Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationMon, 27 Dec 2010 20:08:33 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Dec/27/t1293480563o7ui422ym6zegbk.htm/, Retrieved Fri, 01 Nov 2024 01:22:25 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=116106, Retrieved Fri, 01 Nov 2024 01:22:25 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact170
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2010-12-27 20:08:33] [d894319408e7bf490be5a864265f5d52] [Current]
- R  D    [(Partial) Autocorrelation Function] [autocorrelatie] [2011-12-20 21:46:16] [74be16979710d4c4e7c6647856088456]
-           [(Partial) Autocorrelation Function] [autocorrelatie] [2011-12-22 09:49:47] [f1aa04283d83c25edc8ae3bb0d0fb93e]
- RM      [(Partial) Autocorrelation Function] [Deel 4: ARIMA: Au...] [2012-12-13 14:18:22] [9dd9c05d056fdee415816a8bd25f68fd]
Feedback Forum

Post a new message
Dataseries X:
6
6
8
4
8
10
9
12
9
11
11
11
11
11
9
8
6
7
8
6
5
2
3
3
7
8
7
7
6
6
7
5
5
5
4
4
4
1
-1
3
4
3
2
1
4
3
5
6
6
6
6
6
5
6
5
6
5
7
4
5
6
6
5
3
2
3
3
2
0
4
4
5
6
6
5
5
3
5
5
5
3
6
6
4
6
5
4
5
5
4
3
2
3
2
-1
0
-2
1
-2
-2
-2
-6
-4
-2
0
-5
-4
-5
-1
-2
-4
-1
1
1
-2
1
1
3
3
1
1
0
2
2
-1
1
0
1
1
3
2




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ 193.190.124.24 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=116106&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ 193.190.124.24[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=116106&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=116106&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.87390910.00230
20.8238039.42890
30.7748698.86880
40.7549118.64030
50.7214268.25710
60.6456977.39030
70.5887686.73880
80.5206135.95870
90.4800515.49440
100.4207324.81552e-06
110.3928544.49648e-06
120.3550124.06334.1e-05
130.3249553.71930.000148
140.2995873.42890.000405
150.2861963.27570.000675
160.2653973.03760.001439
170.2263062.59020.005339
180.2244722.56920.005657
190.2001562.29090.011783
200.2018832.31070.011207
210.1780772.03820.021772
220.1679611.92240.028363
230.1468751.68110.047567
240.1154941.32190.094255
250.1170561.33980.091321
260.0893121.02220.15428
270.0665880.76210.223674
280.0413540.47330.318386
290.0278880.31920.375046
300.0335970.38450.350602
310.0218440.250.401483
32-0.002383-0.02730.489141
33-0.001993-0.02280.490917
340.000110.00130.499497
350.0001240.00140.499433
36-0.017866-0.20450.419147
37-0.002823-0.03230.487137
380.0010840.01240.495061
390.0005120.00590.497668
400.0010670.01220.495137
41-0.000556-0.00640.497464
420.0247820.28360.388568
430.0131940.1510.440099
440.0041610.04760.481043
45-0.000603-0.00690.497251
460.0004940.00560.497751
47-0.004316-0.04940.48034
48-0.019465-0.22280.412026

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.873909 & 10.0023 & 0 \tabularnewline
2 & 0.823803 & 9.4289 & 0 \tabularnewline
3 & 0.774869 & 8.8688 & 0 \tabularnewline
4 & 0.754911 & 8.6403 & 0 \tabularnewline
5 & 0.721426 & 8.2571 & 0 \tabularnewline
6 & 0.645697 & 7.3903 & 0 \tabularnewline
7 & 0.588768 & 6.7388 & 0 \tabularnewline
8 & 0.520613 & 5.9587 & 0 \tabularnewline
9 & 0.480051 & 5.4944 & 0 \tabularnewline
10 & 0.420732 & 4.8155 & 2e-06 \tabularnewline
11 & 0.392854 & 4.4964 & 8e-06 \tabularnewline
12 & 0.355012 & 4.0633 & 4.1e-05 \tabularnewline
13 & 0.324955 & 3.7193 & 0.000148 \tabularnewline
14 & 0.299587 & 3.4289 & 0.000405 \tabularnewline
15 & 0.286196 & 3.2757 & 0.000675 \tabularnewline
16 & 0.265397 & 3.0376 & 0.001439 \tabularnewline
17 & 0.226306 & 2.5902 & 0.005339 \tabularnewline
18 & 0.224472 & 2.5692 & 0.005657 \tabularnewline
19 & 0.200156 & 2.2909 & 0.011783 \tabularnewline
20 & 0.201883 & 2.3107 & 0.011207 \tabularnewline
21 & 0.178077 & 2.0382 & 0.021772 \tabularnewline
22 & 0.167961 & 1.9224 & 0.028363 \tabularnewline
23 & 0.146875 & 1.6811 & 0.047567 \tabularnewline
24 & 0.115494 & 1.3219 & 0.094255 \tabularnewline
25 & 0.117056 & 1.3398 & 0.091321 \tabularnewline
26 & 0.089312 & 1.0222 & 0.15428 \tabularnewline
27 & 0.066588 & 0.7621 & 0.223674 \tabularnewline
28 & 0.041354 & 0.4733 & 0.318386 \tabularnewline
29 & 0.027888 & 0.3192 & 0.375046 \tabularnewline
30 & 0.033597 & 0.3845 & 0.350602 \tabularnewline
31 & 0.021844 & 0.25 & 0.401483 \tabularnewline
32 & -0.002383 & -0.0273 & 0.489141 \tabularnewline
33 & -0.001993 & -0.0228 & 0.490917 \tabularnewline
34 & 0.00011 & 0.0013 & 0.499497 \tabularnewline
35 & 0.000124 & 0.0014 & 0.499433 \tabularnewline
36 & -0.017866 & -0.2045 & 0.419147 \tabularnewline
37 & -0.002823 & -0.0323 & 0.487137 \tabularnewline
38 & 0.001084 & 0.0124 & 0.495061 \tabularnewline
39 & 0.000512 & 0.0059 & 0.497668 \tabularnewline
40 & 0.001067 & 0.0122 & 0.495137 \tabularnewline
41 & -0.000556 & -0.0064 & 0.497464 \tabularnewline
42 & 0.024782 & 0.2836 & 0.388568 \tabularnewline
43 & 0.013194 & 0.151 & 0.440099 \tabularnewline
44 & 0.004161 & 0.0476 & 0.481043 \tabularnewline
45 & -0.000603 & -0.0069 & 0.497251 \tabularnewline
46 & 0.000494 & 0.0056 & 0.497751 \tabularnewline
47 & -0.004316 & -0.0494 & 0.48034 \tabularnewline
48 & -0.019465 & -0.2228 & 0.412026 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=116106&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.873909[/C][C]10.0023[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.823803[/C][C]9.4289[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]0.774869[/C][C]8.8688[/C][C]0[/C][/ROW]
[ROW][C]4[/C][C]0.754911[/C][C]8.6403[/C][C]0[/C][/ROW]
[ROW][C]5[/C][C]0.721426[/C][C]8.2571[/C][C]0[/C][/ROW]
[ROW][C]6[/C][C]0.645697[/C][C]7.3903[/C][C]0[/C][/ROW]
[ROW][C]7[/C][C]0.588768[/C][C]6.7388[/C][C]0[/C][/ROW]
[ROW][C]8[/C][C]0.520613[/C][C]5.9587[/C][C]0[/C][/ROW]
[ROW][C]9[/C][C]0.480051[/C][C]5.4944[/C][C]0[/C][/ROW]
[ROW][C]10[/C][C]0.420732[/C][C]4.8155[/C][C]2e-06[/C][/ROW]
[ROW][C]11[/C][C]0.392854[/C][C]4.4964[/C][C]8e-06[/C][/ROW]
[ROW][C]12[/C][C]0.355012[/C][C]4.0633[/C][C]4.1e-05[/C][/ROW]
[ROW][C]13[/C][C]0.324955[/C][C]3.7193[/C][C]0.000148[/C][/ROW]
[ROW][C]14[/C][C]0.299587[/C][C]3.4289[/C][C]0.000405[/C][/ROW]
[ROW][C]15[/C][C]0.286196[/C][C]3.2757[/C][C]0.000675[/C][/ROW]
[ROW][C]16[/C][C]0.265397[/C][C]3.0376[/C][C]0.001439[/C][/ROW]
[ROW][C]17[/C][C]0.226306[/C][C]2.5902[/C][C]0.005339[/C][/ROW]
[ROW][C]18[/C][C]0.224472[/C][C]2.5692[/C][C]0.005657[/C][/ROW]
[ROW][C]19[/C][C]0.200156[/C][C]2.2909[/C][C]0.011783[/C][/ROW]
[ROW][C]20[/C][C]0.201883[/C][C]2.3107[/C][C]0.011207[/C][/ROW]
[ROW][C]21[/C][C]0.178077[/C][C]2.0382[/C][C]0.021772[/C][/ROW]
[ROW][C]22[/C][C]0.167961[/C][C]1.9224[/C][C]0.028363[/C][/ROW]
[ROW][C]23[/C][C]0.146875[/C][C]1.6811[/C][C]0.047567[/C][/ROW]
[ROW][C]24[/C][C]0.115494[/C][C]1.3219[/C][C]0.094255[/C][/ROW]
[ROW][C]25[/C][C]0.117056[/C][C]1.3398[/C][C]0.091321[/C][/ROW]
[ROW][C]26[/C][C]0.089312[/C][C]1.0222[/C][C]0.15428[/C][/ROW]
[ROW][C]27[/C][C]0.066588[/C][C]0.7621[/C][C]0.223674[/C][/ROW]
[ROW][C]28[/C][C]0.041354[/C][C]0.4733[/C][C]0.318386[/C][/ROW]
[ROW][C]29[/C][C]0.027888[/C][C]0.3192[/C][C]0.375046[/C][/ROW]
[ROW][C]30[/C][C]0.033597[/C][C]0.3845[/C][C]0.350602[/C][/ROW]
[ROW][C]31[/C][C]0.021844[/C][C]0.25[/C][C]0.401483[/C][/ROW]
[ROW][C]32[/C][C]-0.002383[/C][C]-0.0273[/C][C]0.489141[/C][/ROW]
[ROW][C]33[/C][C]-0.001993[/C][C]-0.0228[/C][C]0.490917[/C][/ROW]
[ROW][C]34[/C][C]0.00011[/C][C]0.0013[/C][C]0.499497[/C][/ROW]
[ROW][C]35[/C][C]0.000124[/C][C]0.0014[/C][C]0.499433[/C][/ROW]
[ROW][C]36[/C][C]-0.017866[/C][C]-0.2045[/C][C]0.419147[/C][/ROW]
[ROW][C]37[/C][C]-0.002823[/C][C]-0.0323[/C][C]0.487137[/C][/ROW]
[ROW][C]38[/C][C]0.001084[/C][C]0.0124[/C][C]0.495061[/C][/ROW]
[ROW][C]39[/C][C]0.000512[/C][C]0.0059[/C][C]0.497668[/C][/ROW]
[ROW][C]40[/C][C]0.001067[/C][C]0.0122[/C][C]0.495137[/C][/ROW]
[ROW][C]41[/C][C]-0.000556[/C][C]-0.0064[/C][C]0.497464[/C][/ROW]
[ROW][C]42[/C][C]0.024782[/C][C]0.2836[/C][C]0.388568[/C][/ROW]
[ROW][C]43[/C][C]0.013194[/C][C]0.151[/C][C]0.440099[/C][/ROW]
[ROW][C]44[/C][C]0.004161[/C][C]0.0476[/C][C]0.481043[/C][/ROW]
[ROW][C]45[/C][C]-0.000603[/C][C]-0.0069[/C][C]0.497251[/C][/ROW]
[ROW][C]46[/C][C]0.000494[/C][C]0.0056[/C][C]0.497751[/C][/ROW]
[ROW][C]47[/C][C]-0.004316[/C][C]-0.0494[/C][C]0.48034[/C][/ROW]
[ROW][C]48[/C][C]-0.019465[/C][C]-0.2228[/C][C]0.412026[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=116106&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=116106&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.87390910.00230
20.8238039.42890
30.7748698.86880
40.7549118.64030
50.7214268.25710
60.6456977.39030
70.5887686.73880
80.5206135.95870
90.4800515.49440
100.4207324.81552e-06
110.3928544.49648e-06
120.3550124.06334.1e-05
130.3249553.71930.000148
140.2995873.42890.000405
150.2861963.27570.000675
160.2653973.03760.001439
170.2263062.59020.005339
180.2244722.56920.005657
190.2001562.29090.011783
200.2018832.31070.011207
210.1780772.03820.021772
220.1679611.92240.028363
230.1468751.68110.047567
240.1154941.32190.094255
250.1170561.33980.091321
260.0893121.02220.15428
270.0665880.76210.223674
280.0413540.47330.318386
290.0278880.31920.375046
300.0335970.38450.350602
310.0218440.250.401483
32-0.002383-0.02730.489141
33-0.001993-0.02280.490917
340.000110.00130.499497
350.0001240.00140.499433
36-0.017866-0.20450.419147
37-0.002823-0.03230.487137
380.0010840.01240.495061
390.0005120.00590.497668
400.0010670.01220.495137
41-0.000556-0.00640.497464
420.0247820.28360.388568
430.0131940.1510.440099
440.0041610.04760.481043
45-0.000603-0.00690.497251
460.0004940.00560.497751
47-0.004316-0.04940.48034
48-0.019465-0.22280.412026







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.87390910.00230
20.2542982.91060.00212
30.0714190.81740.207584
40.1385161.58540.057644
50.0202530.23180.408523
6-0.201692-2.30850.01127
7-0.065005-0.7440.229099
8-0.110978-1.27020.103133
90.0033160.0380.484891
10-0.050663-0.57990.2815
110.1197091.37010.086495
120.0420710.48150.315475
130.0436870.50.30895
140.0334220.38250.351344
150.068440.78330.217425
16-0.057605-0.65930.255425
17-0.120131-1.3750.085745
180.0620530.71020.239412
19-0.059788-0.68430.247494
200.039890.45660.324372
21-0.003683-0.04220.483219
220.0413830.47360.318269
23-0.048408-0.55410.290244
24-0.085166-0.97480.165735
250.0745670.85350.197482
26-0.067189-0.7690.221634
27-0.096598-1.10560.135459
280.03670.420.33757
290.0202010.23120.408758
300.0972471.1130.133863
310.0161150.18440.426976
32-0.04168-0.47710.31706
330.0653450.74790.227929
34-0.028782-0.32940.371182
35-0.024714-0.28290.388865
36-0.104119-1.19170.117768
370.1119831.28170.101105
38-0.01118-0.1280.44919
390.0084990.09730.461329
400.0243610.27880.390409
410.0038620.04420.482406
420.1050091.20190.115788
43-0.110087-1.260.104955
44-0.066276-0.75860.224739
45-0.022929-0.26240.3967
46-0.036611-0.4190.337939
470.0098480.11270.455212
48-0.029069-0.33270.369941

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.873909 & 10.0023 & 0 \tabularnewline
2 & 0.254298 & 2.9106 & 0.00212 \tabularnewline
3 & 0.071419 & 0.8174 & 0.207584 \tabularnewline
4 & 0.138516 & 1.5854 & 0.057644 \tabularnewline
5 & 0.020253 & 0.2318 & 0.408523 \tabularnewline
6 & -0.201692 & -2.3085 & 0.01127 \tabularnewline
7 & -0.065005 & -0.744 & 0.229099 \tabularnewline
8 & -0.110978 & -1.2702 & 0.103133 \tabularnewline
9 & 0.003316 & 0.038 & 0.484891 \tabularnewline
10 & -0.050663 & -0.5799 & 0.2815 \tabularnewline
11 & 0.119709 & 1.3701 & 0.086495 \tabularnewline
12 & 0.042071 & 0.4815 & 0.315475 \tabularnewline
13 & 0.043687 & 0.5 & 0.30895 \tabularnewline
14 & 0.033422 & 0.3825 & 0.351344 \tabularnewline
15 & 0.06844 & 0.7833 & 0.217425 \tabularnewline
16 & -0.057605 & -0.6593 & 0.255425 \tabularnewline
17 & -0.120131 & -1.375 & 0.085745 \tabularnewline
18 & 0.062053 & 0.7102 & 0.239412 \tabularnewline
19 & -0.059788 & -0.6843 & 0.247494 \tabularnewline
20 & 0.03989 & 0.4566 & 0.324372 \tabularnewline
21 & -0.003683 & -0.0422 & 0.483219 \tabularnewline
22 & 0.041383 & 0.4736 & 0.318269 \tabularnewline
23 & -0.048408 & -0.5541 & 0.290244 \tabularnewline
24 & -0.085166 & -0.9748 & 0.165735 \tabularnewline
25 & 0.074567 & 0.8535 & 0.197482 \tabularnewline
26 & -0.067189 & -0.769 & 0.221634 \tabularnewline
27 & -0.096598 & -1.1056 & 0.135459 \tabularnewline
28 & 0.0367 & 0.42 & 0.33757 \tabularnewline
29 & 0.020201 & 0.2312 & 0.408758 \tabularnewline
30 & 0.097247 & 1.113 & 0.133863 \tabularnewline
31 & 0.016115 & 0.1844 & 0.426976 \tabularnewline
32 & -0.04168 & -0.4771 & 0.31706 \tabularnewline
33 & 0.065345 & 0.7479 & 0.227929 \tabularnewline
34 & -0.028782 & -0.3294 & 0.371182 \tabularnewline
35 & -0.024714 & -0.2829 & 0.388865 \tabularnewline
36 & -0.104119 & -1.1917 & 0.117768 \tabularnewline
37 & 0.111983 & 1.2817 & 0.101105 \tabularnewline
38 & -0.01118 & -0.128 & 0.44919 \tabularnewline
39 & 0.008499 & 0.0973 & 0.461329 \tabularnewline
40 & 0.024361 & 0.2788 & 0.390409 \tabularnewline
41 & 0.003862 & 0.0442 & 0.482406 \tabularnewline
42 & 0.105009 & 1.2019 & 0.115788 \tabularnewline
43 & -0.110087 & -1.26 & 0.104955 \tabularnewline
44 & -0.066276 & -0.7586 & 0.224739 \tabularnewline
45 & -0.022929 & -0.2624 & 0.3967 \tabularnewline
46 & -0.036611 & -0.419 & 0.337939 \tabularnewline
47 & 0.009848 & 0.1127 & 0.455212 \tabularnewline
48 & -0.029069 & -0.3327 & 0.369941 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=116106&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.873909[/C][C]10.0023[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.254298[/C][C]2.9106[/C][C]0.00212[/C][/ROW]
[ROW][C]3[/C][C]0.071419[/C][C]0.8174[/C][C]0.207584[/C][/ROW]
[ROW][C]4[/C][C]0.138516[/C][C]1.5854[/C][C]0.057644[/C][/ROW]
[ROW][C]5[/C][C]0.020253[/C][C]0.2318[/C][C]0.408523[/C][/ROW]
[ROW][C]6[/C][C]-0.201692[/C][C]-2.3085[/C][C]0.01127[/C][/ROW]
[ROW][C]7[/C][C]-0.065005[/C][C]-0.744[/C][C]0.229099[/C][/ROW]
[ROW][C]8[/C][C]-0.110978[/C][C]-1.2702[/C][C]0.103133[/C][/ROW]
[ROW][C]9[/C][C]0.003316[/C][C]0.038[/C][C]0.484891[/C][/ROW]
[ROW][C]10[/C][C]-0.050663[/C][C]-0.5799[/C][C]0.2815[/C][/ROW]
[ROW][C]11[/C][C]0.119709[/C][C]1.3701[/C][C]0.086495[/C][/ROW]
[ROW][C]12[/C][C]0.042071[/C][C]0.4815[/C][C]0.315475[/C][/ROW]
[ROW][C]13[/C][C]0.043687[/C][C]0.5[/C][C]0.30895[/C][/ROW]
[ROW][C]14[/C][C]0.033422[/C][C]0.3825[/C][C]0.351344[/C][/ROW]
[ROW][C]15[/C][C]0.06844[/C][C]0.7833[/C][C]0.217425[/C][/ROW]
[ROW][C]16[/C][C]-0.057605[/C][C]-0.6593[/C][C]0.255425[/C][/ROW]
[ROW][C]17[/C][C]-0.120131[/C][C]-1.375[/C][C]0.085745[/C][/ROW]
[ROW][C]18[/C][C]0.062053[/C][C]0.7102[/C][C]0.239412[/C][/ROW]
[ROW][C]19[/C][C]-0.059788[/C][C]-0.6843[/C][C]0.247494[/C][/ROW]
[ROW][C]20[/C][C]0.03989[/C][C]0.4566[/C][C]0.324372[/C][/ROW]
[ROW][C]21[/C][C]-0.003683[/C][C]-0.0422[/C][C]0.483219[/C][/ROW]
[ROW][C]22[/C][C]0.041383[/C][C]0.4736[/C][C]0.318269[/C][/ROW]
[ROW][C]23[/C][C]-0.048408[/C][C]-0.5541[/C][C]0.290244[/C][/ROW]
[ROW][C]24[/C][C]-0.085166[/C][C]-0.9748[/C][C]0.165735[/C][/ROW]
[ROW][C]25[/C][C]0.074567[/C][C]0.8535[/C][C]0.197482[/C][/ROW]
[ROW][C]26[/C][C]-0.067189[/C][C]-0.769[/C][C]0.221634[/C][/ROW]
[ROW][C]27[/C][C]-0.096598[/C][C]-1.1056[/C][C]0.135459[/C][/ROW]
[ROW][C]28[/C][C]0.0367[/C][C]0.42[/C][C]0.33757[/C][/ROW]
[ROW][C]29[/C][C]0.020201[/C][C]0.2312[/C][C]0.408758[/C][/ROW]
[ROW][C]30[/C][C]0.097247[/C][C]1.113[/C][C]0.133863[/C][/ROW]
[ROW][C]31[/C][C]0.016115[/C][C]0.1844[/C][C]0.426976[/C][/ROW]
[ROW][C]32[/C][C]-0.04168[/C][C]-0.4771[/C][C]0.31706[/C][/ROW]
[ROW][C]33[/C][C]0.065345[/C][C]0.7479[/C][C]0.227929[/C][/ROW]
[ROW][C]34[/C][C]-0.028782[/C][C]-0.3294[/C][C]0.371182[/C][/ROW]
[ROW][C]35[/C][C]-0.024714[/C][C]-0.2829[/C][C]0.388865[/C][/ROW]
[ROW][C]36[/C][C]-0.104119[/C][C]-1.1917[/C][C]0.117768[/C][/ROW]
[ROW][C]37[/C][C]0.111983[/C][C]1.2817[/C][C]0.101105[/C][/ROW]
[ROW][C]38[/C][C]-0.01118[/C][C]-0.128[/C][C]0.44919[/C][/ROW]
[ROW][C]39[/C][C]0.008499[/C][C]0.0973[/C][C]0.461329[/C][/ROW]
[ROW][C]40[/C][C]0.024361[/C][C]0.2788[/C][C]0.390409[/C][/ROW]
[ROW][C]41[/C][C]0.003862[/C][C]0.0442[/C][C]0.482406[/C][/ROW]
[ROW][C]42[/C][C]0.105009[/C][C]1.2019[/C][C]0.115788[/C][/ROW]
[ROW][C]43[/C][C]-0.110087[/C][C]-1.26[/C][C]0.104955[/C][/ROW]
[ROW][C]44[/C][C]-0.066276[/C][C]-0.7586[/C][C]0.224739[/C][/ROW]
[ROW][C]45[/C][C]-0.022929[/C][C]-0.2624[/C][C]0.3967[/C][/ROW]
[ROW][C]46[/C][C]-0.036611[/C][C]-0.419[/C][C]0.337939[/C][/ROW]
[ROW][C]47[/C][C]0.009848[/C][C]0.1127[/C][C]0.455212[/C][/ROW]
[ROW][C]48[/C][C]-0.029069[/C][C]-0.3327[/C][C]0.369941[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=116106&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=116106&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.87390910.00230
20.2542982.91060.00212
30.0714190.81740.207584
40.1385161.58540.057644
50.0202530.23180.408523
6-0.201692-2.30850.01127
7-0.065005-0.7440.229099
8-0.110978-1.27020.103133
90.0033160.0380.484891
10-0.050663-0.57990.2815
110.1197091.37010.086495
120.0420710.48150.315475
130.0436870.50.30895
140.0334220.38250.351344
150.068440.78330.217425
16-0.057605-0.65930.255425
17-0.120131-1.3750.085745
180.0620530.71020.239412
19-0.059788-0.68430.247494
200.039890.45660.324372
21-0.003683-0.04220.483219
220.0413830.47360.318269
23-0.048408-0.55410.290244
24-0.085166-0.97480.165735
250.0745670.85350.197482
26-0.067189-0.7690.221634
27-0.096598-1.10560.135459
280.03670.420.33757
290.0202010.23120.408758
300.0972471.1130.133863
310.0161150.18440.426976
32-0.04168-0.47710.31706
330.0653450.74790.227929
34-0.028782-0.32940.371182
35-0.024714-0.28290.388865
36-0.104119-1.19170.117768
370.1119831.28170.101105
38-0.01118-0.1280.44919
390.0084990.09730.461329
400.0243610.27880.390409
410.0038620.04420.482406
420.1050091.20190.115788
43-0.110087-1.260.104955
44-0.066276-0.75860.224739
45-0.022929-0.26240.3967
46-0.036611-0.4190.337939
470.0098480.11270.455212
48-0.029069-0.33270.369941



Parameters (Session):
par1 = 48 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = 48 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')