabularnewline
44 & 0.999290515076174 & 0.00141896984765277 & 0.000709484923826384 \tabularnewline
45 & 0.999129604895843 & 0.00174079020831339 & 0.000870395104156696 \tabularnewline
46 & 0.997702279461477 & 0.00459544107704649 & 0.00229772053852325 \tabularnewline
47 & 0.998358283575135 & 0.0032834328497299 & 0.00164171642486495 \tabularnewline
48 & 0.99974175071246 & 0.000516498575078504 & 0.000258249287539252 \tabularnewline
49 & 0.999027217180456 & 0.00194556563908711 & 0.000972782819543553 \tabularnewline
50 & 0.999976835341899 & 4.63293162030479e-05 & 2.31646581015240e-05 \tabularnewline
51 & 0.999993230344745 & 1.35393105103059e-05 & 6.76965525515294e-06 \tabularnewline
52 & 0.999976677212159 & 4.66455756827535e-05 & 2.33227878413767e-05 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57603&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]17[/C][C]0.00167920821262012[/C][C]0.00335841642524023[/C][C]0.99832079178738[/C][/ROW]
[ROW][C]18[/C][C]0.000585165431129338[/C][C]0.00117033086225868[/C][C]0.99941483456887[/C][/ROW]
[ROW][C]19[/C][C]0.000227308493920914[/C][C]0.000454616987841828[/C][C]0.999772691506079[/C][/ROW]
[ROW][C]20[/C][C]0.000360578867106827[/C][C]0.000721157734213654[/C][C]0.999639421132893[/C][/ROW]
[ROW][C]21[/C][C]0.000134074795171082[/C][C]0.000268149590342163[/C][C]0.99986592520483[/C][/ROW]
[ROW][C]22[/C][C]0.000471970602669675[/C][C]0.00094394120533935[/C][C]0.99952802939733[/C][/ROW]
[ROW][C]23[/C][C]0.000271350906062639[/C][C]0.000542701812125278[/C][C]0.999728649093937[/C][/ROW]
[ROW][C]24[/C][C]0.000290814083905192[/C][C]0.000581628167810384[/C][C]0.999709185916095[/C][/ROW]
[ROW][C]25[/C][C]0.137208067867088[/C][C]0.274416135734176[/C][C]0.862791932132912[/C][/ROW]
[ROW][C]26[/C][C]0.140200941350678[/C][C]0.280401882701357[/C][C]0.859799058649322[/C][/ROW]
[ROW][C]27[/C][C]0.101978757575680[/C][C]0.203957515151359[/C][C]0.89802124242432[/C][/ROW]
[ROW][C]28[/C][C]0.272156382721353[/C][C]0.544312765442706[/C][C]0.727843617278647[/C][/ROW]
[ROW][C]29[/C][C]0.306024681025131[/C][C]0.612049362050263[/C][C]0.693975318974869[/C][/ROW]
[ROW][C]30[/C][C]0.252819461907942[/C][C]0.505638923815884[/C][C]0.747180538092058[/C][/ROW]
[ROW][C]31[/C][C]0.429895158281292[/C][C]0.859790316562584[/C][C]0.570104841718708[/C][/ROW]
[ROW][C]32[/C][C]0.934919066940597[/C][C]0.130161866118806[/C][C]0.0650809330594032[/C][/ROW]
[ROW][C]33[/C][C]0.95957185647502[/C][C]0.08085628704996[/C][C]0.04042814352498[/C][/ROW]
[ROW][C]34[/C][C]0.963469337754558[/C][C]0.0730613244908842[/C][C]0.0365306622454421[/C][/ROW]
[ROW][C]35[/C][C]0.9804826844064[/C][C]0.0390346311871999[/C][C]0.0195173155935999[/C][/ROW]
[ROW][C]36[/C][C]0.985596822990192[/C][C]0.0288063540196155[/C][C]0.0144031770098077[/C][/ROW]
[ROW][C]37[/C][C]0.987124397917788[/C][C]0.0257512041644241[/C][C]0.0128756020822121[/C][/ROW]
[ROW][C]38[/C][C]0.983838924910082[/C][C]0.032322150179836[/C][C]0.016161075089918[/C][/ROW]
[ROW][C]39[/C][C]0.986711443460981[/C][C]0.0265771130780373[/C][C]0.0132885565390186[/C][/ROW]
[ROW][C]40[/C][C]0.978707546599757[/C][C]0.0425849068004858[/C][C]0.0212924534002429[/C][/ROW]
[ROW][C]41[/C][C]0.981124981543497[/C][C]0.0377500369130055[/C][C]0.0188750184565027[/C][/ROW]
[ROW][C]42[/C][C]0.992435805105118[/C][C]0.0151283897897646[/C][C]0.00756419489488232[/C][/ROW]
[ROW][C]43[/C][C]0.998242768869052[/C][C]0.00351446226189614[/C][C]0.00175723113094807[/C][/ROW]
[ROW][C]44[/C][C]0.999290515076174[/C][C]0.00141896984765277[/C][C]0.000709484923826384[/C][/ROW]
[ROW][C]45[/C][C]0.999129604895843[/C][C]0.00174079020831339[/C][C]0.000870395104156696[/C][/ROW]
[ROW][C]46[/C][C]0.997702279461477[/C][C]0.00459544107704649[/C][C]0.00229772053852325[/C][/ROW]
[ROW][C]47[/C][C]0.998358283575135[/C][C]0.0032834328497299[/C][C]0.00164171642486495[/C][/ROW]
[ROW][C]48[/C][C]0.99974175071246[/C][C]0.000516498575078504[/C][C]0.000258249287539252[/C][/ROW]
[ROW][C]49[/C][C]0.999027217180456[/C][C]0.00194556563908711[/C][C]0.000972782819543553[/C][/ROW]
[ROW][C]50[/C][C]0.999976835341899[/C][C]4.63293162030479e-05[/C][C]2.31646581015240e-05[/C][/ROW]
[ROW][C]51[/C][C]0.999993230344745[/C][C]1.35393105103059e-05[/C][C]6.76965525515294e-06[/C][/ROW]
[ROW][C]52[/C][C]0.999976677212159[/C][C]4.66455756827535e-05[/C][C]2.33227878413767e-05[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57603&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57603&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.001679208212620120.003358416425240230.99832079178738
180.0005851654311293380.001170330862258680.99941483456887
190.0002273084939209140.0004546169878418280.999772691506079
200.0003605788671068270.0007211577342136540.999639421132893
210.0001340747951710820.0002681495903421630.99986592520483
220.0004719706026696750.000943941205339350.99952802939733
230.0002713509060626390.0005427018121252780.999728649093937
240.0002908140839051920.0005816281678103840.999709185916095
250.1372080678670880.2744161357341760.862791932132912
260.1402009413506780.2804018827013570.859799058649322
270.1019787575756800.2039575151513590.89802124242432
280.2721563827213530.5443127654427060.727843617278647
290.3060246810251310.6120493620502630.693975318974869
300.2528194619079420.5056389238158840.747180538092058
310.4298951582812920.8597903165625840.570104841718708
320.9349190669405970.1301618661188060.0650809330594032
330.959571856475020.080856287049960.04042814352498
340.9634693377545580.07306132449088420.0365306622454421
350.98048268440640.03903463118719990.0195173155935999
360.9855968229901920.02880635401961550.0144031770098077
370.9871243979177880.02575120416442410.0128756020822121
380.9838389249100820.0323221501798360.016161075089918
390.9867114434609810.02657711307803730.0132885565390186
400.9787075465997570.04258490680048580.0212924534002429
410.9811249815434970.03775003691300550.0188750184565027
420.9924358051051180.01512838978976460.00756419489488232
430.9982427688690520.003514462261896140.00175723113094807
440.9992905150761740.001418969847652770.000709484923826384
450.9991296048958430.001740790208313390.000870395104156696
460.9977022794614770.004595441077046490.00229772053852325
470.9983582835751350.00328343284972990.00164171642486495
480.999741750712460.0005164985750785040.000258249287539252
490.9990272171804560.001945565639087110.000972782819543553
500.9999768353418994.63293162030479e-052.31646581015240e-05
510.9999932303447451.35393105103059e-056.76965525515294e-06
520.9999766772121594.66455756827535e-052.33227878413767e-05







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level180.5NOK
5% type I error level260.722222222222222NOK
10% type I error level280.777777777777778NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 18 & 0.5 & NOK \tabularnewline
5% type I error level & 26 & 0.722222222222222 & NOK \tabularnewline
10% type I error level & 28 & 0.777777777777778 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57603&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]18[/C][C]0.5[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]26[/C][C]0.722222222222222[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]28[/C][C]0.777777777777778[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57603&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57603&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level180.5NOK
5% type I error level260.722222222222222NOK
10% type I error level280.777777777777778NOK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}