Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 21 Dec 2011 10:21:41 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Dec/21/t1324481213mge3uargmu41vm4.htm/, Retrieved Fri, 01 Nov 2024 01:25:34 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=158825, Retrieved Fri, 01 Nov 2024 01:25:34 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact131
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [Multiple regression] [2011-12-21 15:21:41] [452d9c400285ceb08a690c4b81b76477] [Current]
- RMP     [Recursive Partitioning (Regression Trees)] [Regression Tree] [2011-12-21 15:39:02] [1ed874da5cc4aa1cd1ced057f766d90b]
-   P       [Recursive Partitioning (Regression Trees)] [regression tree] [2011-12-23 11:46:03] [1ed874da5cc4aa1cd1ced057f766d90b]
- RMPD      [Multiple Regression] [MR belangrijkste ...] [2011-12-23 12:21:00] [1ed874da5cc4aa1cd1ced057f766d90b]
-   P     [Multiple Regression] [Multiple regressi...] [2011-12-21 15:47:06] [1ed874da5cc4aa1cd1ced057f766d90b]
-   P     [Multiple Regression] [MR pageviews] [2011-12-23 11:15:50] [1ed874da5cc4aa1cd1ced057f766d90b]
Feedback Forum

Post a new message
Dataseries X:
1801	159261	91	586	111	0	74
1717	189672	59	520	76	1	80
192	7215	18	72	1	0	0
2295	129098	95	645	155	0	84
3450	230632	136	1163	125	0	124
6861	515038	263	1945	278	1	140
1795	180745	56	585	89	1	88
1681	185559	59	470	59	0	115
1897	154581	44	612	87	0	109
2974	298001	96	992	129	1	104
1946	121844	75	634	158	2	63
2148	184039	69	677	120	0	118
1832	100324	98	665	87	0	71
3183	220269	119	1079	264	4	112
1476	168265	58	413	51	4	63
1567	154647	88	469	85	3	86
1756	142018	57	431	96	0	132
1247	79030	61	361	72	5	54
2779	167047	87	877	147	0	134
726	27997	24	221	49	0	57
1048	73019	59	366	40	0	59
2805	241082	100	846	99	0	113
1760	195820	72	642	127	0	96
2266	142001	54	689	164	1	96
1848	145433	86	576	41	1	78
1665	183744	32	610	160	0	80
2084	202357	163	673	92	0	93
1440	199532	93	361	59	0	109
2741	354924	118	907	89	0	115
2112	192399	44	882	90	0	79
1684	182286	44	490	76	0	103
1616	181590	45	548	116	2	71
2227	133801	105	723	92	4	66
3088	233686	123	918	344	0	100
2389	219428	53	787	84	1	96
1	0	1	0	0	0	0
2099	223044	63	983	61	0	109
1669	100129	51	539	138	3	51
2137	145864	49	515	270	9	119
2153	249965	64	795	64	0	136
2390	242379	71	753	96	2	84
1701	145794	59	635	62	0	136
983	96404	32	361	35	2	84
2161	195891	78	804	59	1	92
1276	117156	50	394	56	2	103
1190	157787	95	320	40	2	82
745	81293	32	212	49	1	106
2330	237435	101	772	121	0	96
2289	233155	89	740	113	1	124
2639	160344	59	938	172	8	97
658	48188	28	205	37	0	82
1917	161922	69	492	51	0	79
2557	307432	74	818	89	0	97
2026	235223	79	680	73	0	107
1911	195583	59	691	49	1	126
1716	146061	56	534	74	8	40
1852	208834	67	487	58	0	96
981	93764	24	301	72	1	100
1177	151985	66	421	32	0	91
2833	193222	96	947	59	10	136
1688	148922	60	492	70	6	124
2097	132856	80	790	85	0	79
1331	129561	61	362	87	11	74
1244	112718	37	430	48	3	96
1256	160930	35	416	56	0	97
1294	99184	41	409	41	0	122
2303	192535	70	498	86	8	144
2897	138708	65	887	152	2	90
1103	114408	38	267	48	0	93
340	31970	15	101	40	0	78
2791	225558	112	1000	135	3	72
1338	139220	72	416	83	1	45
1441	113612	68	480	62	2	120
1623	108641	71	454	91	1	59
2650	162203	67	671	91	0	133
1499	100098	44	413	82	2	117
2302	174768	60	677	112	1	123
2540	158459	97	820	69	0	110
1000	80934	30	316	78	0	75
1234	84971	71	395	105	0	114
927	80545	68	217	49	0	94
2176	287191	64	818	60	0	116
957	62974	28	292	49	1	86
1551	134091	40	513	132	0	90
1014	75555	46	345	49	0	87
1771	162154	54	557	71	0	99
2613	226638	227	645	100	0	132
1205	115367	112	284	74	0	96
1337	108749	62	424	49	7	91
1524	155537	52	614	72	0	77
1829	153133	41	672	59	5	104
2229	165618	78	649	90	1	97
1233	151517	57	415	68	0	94
1365	133686	58	505	81	0	60
950	61342	40	387	33	0	46
2319	245196	117	730	166	0	135
1857	195576	70	563	94	0	90
223	19349	12	67	15	0	2
2390	225371	105	812	104	3	96
1985	153213	78	811	61	0	109
700	59117	29	281	11	0	15
1062	91762	24	338	45	0	68
1311	136769	54	413	84	0	88
1157	114798	61	298	66	1	84
823	85338	40	223	27	1	46
596	27676	22	194	59	0	59
1545	153535	48	371	127	0	116
1130	122417	37	268	48	0	29
0	0	0	0	0	0	0
1082	91529	32	332	58	0	91
1135	107205	67	371	57	0	76
1367	144664	45	465	59	0	83
1506	146445	63	447	76	1	84
870	76656	60	295	71	0	65
78	3616	5	14	5	0	0
0	0	0	0	0	0	0
1130	183088	44	388	70	0	84
1582	144677	84	564	76	0	114
2034	159104	98	562	122	2	124
919	113273	38	288	56	0	92
778	43410	19	292	63	0	3
1752	175774	73	530	92	1	109
957	95401	42	256	54	0	74
2098	134837	55	602	64	8	121
731	60493	40	174	29	3	48
285	19764	12	75	19	1	8
1834	164062	56	565	64	3	80
1148	132696	33	377	79	0	107
1646	155367	54	544	97	0	116
256	11796	9	79	22	0	8
98	10674	9	33	7	0	0
1404	142261	57	479	37	0	56
41	6836	3	11	5	0	4
1824	162563	63	626	48	6	70
42	5118	3	6	1	0	0
528	40248	16	183	34	1	14
0	0	0	0	0	0	0
1073	122641	47	334	49	0	91
1305	88837	38	269	44	0	89
81	7131	4	27	0	1	0
261	9056	14	99	18	0	12
934	76611	24	260	48	1	60
1180	132697	51	290	54	0	80
1147	100681	19	414	50	1	88




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=158825&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=158825&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=158825&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Multiple Linear Regression - Estimated Regression Equation
time_spent_seconds[t] = + 3142.23456069461 + 46.6948920511837page_views[t] + 193.406675373214number_logins[t] + 73.9318251010771number_course_compenium_views[t] -162.754992798557number_compendium_views[t] -2669.92079545425number_compediums_shared[t] + 356.397881953077number_feedbackmessage_PR[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
time_spent_seconds[t] =  +  3142.23456069461 +  46.6948920511837page_views[t] +  193.406675373214number_logins[t] +  73.9318251010771number_course_compenium_views[t] -162.754992798557number_compendium_views[t] -2669.92079545425number_compediums_shared[t] +  356.397881953077number_feedbackmessage_PR[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=158825&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]time_spent_seconds[t] =  +  3142.23456069461 +  46.6948920511837page_views[t] +  193.406675373214number_logins[t] +  73.9318251010771number_course_compenium_views[t] -162.754992798557number_compendium_views[t] -2669.92079545425number_compediums_shared[t] +  356.397881953077number_feedbackmessage_PR[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=158825&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=158825&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
time_spent_seconds[t] = + 3142.23456069461 + 46.6948920511837page_views[t] + 193.406675373214number_logins[t] + 73.9318251010771number_course_compenium_views[t] -162.754992798557number_compendium_views[t] -2669.92079545425number_compediums_shared[t] + 356.397881953077number_feedbackmessage_PR[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)3142.234560694616849.2466360.45880.6471260.323563
page_views46.694892051183715.6497982.98370.0033720.001686
number_logins193.406675373214133.3639311.45020.1492840.074642
number_course_compenium_views73.931825101077138.4231971.92410.056410.028205
number_compendium_views-162.75499279855779.255292-2.05360.0419210.020961
number_compediums_shared-2669.920795454251277.930166-2.08930.0385340.019267
number_feedbackmessage_PR356.397881953077102.7155053.46980.0006970.000348

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 3142.23456069461 & 6849.246636 & 0.4588 & 0.647126 & 0.323563 \tabularnewline
page_views & 46.6948920511837 & 15.649798 & 2.9837 & 0.003372 & 0.001686 \tabularnewline
number_logins & 193.406675373214 & 133.363931 & 1.4502 & 0.149284 & 0.074642 \tabularnewline
number_course_compenium_views & 73.9318251010771 & 38.423197 & 1.9241 & 0.05641 & 0.028205 \tabularnewline
number_compendium_views & -162.754992798557 & 79.255292 & -2.0536 & 0.041921 & 0.020961 \tabularnewline
number_compediums_shared & -2669.92079545425 & 1277.930166 & -2.0893 & 0.038534 & 0.019267 \tabularnewline
number_feedbackmessage_PR & 356.397881953077 & 102.715505 & 3.4698 & 0.000697 & 0.000348 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=158825&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]3142.23456069461[/C][C]6849.246636[/C][C]0.4588[/C][C]0.647126[/C][C]0.323563[/C][/ROW]
[ROW][C]page_views[/C][C]46.6948920511837[/C][C]15.649798[/C][C]2.9837[/C][C]0.003372[/C][C]0.001686[/C][/ROW]
[ROW][C]number_logins[/C][C]193.406675373214[/C][C]133.363931[/C][C]1.4502[/C][C]0.149284[/C][C]0.074642[/C][/ROW]
[ROW][C]number_course_compenium_views[/C][C]73.9318251010771[/C][C]38.423197[/C][C]1.9241[/C][C]0.05641[/C][C]0.028205[/C][/ROW]
[ROW][C]number_compendium_views[/C][C]-162.754992798557[/C][C]79.255292[/C][C]-2.0536[/C][C]0.041921[/C][C]0.020961[/C][/ROW]
[ROW][C]number_compediums_shared[/C][C]-2669.92079545425[/C][C]1277.930166[/C][C]-2.0893[/C][C]0.038534[/C][C]0.019267[/C][/ROW]
[ROW][C]number_feedbackmessage_PR[/C][C]356.397881953077[/C][C]102.715505[/C][C]3.4698[/C][C]0.000697[/C][C]0.000348[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=158825&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=158825&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)3142.234560694616849.2466360.45880.6471260.323563
page_views46.694892051183715.6497982.98370.0033720.001686
number_logins193.406675373214133.3639311.45020.1492840.074642
number_course_compenium_views73.931825101077138.4231971.92410.056410.028205
number_compendium_views-162.75499279855779.255292-2.05360.0419210.020961
number_compediums_shared-2669.920795454251277.930166-2.08930.0385340.019267
number_feedbackmessage_PR356.397881953077102.7155053.46980.0006970.000348







Multiple Linear Regression - Regression Statistics
Multiple R0.911400827915133
R-squared0.83065146912439
Adjusted R-squared0.823234745144436
F-TEST (value)111.997085420667
F-TEST (DF numerator)6
F-TEST (DF denominator)137
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation32503.3827597006
Sum Squared Residuals144736375042.834

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.911400827915133 \tabularnewline
R-squared & 0.83065146912439 \tabularnewline
Adjusted R-squared & 0.823234745144436 \tabularnewline
F-TEST (value) & 111.997085420667 \tabularnewline
F-TEST (DF numerator) & 6 \tabularnewline
F-TEST (DF denominator) & 137 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 32503.3827597006 \tabularnewline
Sum Squared Residuals & 144736375042.834 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=158825&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.911400827915133[/C][/ROW]
[ROW][C]R-squared[/C][C]0.83065146912439[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.823234745144436[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]111.997085420667[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]6[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]137[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]32503.3827597006[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]144736375042.834[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=158825&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=158825&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.911400827915133
R-squared0.83065146912439
Adjusted R-squared0.823234745144436
F-TEST (value)111.997085420667
F-TEST (DF numerator)6
F-TEST (DF denominator)137
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation32503.3827597006
Sum Squared Residuals144736375042.834







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1159261156471.4311769582789.56882304196
2189672146645.43742025843026.5625797417
3721520749.3104057187-13534.3104057187
4129098181077.071369093-51979.0713690932
5230632300374.59584295-69742.5958429498
6515038520159.139048593-5121.13904859338
7180745155248.35575494425496.6442450557
8185559159178.51159274926380.4884072508
9154581170166.300219481-15585.3002194815
10298001247320.31971366450680.6802863364
11121844146786.708369335-24942.7083693352
12184039189364.119815454-5325.11981545425
13100324167950.359922448-67626.3599224483
14220269240829.471111195-20560.4711111953
15168265117288.20491513350976.7950848666
16154647136813.22488387217833.7751161281
17142018159447.303226555-17429.3032265552
187903094035.4831744743-15005.4831744743
19167047238404.263182373-71357.2631823726
202799770363.1043703452-42366.1043703452
2173019105065.798587638-32046.7985876382
22241082240168.614710738913.385289262109
23195820160259.06949461935560.9305053807
24142001175188.30496655-33187.3049665502
25145433167108.259703744-21675.2597037437
26183744134647.68845799249096.3115420078
27202357199907.3396583892449.660341611
28199532144303.91334336755228.0866566327
29354924247511.648799237107412.351200763
30192399188987.0933507893411.90664921121
31182286150852.52317931431433.4768206863
32181590128903.9495257252686.0504742804
33133801178761.287310566-44960.2873105656
34233686218646.56840104815039.4315989522
35219428201004.08829726318423.9117027373
3603382.33612811901-3382.33612811901
37223044214933.7321711748110.26782882626
38100129118495.344154678-18366.3441546778
39145864124919.24863213420944.7513678663
40249965212883.95773264637081.0422673542
41242379193118.66600012149260.3339998788
42145794179307.25111807-33513.2511180695
4396404100822.87166564-4418.8716656403
44195891199092.944112793-3201.9441127931
45117156123779.250330029-6623.25033002926
46157787118115.55931170539671.4406882953
478129386925.7497166402-5632.74971664025
48237435203071.61876954934363.3812304514
49233155205081.68952935728073.3104706426
50160344192346.469900061-32002.4699000608
514818877641.57617315-29453.57617315
52161922162230.789214862-308.789214862032
53307432217414.80063624790017.1993637531
54235223189552.31317429445670.6868257064
55195583189135.2759458756447.72405412538
56146061114433.71719279731627.2828072033
57208834163358.62779889645475.3722011043
589376497096.6711456444-3332.67114564445
59151985129216.308935322768.6910647005
60193222236177.702364208-42955.7023642075
61148922146723.0339087722198.96609122756
62132856189261.35733815-56405.3573381505
6312956186698.893906232542862.1060937675
64112718118569.606681441-5851.60668144105
65160930124772.20680982136157.7931901789
6699184138540.801925103-39356.8019251031
67192535177002.08638796515532.9136120349
68138708218563.508476376-79855.5084763756
69114408107068.7148266257339.28517337468
703197050675.5474043018-18705.5474043018
71225558224740.012104879817.987895121225
72139220110160.23948425229059.7605157482
73113612146405.598670296-32793.598670296
74108641129771.816802261-21130.8168022614
75162203222040.41434425-59837.4143442499
76100098135194.416416705-35096.416416705
77174768195228.581669677-20460.5816696772
78158459229105.476976524-70646.4769765241
798093493036.7353132084-12102.7353132084
8084971127238.760517081-42267.7605170812
8180545101149.665720914-20604.6657209141
82287191209181.4345592878009.5654407196
836297494838.028499023-31864.028499023
84134091131821.4557502292269.54424977108
8575555107925.662910423-32370.6629104227
86162154161190.661259451963.338740548591
87226638247514.351128302-20876.3511283022
88115367124238.092653279-8871.09265327894
89108749114679.379991544-5930.37999154408
90155537145480.81520705810056.1847929422
91153133160272.283451269-7139.28345126897
92165618187545.348514617-21927.3485146168
93151517124856.98576631226660.0142336884
94133686123634.63955875210051.3604412479
956134294873.6531458536-33531.6531458536
96245196209122.88782894736073.1121710533
97195576161793.57396048733782.4260395134
981934919100.9787462871248.021253712885
99225371204361.28448936821009.7155106317
100153213199795.340690552-46582.3406905518
1015911765767.9587442611-6650.95874426107
1029176299274.008309047-7512.00830904701
103136769123028.63649348713740.3635065133
104114798107523.3875057017274.61249429942
1058533875125.191700113810212.8082998862
1062767660995.0416111364-33319.0416111364
107153535132670.34053132720864.6594686726
10812241785400.537616738237016.4623832618
10903142.23456069461-3142.23456069461
11091529107392.904980989-15863.9049809895
111107205114337.095840209-7132.09584020909
112144664130034.23068544914629.7693145513
113146445133595.01019438512849.989805615
1147665688791.3374106874-12135.3374106874
11536167972.7401049753-4356.7401049753
11603142.23456069461-3142.23456069461
117183088111647.47702233171440.5229776691
118144677163217.242963985-18540.242963985
119159104177620.571536032-18516.5715360315
12011327398370.985191988614902.0148080114
1214341055549.3094376712-12139.3094376712
122175774159458.22904014816315.7709598523
1239540192463.54749863372937.45250136629
124134837167600.901754034-32763.9017540337
1256049362254.0463888526-1761.04638885264
1261976421404.9631793391-1640.96317933909
127164062151468.6702163512593.3297836503
128132696116279.61792376916416.3820762312
129155367156219.820207179-852.820207179272
1301179621947.974401198-10151.974401198
1311067410759.4593388152-85.4593388151934
132142261129075.73437607113185.2656239287
13368367062.01180084416-226.011800844156
134162563147895.74803349914667.2519665005
13551185964.47601077187-846.476010771871
1364024841207.148159926-959.148159926
13703142.23456069461-3142.23456069461
138122641111486.40966851611154.5903314838
13988837115874.375114549-27037.3751145485
14071317024.38600060819106.613999391813
141905626703.7302393481-17647.7302393481
1427661181521.010939137-4910.01093913696
143132697109269.23784956223427.7621504383
144100681111539.121343828-10858.1213438279

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 159261 & 156471.431176958 & 2789.56882304196 \tabularnewline
2 & 189672 & 146645.437420258 & 43026.5625797417 \tabularnewline
3 & 7215 & 20749.3104057187 & -13534.3104057187 \tabularnewline
4 & 129098 & 181077.071369093 & -51979.0713690932 \tabularnewline
5 & 230632 & 300374.59584295 & -69742.5958429498 \tabularnewline
6 & 515038 & 520159.139048593 & -5121.13904859338 \tabularnewline
7 & 180745 & 155248.355754944 & 25496.6442450557 \tabularnewline
8 & 185559 & 159178.511592749 & 26380.4884072508 \tabularnewline
9 & 154581 & 170166.300219481 & -15585.3002194815 \tabularnewline
10 & 298001 & 247320.319713664 & 50680.6802863364 \tabularnewline
11 & 121844 & 146786.708369335 & -24942.7083693352 \tabularnewline
12 & 184039 & 189364.119815454 & -5325.11981545425 \tabularnewline
13 & 100324 & 167950.359922448 & -67626.3599224483 \tabularnewline
14 & 220269 & 240829.471111195 & -20560.4711111953 \tabularnewline
15 & 168265 & 117288.204915133 & 50976.7950848666 \tabularnewline
16 & 154647 & 136813.224883872 & 17833.7751161281 \tabularnewline
17 & 142018 & 159447.303226555 & -17429.3032265552 \tabularnewline
18 & 79030 & 94035.4831744743 & -15005.4831744743 \tabularnewline
19 & 167047 & 238404.263182373 & -71357.2631823726 \tabularnewline
20 & 27997 & 70363.1043703452 & -42366.1043703452 \tabularnewline
21 & 73019 & 105065.798587638 & -32046.7985876382 \tabularnewline
22 & 241082 & 240168.614710738 & 913.385289262109 \tabularnewline
23 & 195820 & 160259.069494619 & 35560.9305053807 \tabularnewline
24 & 142001 & 175188.30496655 & -33187.3049665502 \tabularnewline
25 & 145433 & 167108.259703744 & -21675.2597037437 \tabularnewline
26 & 183744 & 134647.688457992 & 49096.3115420078 \tabularnewline
27 & 202357 & 199907.339658389 & 2449.660341611 \tabularnewline
28 & 199532 & 144303.913343367 & 55228.0866566327 \tabularnewline
29 & 354924 & 247511.648799237 & 107412.351200763 \tabularnewline
30 & 192399 & 188987.093350789 & 3411.90664921121 \tabularnewline
31 & 182286 & 150852.523179314 & 31433.4768206863 \tabularnewline
32 & 181590 & 128903.94952572 & 52686.0504742804 \tabularnewline
33 & 133801 & 178761.287310566 & -44960.2873105656 \tabularnewline
34 & 233686 & 218646.568401048 & 15039.4315989522 \tabularnewline
35 & 219428 & 201004.088297263 & 18423.9117027373 \tabularnewline
36 & 0 & 3382.33612811901 & -3382.33612811901 \tabularnewline
37 & 223044 & 214933.732171174 & 8110.26782882626 \tabularnewline
38 & 100129 & 118495.344154678 & -18366.3441546778 \tabularnewline
39 & 145864 & 124919.248632134 & 20944.7513678663 \tabularnewline
40 & 249965 & 212883.957732646 & 37081.0422673542 \tabularnewline
41 & 242379 & 193118.666000121 & 49260.3339998788 \tabularnewline
42 & 145794 & 179307.25111807 & -33513.2511180695 \tabularnewline
43 & 96404 & 100822.87166564 & -4418.8716656403 \tabularnewline
44 & 195891 & 199092.944112793 & -3201.9441127931 \tabularnewline
45 & 117156 & 123779.250330029 & -6623.25033002926 \tabularnewline
46 & 157787 & 118115.559311705 & 39671.4406882953 \tabularnewline
47 & 81293 & 86925.7497166402 & -5632.74971664025 \tabularnewline
48 & 237435 & 203071.618769549 & 34363.3812304514 \tabularnewline
49 & 233155 & 205081.689529357 & 28073.3104706426 \tabularnewline
50 & 160344 & 192346.469900061 & -32002.4699000608 \tabularnewline
51 & 48188 & 77641.57617315 & -29453.57617315 \tabularnewline
52 & 161922 & 162230.789214862 & -308.789214862032 \tabularnewline
53 & 307432 & 217414.800636247 & 90017.1993637531 \tabularnewline
54 & 235223 & 189552.313174294 & 45670.6868257064 \tabularnewline
55 & 195583 & 189135.275945875 & 6447.72405412538 \tabularnewline
56 & 146061 & 114433.717192797 & 31627.2828072033 \tabularnewline
57 & 208834 & 163358.627798896 & 45475.3722011043 \tabularnewline
58 & 93764 & 97096.6711456444 & -3332.67114564445 \tabularnewline
59 & 151985 & 129216.3089353 & 22768.6910647005 \tabularnewline
60 & 193222 & 236177.702364208 & -42955.7023642075 \tabularnewline
61 & 148922 & 146723.033908772 & 2198.96609122756 \tabularnewline
62 & 132856 & 189261.35733815 & -56405.3573381505 \tabularnewline
63 & 129561 & 86698.8939062325 & 42862.1060937675 \tabularnewline
64 & 112718 & 118569.606681441 & -5851.60668144105 \tabularnewline
65 & 160930 & 124772.206809821 & 36157.7931901789 \tabularnewline
66 & 99184 & 138540.801925103 & -39356.8019251031 \tabularnewline
67 & 192535 & 177002.086387965 & 15532.9136120349 \tabularnewline
68 & 138708 & 218563.508476376 & -79855.5084763756 \tabularnewline
69 & 114408 & 107068.714826625 & 7339.28517337468 \tabularnewline
70 & 31970 & 50675.5474043018 & -18705.5474043018 \tabularnewline
71 & 225558 & 224740.012104879 & 817.987895121225 \tabularnewline
72 & 139220 & 110160.239484252 & 29059.7605157482 \tabularnewline
73 & 113612 & 146405.598670296 & -32793.598670296 \tabularnewline
74 & 108641 & 129771.816802261 & -21130.8168022614 \tabularnewline
75 & 162203 & 222040.41434425 & -59837.4143442499 \tabularnewline
76 & 100098 & 135194.416416705 & -35096.416416705 \tabularnewline
77 & 174768 & 195228.581669677 & -20460.5816696772 \tabularnewline
78 & 158459 & 229105.476976524 & -70646.4769765241 \tabularnewline
79 & 80934 & 93036.7353132084 & -12102.7353132084 \tabularnewline
80 & 84971 & 127238.760517081 & -42267.7605170812 \tabularnewline
81 & 80545 & 101149.665720914 & -20604.6657209141 \tabularnewline
82 & 287191 & 209181.43455928 & 78009.5654407196 \tabularnewline
83 & 62974 & 94838.028499023 & -31864.028499023 \tabularnewline
84 & 134091 & 131821.455750229 & 2269.54424977108 \tabularnewline
85 & 75555 & 107925.662910423 & -32370.6629104227 \tabularnewline
86 & 162154 & 161190.661259451 & 963.338740548591 \tabularnewline
87 & 226638 & 247514.351128302 & -20876.3511283022 \tabularnewline
88 & 115367 & 124238.092653279 & -8871.09265327894 \tabularnewline
89 & 108749 & 114679.379991544 & -5930.37999154408 \tabularnewline
90 & 155537 & 145480.815207058 & 10056.1847929422 \tabularnewline
91 & 153133 & 160272.283451269 & -7139.28345126897 \tabularnewline
92 & 165618 & 187545.348514617 & -21927.3485146168 \tabularnewline
93 & 151517 & 124856.985766312 & 26660.0142336884 \tabularnewline
94 & 133686 & 123634.639558752 & 10051.3604412479 \tabularnewline
95 & 61342 & 94873.6531458536 & -33531.6531458536 \tabularnewline
96 & 245196 & 209122.887828947 & 36073.1121710533 \tabularnewline
97 & 195576 & 161793.573960487 & 33782.4260395134 \tabularnewline
98 & 19349 & 19100.9787462871 & 248.021253712885 \tabularnewline
99 & 225371 & 204361.284489368 & 21009.7155106317 \tabularnewline
100 & 153213 & 199795.340690552 & -46582.3406905518 \tabularnewline
101 & 59117 & 65767.9587442611 & -6650.95874426107 \tabularnewline
102 & 91762 & 99274.008309047 & -7512.00830904701 \tabularnewline
103 & 136769 & 123028.636493487 & 13740.3635065133 \tabularnewline
104 & 114798 & 107523.387505701 & 7274.61249429942 \tabularnewline
105 & 85338 & 75125.1917001138 & 10212.8082998862 \tabularnewline
106 & 27676 & 60995.0416111364 & -33319.0416111364 \tabularnewline
107 & 153535 & 132670.340531327 & 20864.6594686726 \tabularnewline
108 & 122417 & 85400.5376167382 & 37016.4623832618 \tabularnewline
109 & 0 & 3142.23456069461 & -3142.23456069461 \tabularnewline
110 & 91529 & 107392.904980989 & -15863.9049809895 \tabularnewline
111 & 107205 & 114337.095840209 & -7132.09584020909 \tabularnewline
112 & 144664 & 130034.230685449 & 14629.7693145513 \tabularnewline
113 & 146445 & 133595.010194385 & 12849.989805615 \tabularnewline
114 & 76656 & 88791.3374106874 & -12135.3374106874 \tabularnewline
115 & 3616 & 7972.7401049753 & -4356.7401049753 \tabularnewline
116 & 0 & 3142.23456069461 & -3142.23456069461 \tabularnewline
117 & 183088 & 111647.477022331 & 71440.5229776691 \tabularnewline
118 & 144677 & 163217.242963985 & -18540.242963985 \tabularnewline
119 & 159104 & 177620.571536032 & -18516.5715360315 \tabularnewline
120 & 113273 & 98370.9851919886 & 14902.0148080114 \tabularnewline
121 & 43410 & 55549.3094376712 & -12139.3094376712 \tabularnewline
122 & 175774 & 159458.229040148 & 16315.7709598523 \tabularnewline
123 & 95401 & 92463.5474986337 & 2937.45250136629 \tabularnewline
124 & 134837 & 167600.901754034 & -32763.9017540337 \tabularnewline
125 & 60493 & 62254.0463888526 & -1761.04638885264 \tabularnewline
126 & 19764 & 21404.9631793391 & -1640.96317933909 \tabularnewline
127 & 164062 & 151468.67021635 & 12593.3297836503 \tabularnewline
128 & 132696 & 116279.617923769 & 16416.3820762312 \tabularnewline
129 & 155367 & 156219.820207179 & -852.820207179272 \tabularnewline
130 & 11796 & 21947.974401198 & -10151.974401198 \tabularnewline
131 & 10674 & 10759.4593388152 & -85.4593388151934 \tabularnewline
132 & 142261 & 129075.734376071 & 13185.2656239287 \tabularnewline
133 & 6836 & 7062.01180084416 & -226.011800844156 \tabularnewline
134 & 162563 & 147895.748033499 & 14667.2519665005 \tabularnewline
135 & 5118 & 5964.47601077187 & -846.476010771871 \tabularnewline
136 & 40248 & 41207.148159926 & -959.148159926 \tabularnewline
137 & 0 & 3142.23456069461 & -3142.23456069461 \tabularnewline
138 & 122641 & 111486.409668516 & 11154.5903314838 \tabularnewline
139 & 88837 & 115874.375114549 & -27037.3751145485 \tabularnewline
140 & 7131 & 7024.38600060819 & 106.613999391813 \tabularnewline
141 & 9056 & 26703.7302393481 & -17647.7302393481 \tabularnewline
142 & 76611 & 81521.010939137 & -4910.01093913696 \tabularnewline
143 & 132697 & 109269.237849562 & 23427.7621504383 \tabularnewline
144 & 100681 & 111539.121343828 & -10858.1213438279 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=158825&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]159261[/C][C]156471.431176958[/C][C]2789.56882304196[/C][/ROW]
[ROW][C]2[/C][C]189672[/C][C]146645.437420258[/C][C]43026.5625797417[/C][/ROW]
[ROW][C]3[/C][C]7215[/C][C]20749.3104057187[/C][C]-13534.3104057187[/C][/ROW]
[ROW][C]4[/C][C]129098[/C][C]181077.071369093[/C][C]-51979.0713690932[/C][/ROW]
[ROW][C]5[/C][C]230632[/C][C]300374.59584295[/C][C]-69742.5958429498[/C][/ROW]
[ROW][C]6[/C][C]515038[/C][C]520159.139048593[/C][C]-5121.13904859338[/C][/ROW]
[ROW][C]7[/C][C]180745[/C][C]155248.355754944[/C][C]25496.6442450557[/C][/ROW]
[ROW][C]8[/C][C]185559[/C][C]159178.511592749[/C][C]26380.4884072508[/C][/ROW]
[ROW][C]9[/C][C]154581[/C][C]170166.300219481[/C][C]-15585.3002194815[/C][/ROW]
[ROW][C]10[/C][C]298001[/C][C]247320.319713664[/C][C]50680.6802863364[/C][/ROW]
[ROW][C]11[/C][C]121844[/C][C]146786.708369335[/C][C]-24942.7083693352[/C][/ROW]
[ROW][C]12[/C][C]184039[/C][C]189364.119815454[/C][C]-5325.11981545425[/C][/ROW]
[ROW][C]13[/C][C]100324[/C][C]167950.359922448[/C][C]-67626.3599224483[/C][/ROW]
[ROW][C]14[/C][C]220269[/C][C]240829.471111195[/C][C]-20560.4711111953[/C][/ROW]
[ROW][C]15[/C][C]168265[/C][C]117288.204915133[/C][C]50976.7950848666[/C][/ROW]
[ROW][C]16[/C][C]154647[/C][C]136813.224883872[/C][C]17833.7751161281[/C][/ROW]
[ROW][C]17[/C][C]142018[/C][C]159447.303226555[/C][C]-17429.3032265552[/C][/ROW]
[ROW][C]18[/C][C]79030[/C][C]94035.4831744743[/C][C]-15005.4831744743[/C][/ROW]
[ROW][C]19[/C][C]167047[/C][C]238404.263182373[/C][C]-71357.2631823726[/C][/ROW]
[ROW][C]20[/C][C]27997[/C][C]70363.1043703452[/C][C]-42366.1043703452[/C][/ROW]
[ROW][C]21[/C][C]73019[/C][C]105065.798587638[/C][C]-32046.7985876382[/C][/ROW]
[ROW][C]22[/C][C]241082[/C][C]240168.614710738[/C][C]913.385289262109[/C][/ROW]
[ROW][C]23[/C][C]195820[/C][C]160259.069494619[/C][C]35560.9305053807[/C][/ROW]
[ROW][C]24[/C][C]142001[/C][C]175188.30496655[/C][C]-33187.3049665502[/C][/ROW]
[ROW][C]25[/C][C]145433[/C][C]167108.259703744[/C][C]-21675.2597037437[/C][/ROW]
[ROW][C]26[/C][C]183744[/C][C]134647.688457992[/C][C]49096.3115420078[/C][/ROW]
[ROW][C]27[/C][C]202357[/C][C]199907.339658389[/C][C]2449.660341611[/C][/ROW]
[ROW][C]28[/C][C]199532[/C][C]144303.913343367[/C][C]55228.0866566327[/C][/ROW]
[ROW][C]29[/C][C]354924[/C][C]247511.648799237[/C][C]107412.351200763[/C][/ROW]
[ROW][C]30[/C][C]192399[/C][C]188987.093350789[/C][C]3411.90664921121[/C][/ROW]
[ROW][C]31[/C][C]182286[/C][C]150852.523179314[/C][C]31433.4768206863[/C][/ROW]
[ROW][C]32[/C][C]181590[/C][C]128903.94952572[/C][C]52686.0504742804[/C][/ROW]
[ROW][C]33[/C][C]133801[/C][C]178761.287310566[/C][C]-44960.2873105656[/C][/ROW]
[ROW][C]34[/C][C]233686[/C][C]218646.568401048[/C][C]15039.4315989522[/C][/ROW]
[ROW][C]35[/C][C]219428[/C][C]201004.088297263[/C][C]18423.9117027373[/C][/ROW]
[ROW][C]36[/C][C]0[/C][C]3382.33612811901[/C][C]-3382.33612811901[/C][/ROW]
[ROW][C]37[/C][C]223044[/C][C]214933.732171174[/C][C]8110.26782882626[/C][/ROW]
[ROW][C]38[/C][C]100129[/C][C]118495.344154678[/C][C]-18366.3441546778[/C][/ROW]
[ROW][C]39[/C][C]145864[/C][C]124919.248632134[/C][C]20944.7513678663[/C][/ROW]
[ROW][C]40[/C][C]249965[/C][C]212883.957732646[/C][C]37081.0422673542[/C][/ROW]
[ROW][C]41[/C][C]242379[/C][C]193118.666000121[/C][C]49260.3339998788[/C][/ROW]
[ROW][C]42[/C][C]145794[/C][C]179307.25111807[/C][C]-33513.2511180695[/C][/ROW]
[ROW][C]43[/C][C]96404[/C][C]100822.87166564[/C][C]-4418.8716656403[/C][/ROW]
[ROW][C]44[/C][C]195891[/C][C]199092.944112793[/C][C]-3201.9441127931[/C][/ROW]
[ROW][C]45[/C][C]117156[/C][C]123779.250330029[/C][C]-6623.25033002926[/C][/ROW]
[ROW][C]46[/C][C]157787[/C][C]118115.559311705[/C][C]39671.4406882953[/C][/ROW]
[ROW][C]47[/C][C]81293[/C][C]86925.7497166402[/C][C]-5632.74971664025[/C][/ROW]
[ROW][C]48[/C][C]237435[/C][C]203071.618769549[/C][C]34363.3812304514[/C][/ROW]
[ROW][C]49[/C][C]233155[/C][C]205081.689529357[/C][C]28073.3104706426[/C][/ROW]
[ROW][C]50[/C][C]160344[/C][C]192346.469900061[/C][C]-32002.4699000608[/C][/ROW]
[ROW][C]51[/C][C]48188[/C][C]77641.57617315[/C][C]-29453.57617315[/C][/ROW]
[ROW][C]52[/C][C]161922[/C][C]162230.789214862[/C][C]-308.789214862032[/C][/ROW]
[ROW][C]53[/C][C]307432[/C][C]217414.800636247[/C][C]90017.1993637531[/C][/ROW]
[ROW][C]54[/C][C]235223[/C][C]189552.313174294[/C][C]45670.6868257064[/C][/ROW]
[ROW][C]55[/C][C]195583[/C][C]189135.275945875[/C][C]6447.72405412538[/C][/ROW]
[ROW][C]56[/C][C]146061[/C][C]114433.717192797[/C][C]31627.2828072033[/C][/ROW]
[ROW][C]57[/C][C]208834[/C][C]163358.627798896[/C][C]45475.3722011043[/C][/ROW]
[ROW][C]58[/C][C]93764[/C][C]97096.6711456444[/C][C]-3332.67114564445[/C][/ROW]
[ROW][C]59[/C][C]151985[/C][C]129216.3089353[/C][C]22768.6910647005[/C][/ROW]
[ROW][C]60[/C][C]193222[/C][C]236177.702364208[/C][C]-42955.7023642075[/C][/ROW]
[ROW][C]61[/C][C]148922[/C][C]146723.033908772[/C][C]2198.96609122756[/C][/ROW]
[ROW][C]62[/C][C]132856[/C][C]189261.35733815[/C][C]-56405.3573381505[/C][/ROW]
[ROW][C]63[/C][C]129561[/C][C]86698.8939062325[/C][C]42862.1060937675[/C][/ROW]
[ROW][C]64[/C][C]112718[/C][C]118569.606681441[/C][C]-5851.60668144105[/C][/ROW]
[ROW][C]65[/C][C]160930[/C][C]124772.206809821[/C][C]36157.7931901789[/C][/ROW]
[ROW][C]66[/C][C]99184[/C][C]138540.801925103[/C][C]-39356.8019251031[/C][/ROW]
[ROW][C]67[/C][C]192535[/C][C]177002.086387965[/C][C]15532.9136120349[/C][/ROW]
[ROW][C]68[/C][C]138708[/C][C]218563.508476376[/C][C]-79855.5084763756[/C][/ROW]
[ROW][C]69[/C][C]114408[/C][C]107068.714826625[/C][C]7339.28517337468[/C][/ROW]
[ROW][C]70[/C][C]31970[/C][C]50675.5474043018[/C][C]-18705.5474043018[/C][/ROW]
[ROW][C]71[/C][C]225558[/C][C]224740.012104879[/C][C]817.987895121225[/C][/ROW]
[ROW][C]72[/C][C]139220[/C][C]110160.239484252[/C][C]29059.7605157482[/C][/ROW]
[ROW][C]73[/C][C]113612[/C][C]146405.598670296[/C][C]-32793.598670296[/C][/ROW]
[ROW][C]74[/C][C]108641[/C][C]129771.816802261[/C][C]-21130.8168022614[/C][/ROW]
[ROW][C]75[/C][C]162203[/C][C]222040.41434425[/C][C]-59837.4143442499[/C][/ROW]
[ROW][C]76[/C][C]100098[/C][C]135194.416416705[/C][C]-35096.416416705[/C][/ROW]
[ROW][C]77[/C][C]174768[/C][C]195228.581669677[/C][C]-20460.5816696772[/C][/ROW]
[ROW][C]78[/C][C]158459[/C][C]229105.476976524[/C][C]-70646.4769765241[/C][/ROW]
[ROW][C]79[/C][C]80934[/C][C]93036.7353132084[/C][C]-12102.7353132084[/C][/ROW]
[ROW][C]80[/C][C]84971[/C][C]127238.760517081[/C][C]-42267.7605170812[/C][/ROW]
[ROW][C]81[/C][C]80545[/C][C]101149.665720914[/C][C]-20604.6657209141[/C][/ROW]
[ROW][C]82[/C][C]287191[/C][C]209181.43455928[/C][C]78009.5654407196[/C][/ROW]
[ROW][C]83[/C][C]62974[/C][C]94838.028499023[/C][C]-31864.028499023[/C][/ROW]
[ROW][C]84[/C][C]134091[/C][C]131821.455750229[/C][C]2269.54424977108[/C][/ROW]
[ROW][C]85[/C][C]75555[/C][C]107925.662910423[/C][C]-32370.6629104227[/C][/ROW]
[ROW][C]86[/C][C]162154[/C][C]161190.661259451[/C][C]963.338740548591[/C][/ROW]
[ROW][C]87[/C][C]226638[/C][C]247514.351128302[/C][C]-20876.3511283022[/C][/ROW]
[ROW][C]88[/C][C]115367[/C][C]124238.092653279[/C][C]-8871.09265327894[/C][/ROW]
[ROW][C]89[/C][C]108749[/C][C]114679.379991544[/C][C]-5930.37999154408[/C][/ROW]
[ROW][C]90[/C][C]155537[/C][C]145480.815207058[/C][C]10056.1847929422[/C][/ROW]
[ROW][C]91[/C][C]153133[/C][C]160272.283451269[/C][C]-7139.28345126897[/C][/ROW]
[ROW][C]92[/C][C]165618[/C][C]187545.348514617[/C][C]-21927.3485146168[/C][/ROW]
[ROW][C]93[/C][C]151517[/C][C]124856.985766312[/C][C]26660.0142336884[/C][/ROW]
[ROW][C]94[/C][C]133686[/C][C]123634.639558752[/C][C]10051.3604412479[/C][/ROW]
[ROW][C]95[/C][C]61342[/C][C]94873.6531458536[/C][C]-33531.6531458536[/C][/ROW]
[ROW][C]96[/C][C]245196[/C][C]209122.887828947[/C][C]36073.1121710533[/C][/ROW]
[ROW][C]97[/C][C]195576[/C][C]161793.573960487[/C][C]33782.4260395134[/C][/ROW]
[ROW][C]98[/C][C]19349[/C][C]19100.9787462871[/C][C]248.021253712885[/C][/ROW]
[ROW][C]99[/C][C]225371[/C][C]204361.284489368[/C][C]21009.7155106317[/C][/ROW]
[ROW][C]100[/C][C]153213[/C][C]199795.340690552[/C][C]-46582.3406905518[/C][/ROW]
[ROW][C]101[/C][C]59117[/C][C]65767.9587442611[/C][C]-6650.95874426107[/C][/ROW]
[ROW][C]102[/C][C]91762[/C][C]99274.008309047[/C][C]-7512.00830904701[/C][/ROW]
[ROW][C]103[/C][C]136769[/C][C]123028.636493487[/C][C]13740.3635065133[/C][/ROW]
[ROW][C]104[/C][C]114798[/C][C]107523.387505701[/C][C]7274.61249429942[/C][/ROW]
[ROW][C]105[/C][C]85338[/C][C]75125.1917001138[/C][C]10212.8082998862[/C][/ROW]
[ROW][C]106[/C][C]27676[/C][C]60995.0416111364[/C][C]-33319.0416111364[/C][/ROW]
[ROW][C]107[/C][C]153535[/C][C]132670.340531327[/C][C]20864.6594686726[/C][/ROW]
[ROW][C]108[/C][C]122417[/C][C]85400.5376167382[/C][C]37016.4623832618[/C][/ROW]
[ROW][C]109[/C][C]0[/C][C]3142.23456069461[/C][C]-3142.23456069461[/C][/ROW]
[ROW][C]110[/C][C]91529[/C][C]107392.904980989[/C][C]-15863.9049809895[/C][/ROW]
[ROW][C]111[/C][C]107205[/C][C]114337.095840209[/C][C]-7132.09584020909[/C][/ROW]
[ROW][C]112[/C][C]144664[/C][C]130034.230685449[/C][C]14629.7693145513[/C][/ROW]
[ROW][C]113[/C][C]146445[/C][C]133595.010194385[/C][C]12849.989805615[/C][/ROW]
[ROW][C]114[/C][C]76656[/C][C]88791.3374106874[/C][C]-12135.3374106874[/C][/ROW]
[ROW][C]115[/C][C]3616[/C][C]7972.7401049753[/C][C]-4356.7401049753[/C][/ROW]
[ROW][C]116[/C][C]0[/C][C]3142.23456069461[/C][C]-3142.23456069461[/C][/ROW]
[ROW][C]117[/C][C]183088[/C][C]111647.477022331[/C][C]71440.5229776691[/C][/ROW]
[ROW][C]118[/C][C]144677[/C][C]163217.242963985[/C][C]-18540.242963985[/C][/ROW]
[ROW][C]119[/C][C]159104[/C][C]177620.571536032[/C][C]-18516.5715360315[/C][/ROW]
[ROW][C]120[/C][C]113273[/C][C]98370.9851919886[/C][C]14902.0148080114[/C][/ROW]
[ROW][C]121[/C][C]43410[/C][C]55549.3094376712[/C][C]-12139.3094376712[/C][/ROW]
[ROW][C]122[/C][C]175774[/C][C]159458.229040148[/C][C]16315.7709598523[/C][/ROW]
[ROW][C]123[/C][C]95401[/C][C]92463.5474986337[/C][C]2937.45250136629[/C][/ROW]
[ROW][C]124[/C][C]134837[/C][C]167600.901754034[/C][C]-32763.9017540337[/C][/ROW]
[ROW][C]125[/C][C]60493[/C][C]62254.0463888526[/C][C]-1761.04638885264[/C][/ROW]
[ROW][C]126[/C][C]19764[/C][C]21404.9631793391[/C][C]-1640.96317933909[/C][/ROW]
[ROW][C]127[/C][C]164062[/C][C]151468.67021635[/C][C]12593.3297836503[/C][/ROW]
[ROW][C]128[/C][C]132696[/C][C]116279.617923769[/C][C]16416.3820762312[/C][/ROW]
[ROW][C]129[/C][C]155367[/C][C]156219.820207179[/C][C]-852.820207179272[/C][/ROW]
[ROW][C]130[/C][C]11796[/C][C]21947.974401198[/C][C]-10151.974401198[/C][/ROW]
[ROW][C]131[/C][C]10674[/C][C]10759.4593388152[/C][C]-85.4593388151934[/C][/ROW]
[ROW][C]132[/C][C]142261[/C][C]129075.734376071[/C][C]13185.2656239287[/C][/ROW]
[ROW][C]133[/C][C]6836[/C][C]7062.01180084416[/C][C]-226.011800844156[/C][/ROW]
[ROW][C]134[/C][C]162563[/C][C]147895.748033499[/C][C]14667.2519665005[/C][/ROW]
[ROW][C]135[/C][C]5118[/C][C]5964.47601077187[/C][C]-846.476010771871[/C][/ROW]
[ROW][C]136[/C][C]40248[/C][C]41207.148159926[/C][C]-959.148159926[/C][/ROW]
[ROW][C]137[/C][C]0[/C][C]3142.23456069461[/C][C]-3142.23456069461[/C][/ROW]
[ROW][C]138[/C][C]122641[/C][C]111486.409668516[/C][C]11154.5903314838[/C][/ROW]
[ROW][C]139[/C][C]88837[/C][C]115874.375114549[/C][C]-27037.3751145485[/C][/ROW]
[ROW][C]140[/C][C]7131[/C][C]7024.38600060819[/C][C]106.613999391813[/C][/ROW]
[ROW][C]141[/C][C]9056[/C][C]26703.7302393481[/C][C]-17647.7302393481[/C][/ROW]
[ROW][C]142[/C][C]76611[/C][C]81521.010939137[/C][C]-4910.01093913696[/C][/ROW]
[ROW][C]143[/C][C]132697[/C][C]109269.237849562[/C][C]23427.7621504383[/C][/ROW]
[ROW][C]144[/C][C]100681[/C][C]111539.121343828[/C][C]-10858.1213438279[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=158825&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=158825&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1159261156471.4311769582789.56882304196
2189672146645.43742025843026.5625797417
3721520749.3104057187-13534.3104057187
4129098181077.071369093-51979.0713690932
5230632300374.59584295-69742.5958429498
6515038520159.139048593-5121.13904859338
7180745155248.35575494425496.6442450557
8185559159178.51159274926380.4884072508
9154581170166.300219481-15585.3002194815
10298001247320.31971366450680.6802863364
11121844146786.708369335-24942.7083693352
12184039189364.119815454-5325.11981545425
13100324167950.359922448-67626.3599224483
14220269240829.471111195-20560.4711111953
15168265117288.20491513350976.7950848666
16154647136813.22488387217833.7751161281
17142018159447.303226555-17429.3032265552
187903094035.4831744743-15005.4831744743
19167047238404.263182373-71357.2631823726
202799770363.1043703452-42366.1043703452
2173019105065.798587638-32046.7985876382
22241082240168.614710738913.385289262109
23195820160259.06949461935560.9305053807
24142001175188.30496655-33187.3049665502
25145433167108.259703744-21675.2597037437
26183744134647.68845799249096.3115420078
27202357199907.3396583892449.660341611
28199532144303.91334336755228.0866566327
29354924247511.648799237107412.351200763
30192399188987.0933507893411.90664921121
31182286150852.52317931431433.4768206863
32181590128903.9495257252686.0504742804
33133801178761.287310566-44960.2873105656
34233686218646.56840104815039.4315989522
35219428201004.08829726318423.9117027373
3603382.33612811901-3382.33612811901
37223044214933.7321711748110.26782882626
38100129118495.344154678-18366.3441546778
39145864124919.24863213420944.7513678663
40249965212883.95773264637081.0422673542
41242379193118.66600012149260.3339998788
42145794179307.25111807-33513.2511180695
4396404100822.87166564-4418.8716656403
44195891199092.944112793-3201.9441127931
45117156123779.250330029-6623.25033002926
46157787118115.55931170539671.4406882953
478129386925.7497166402-5632.74971664025
48237435203071.61876954934363.3812304514
49233155205081.68952935728073.3104706426
50160344192346.469900061-32002.4699000608
514818877641.57617315-29453.57617315
52161922162230.789214862-308.789214862032
53307432217414.80063624790017.1993637531
54235223189552.31317429445670.6868257064
55195583189135.2759458756447.72405412538
56146061114433.71719279731627.2828072033
57208834163358.62779889645475.3722011043
589376497096.6711456444-3332.67114564445
59151985129216.308935322768.6910647005
60193222236177.702364208-42955.7023642075
61148922146723.0339087722198.96609122756
62132856189261.35733815-56405.3573381505
6312956186698.893906232542862.1060937675
64112718118569.606681441-5851.60668144105
65160930124772.20680982136157.7931901789
6699184138540.801925103-39356.8019251031
67192535177002.08638796515532.9136120349
68138708218563.508476376-79855.5084763756
69114408107068.7148266257339.28517337468
703197050675.5474043018-18705.5474043018
71225558224740.012104879817.987895121225
72139220110160.23948425229059.7605157482
73113612146405.598670296-32793.598670296
74108641129771.816802261-21130.8168022614
75162203222040.41434425-59837.4143442499
76100098135194.416416705-35096.416416705
77174768195228.581669677-20460.5816696772
78158459229105.476976524-70646.4769765241
798093493036.7353132084-12102.7353132084
8084971127238.760517081-42267.7605170812
8180545101149.665720914-20604.6657209141
82287191209181.4345592878009.5654407196
836297494838.028499023-31864.028499023
84134091131821.4557502292269.54424977108
8575555107925.662910423-32370.6629104227
86162154161190.661259451963.338740548591
87226638247514.351128302-20876.3511283022
88115367124238.092653279-8871.09265327894
89108749114679.379991544-5930.37999154408
90155537145480.81520705810056.1847929422
91153133160272.283451269-7139.28345126897
92165618187545.348514617-21927.3485146168
93151517124856.98576631226660.0142336884
94133686123634.63955875210051.3604412479
956134294873.6531458536-33531.6531458536
96245196209122.88782894736073.1121710533
97195576161793.57396048733782.4260395134
981934919100.9787462871248.021253712885
99225371204361.28448936821009.7155106317
100153213199795.340690552-46582.3406905518
1015911765767.9587442611-6650.95874426107
1029176299274.008309047-7512.00830904701
103136769123028.63649348713740.3635065133
104114798107523.3875057017274.61249429942
1058533875125.191700113810212.8082998862
1062767660995.0416111364-33319.0416111364
107153535132670.34053132720864.6594686726
10812241785400.537616738237016.4623832618
10903142.23456069461-3142.23456069461
11091529107392.904980989-15863.9049809895
111107205114337.095840209-7132.09584020909
112144664130034.23068544914629.7693145513
113146445133595.01019438512849.989805615
1147665688791.3374106874-12135.3374106874
11536167972.7401049753-4356.7401049753
11603142.23456069461-3142.23456069461
117183088111647.47702233171440.5229776691
118144677163217.242963985-18540.242963985
119159104177620.571536032-18516.5715360315
12011327398370.985191988614902.0148080114
1214341055549.3094376712-12139.3094376712
122175774159458.22904014816315.7709598523
1239540192463.54749863372937.45250136629
124134837167600.901754034-32763.9017540337
1256049362254.0463888526-1761.04638885264
1261976421404.9631793391-1640.96317933909
127164062151468.6702163512593.3297836503
128132696116279.61792376916416.3820762312
129155367156219.820207179-852.820207179272
1301179621947.974401198-10151.974401198
1311067410759.4593388152-85.4593388151934
132142261129075.73437607113185.2656239287
13368367062.01180084416-226.011800844156
134162563147895.74803349914667.2519665005
13551185964.47601077187-846.476010771871
1364024841207.148159926-959.148159926
13703142.23456069461-3142.23456069461
138122641111486.40966851611154.5903314838
13988837115874.375114549-27037.3751145485
14071317024.38600060819106.613999391813
141905626703.7302393481-17647.7302393481
1427661181521.010939137-4910.01093913696
143132697109269.23784956223427.7621504383
144100681111539.121343828-10858.1213438279







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
100.6966084547831760.6067830904336480.303391545216824
110.8502745161631880.2994509676736230.149725483836812
120.7702656954902630.4594686090194740.229734304509737
130.7238421388058180.5523157223883650.276157861194182
140.6615402951031450.6769194097937090.338459704896855
150.6742346994576680.6515306010846640.325765300542332
160.5828938086499930.8342123827000150.417106191350007
170.5565809885202950.8868380229594090.443419011479705
180.7065299010659220.5869401978681560.293470098934078
190.8479660805238520.3040678389522960.152033919476148
200.8516332463263850.296733507347230.148366753673615
210.8098608021428730.3802783957142530.190139197857127
220.7545168913090840.4909662173818330.245483108690916
230.8992181089100220.2015637821799560.100781891089978
240.8912822365804480.2174355268391030.108717763419552
250.8727620509093040.2544758981813920.127237949090696
260.9261736350636750.147652729872650.0738263649363249
270.943408433717320.113183132565360.05659156628268
280.9681774378696320.06364512426073510.0318225621303676
290.998769609379410.002460781241180910.00123039062059046
300.997987643716170.004024712567660640.00201235628383032
310.9975661841300660.004867631739867710.00243381586993386
320.9985430003082820.002913999383436030.00145699969171801
330.9991739090798720.001652181840255690.000826090920127847
340.999124893857220.001750212285559270.000875106142779636
350.9987023077531040.002595384493792030.00129769224689601
360.997969134638240.004061730723520080.00203086536176004
370.9969026893792980.006194621241403690.00309731062070185
380.9958455378249960.008308924350007760.00415446217500388
390.9940147058365720.01197058832685680.0059852941634284
400.9934376717429310.01312465651413830.00656232825706914
410.9951630737535290.009673852492941690.00483692624647084
420.9960152351555690.007969529688862530.00398476484443127
430.9943480324428190.01130393511436190.00565196755718095
440.9918595669891070.01628086602178660.0081404330108933
450.9889515859666660.0220968280666680.011048414033334
460.9896961844414340.02060763111713130.0103038155585656
470.9861956969440010.02760860611199820.0138043030559991
480.9862770031384960.02744599372300770.0137229968615039
490.9841213462099510.03175730758009820.0158786537900491
500.9848119799846410.03037604003071860.0151880200153593
510.9842674364043950.03146512719120930.0157325635956046
520.978622737130230.04275452573954050.0213772628697703
530.9977592576093090.004481484781382480.00224074239069124
540.9985616454980260.002876709003948560.00143835450197428
550.9980333166872420.003933366625515840.00196668331275792
560.997829718499330.00434056300133970.00217028150066985
570.9987965071980530.002406985603893430.00120349280194671
580.9982442454614840.003511509077031510.00175575453851576
590.9979726422543710.004054715491257890.00202735774562895
600.9984395660864450.003120867827109440.00156043391355472
610.9976748770487060.00465024590258880.0023251229512944
620.9988308227088990.002338354582202440.00116917729110122
630.9989222960634760.002155407873047180.00107770393652359
640.9984177558149250.003164488370150150.00158224418507508
650.9986506088865390.0026987822269220.001349391113461
660.9988897725276970.002220454944606040.00111022747230302
670.9989006214725880.00219875705482410.00109937852741205
680.999915665502240.0001686689955193968.4334497759698e-05
690.9998822433325560.0002355133348879680.000117756667443984
700.9998365821816520.0003268356366967150.000163417818348357
710.9997729795119920.00045404097601650.00022702048800825
720.9997158093941870.0005683812116266580.000284190605813329
730.999697855507680.0006042889846406950.000302144492320348
740.9996452373513060.0007095252973882320.000354762648694116
750.9998670957625350.0002658084749309170.000132904237465459
760.9998758403624490.0002483192751022740.000124159637551137
770.9998628033107270.0002743933785457690.000137196689272884
780.9999947816263761.04367472484993e-055.21837362424963e-06
790.9999918193544441.63612911126865e-058.18064555634323e-06
800.999995030406989.93918603998919e-064.96959301999459e-06
810.9999919975615821.60048768369766e-058.00243841848829e-06
820.9999999012926251.97414749307401e-079.87073746537007e-08
830.9999999082144191.83571162181391e-079.17855810906954e-08
840.999999883173432.33653139428598e-071.16826569714299e-07
850.9999998863502622.27299476561409e-071.13649738280704e-07
860.9999997646677534.70664494443568e-072.35332247221784e-07
870.9999996275228817.44954237442293e-073.72477118721146e-07
880.9999993998724461.20025510723528e-066.00127553617641e-07
890.9999988267995352.34640093085444e-061.17320046542722e-06
900.9999979179045014.16419099787532e-062.08209549893766e-06
910.99999624291267.51417479933516e-063.75708739966758e-06
920.9999977296300894.54073982132766e-062.27036991066383e-06
930.9999978992860544.20142789295091e-062.10071394647546e-06
940.9999958790611448.24187771140657e-064.12093885570329e-06
950.9999964178313237.16433735453915e-063.58216867726957e-06
960.9999946033032111.07933935771294e-055.39669678856472e-06
970.9999929389740751.41220518495623e-057.06102592478115e-06
980.9999861366394532.77267210933988e-051.38633605466994e-05
990.99997913595634.17280873991352e-052.08640436995676e-05
1000.9999949358057741.01283884524944e-055.0641942262472e-06
1010.9999913976844911.72046310179377e-058.60231550896883e-06
1020.9999856420453922.87159092153291e-051.43579546076646e-05
1030.9999734222660945.31554678120904e-052.65777339060452e-05
1040.9999516219077539.67561844930163e-054.83780922465081e-05
1050.9999157543533450.0001684912933090658.42456466545326e-05
1060.999939973966460.0001200520670800416.00260335400206e-05
1070.9999121504981030.0001756990037937548.7849501896877e-05
1080.9999491521278680.0001016957442631475.08478721315734e-05
1090.9998980332856260.0002039334287488850.000101966714374443
1100.9998700999085340.0002598001829319670.000129900091465984
1110.9997873837158170.0004252325683651170.000212616284182559
1120.999596271949610.0008074561007801940.000403728050390097
1130.9993318875387780.001336224922443710.000668112461221854
1140.9990765246238080.001846950752384670.000923475376192337
1150.9982875661627130.003424867674574460.00171243383728723
1160.9968986310068120.006202737986376120.00310136899318806
1170.999970169627495.96607450196169e-052.98303725098085e-05
1180.9999986431836712.71363265808785e-061.35681632904392e-06
1190.9999997490620355.01875929474185e-072.50937964737092e-07
1200.999999196873211.6062535803172e-068.031267901586e-07
1210.9999982954964283.40900714393325e-061.70450357196663e-06
1220.9999946196659911.07606680174696e-055.3803340087348e-06
1230.9999834432064373.3113587126862e-051.6556793563431e-05
1240.9999808258617783.83482764450249e-051.91741382225124e-05
1250.9999742081968535.15836062933848e-052.57918031466924e-05
1260.9999115582970310.000176883405937778.8441702968885e-05
1270.9998519309438420.0002961381123162290.000148069056158115
1280.9997753312083990.0004493375832024940.000224668791601247
1290.9993258794918890.001348241016221820.000674120508110908
1300.9980129095512250.003974180897549860.00198709044877493
1310.9935450272250620.01290994554987630.00645497277493814
1320.9880091183808970.02398176323820510.0119908816191026
1330.9634169908084180.07316601838316380.0365830091915819
1340.8977112632466190.2045774735067620.102288736753381

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
10 & 0.696608454783176 & 0.606783090433648 & 0.303391545216824 \tabularnewline
11 & 0.850274516163188 & 0.299450967673623 & 0.149725483836812 \tabularnewline
12 & 0.770265695490263 & 0.459468609019474 & 0.229734304509737 \tabularnewline
13 & 0.723842138805818 & 0.552315722388365 & 0.276157861194182 \tabularnewline
14 & 0.661540295103145 & 0.676919409793709 & 0.338459704896855 \tabularnewline
15 & 0.674234699457668 & 0.651530601084664 & 0.325765300542332 \tabularnewline
16 & 0.582893808649993 & 0.834212382700015 & 0.417106191350007 \tabularnewline
17 & 0.556580988520295 & 0.886838022959409 & 0.443419011479705 \tabularnewline
18 & 0.706529901065922 & 0.586940197868156 & 0.293470098934078 \tabularnewline
19 & 0.847966080523852 & 0.304067838952296 & 0.152033919476148 \tabularnewline
20 & 0.851633246326385 & 0.29673350734723 & 0.148366753673615 \tabularnewline
21 & 0.809860802142873 & 0.380278395714253 & 0.190139197857127 \tabularnewline
22 & 0.754516891309084 & 0.490966217381833 & 0.245483108690916 \tabularnewline
23 & 0.899218108910022 & 0.201563782179956 & 0.100781891089978 \tabularnewline
24 & 0.891282236580448 & 0.217435526839103 & 0.108717763419552 \tabularnewline
25 & 0.872762050909304 & 0.254475898181392 & 0.127237949090696 \tabularnewline
26 & 0.926173635063675 & 0.14765272987265 & 0.0738263649363249 \tabularnewline
27 & 0.94340843371732 & 0.11318313256536 & 0.05659156628268 \tabularnewline
28 & 0.968177437869632 & 0.0636451242607351 & 0.0318225621303676 \tabularnewline
29 & 0.99876960937941 & 0.00246078124118091 & 0.00123039062059046 \tabularnewline
30 & 0.99798764371617 & 0.00402471256766064 & 0.00201235628383032 \tabularnewline
31 & 0.997566184130066 & 0.00486763173986771 & 0.00243381586993386 \tabularnewline
32 & 0.998543000308282 & 0.00291399938343603 & 0.00145699969171801 \tabularnewline
33 & 0.999173909079872 & 0.00165218184025569 & 0.000826090920127847 \tabularnewline
34 & 0.99912489385722 & 0.00175021228555927 & 0.000875106142779636 \tabularnewline
35 & 0.998702307753104 & 0.00259538449379203 & 0.00129769224689601 \tabularnewline
36 & 0.99796913463824 & 0.00406173072352008 & 0.00203086536176004 \tabularnewline
37 & 0.996902689379298 & 0.00619462124140369 & 0.00309731062070185 \tabularnewline
38 & 0.995845537824996 & 0.00830892435000776 & 0.00415446217500388 \tabularnewline
39 & 0.994014705836572 & 0.0119705883268568 & 0.0059852941634284 \tabularnewline
40 & 0.993437671742931 & 0.0131246565141383 & 0.00656232825706914 \tabularnewline
41 & 0.995163073753529 & 0.00967385249294169 & 0.00483692624647084 \tabularnewline
42 & 0.996015235155569 & 0.00796952968886253 & 0.00398476484443127 \tabularnewline
43 & 0.994348032442819 & 0.0113039351143619 & 0.00565196755718095 \tabularnewline
44 & 0.991859566989107 & 0.0162808660217866 & 0.0081404330108933 \tabularnewline
45 & 0.988951585966666 & 0.022096828066668 & 0.011048414033334 \tabularnewline
46 & 0.989696184441434 & 0.0206076311171313 & 0.0103038155585656 \tabularnewline
47 & 0.986195696944001 & 0.0276086061119982 & 0.0138043030559991 \tabularnewline
48 & 0.986277003138496 & 0.0274459937230077 & 0.0137229968615039 \tabularnewline
49 & 0.984121346209951 & 0.0317573075800982 & 0.0158786537900491 \tabularnewline
50 & 0.984811979984641 & 0.0303760400307186 & 0.0151880200153593 \tabularnewline
51 & 0.984267436404395 & 0.0314651271912093 & 0.0157325635956046 \tabularnewline
52 & 0.97862273713023 & 0.0427545257395405 & 0.0213772628697703 \tabularnewline
53 & 0.997759257609309 & 0.00448148478138248 & 0.00224074239069124 \tabularnewline
54 & 0.998561645498026 & 0.00287670900394856 & 0.00143835450197428 \tabularnewline
55 & 0.998033316687242 & 0.00393336662551584 & 0.00196668331275792 \tabularnewline
56 & 0.99782971849933 & 0.0043405630013397 & 0.00217028150066985 \tabularnewline
57 & 0.998796507198053 & 0.00240698560389343 & 0.00120349280194671 \tabularnewline
58 & 0.998244245461484 & 0.00351150907703151 & 0.00175575453851576 \tabularnewline
59 & 0.997972642254371 & 0.00405471549125789 & 0.00202735774562895 \tabularnewline
60 & 0.998439566086445 & 0.00312086782710944 & 0.00156043391355472 \tabularnewline
61 & 0.997674877048706 & 0.0046502459025888 & 0.0023251229512944 \tabularnewline
62 & 0.998830822708899 & 0.00233835458220244 & 0.00116917729110122 \tabularnewline
63 & 0.998922296063476 & 0.00215540787304718 & 0.00107770393652359 \tabularnewline
64 & 0.998417755814925 & 0.00316448837015015 & 0.00158224418507508 \tabularnewline
65 & 0.998650608886539 & 0.002698782226922 & 0.001349391113461 \tabularnewline
66 & 0.998889772527697 & 0.00222045494460604 & 0.00111022747230302 \tabularnewline
67 & 0.998900621472588 & 0.0021987570548241 & 0.00109937852741205 \tabularnewline
68 & 0.99991566550224 & 0.000168668995519396 & 8.4334497759698e-05 \tabularnewline
69 & 0.999882243332556 & 0.000235513334887968 & 0.000117756667443984 \tabularnewline
70 & 0.999836582181652 & 0.000326835636696715 & 0.000163417818348357 \tabularnewline
71 & 0.999772979511992 & 0.0004540409760165 & 0.00022702048800825 \tabularnewline
72 & 0.999715809394187 & 0.000568381211626658 & 0.000284190605813329 \tabularnewline
73 & 0.99969785550768 & 0.000604288984640695 & 0.000302144492320348 \tabularnewline
74 & 0.999645237351306 & 0.000709525297388232 & 0.000354762648694116 \tabularnewline
75 & 0.999867095762535 & 0.000265808474930917 & 0.000132904237465459 \tabularnewline
76 & 0.999875840362449 & 0.000248319275102274 & 0.000124159637551137 \tabularnewline
77 & 0.999862803310727 & 0.000274393378545769 & 0.000137196689272884 \tabularnewline
78 & 0.999994781626376 & 1.04367472484993e-05 & 5.21837362424963e-06 \tabularnewline
79 & 0.999991819354444 & 1.63612911126865e-05 & 8.18064555634323e-06 \tabularnewline
80 & 0.99999503040698 & 9.93918603998919e-06 & 4.96959301999459e-06 \tabularnewline
81 & 0.999991997561582 & 1.60048768369766e-05 & 8.00243841848829e-06 \tabularnewline
82 & 0.999999901292625 & 1.97414749307401e-07 & 9.87073746537007e-08 \tabularnewline
83 & 0.999999908214419 & 1.83571162181391e-07 & 9.17855810906954e-08 \tabularnewline
84 & 0.99999988317343 & 2.33653139428598e-07 & 1.16826569714299e-07 \tabularnewline
85 & 0.999999886350262 & 2.27299476561409e-07 & 1.13649738280704e-07 \tabularnewline
86 & 0.999999764667753 & 4.70664494443568e-07 & 2.35332247221784e-07 \tabularnewline
87 & 0.999999627522881 & 7.44954237442293e-07 & 3.72477118721146e-07 \tabularnewline
88 & 0.999999399872446 & 1.20025510723528e-06 & 6.00127553617641e-07 \tabularnewline
89 & 0.999998826799535 & 2.34640093085444e-06 & 1.17320046542722e-06 \tabularnewline
90 & 0.999997917904501 & 4.16419099787532e-06 & 2.08209549893766e-06 \tabularnewline
91 & 0.9999962429126 & 7.51417479933516e-06 & 3.75708739966758e-06 \tabularnewline
92 & 0.999997729630089 & 4.54073982132766e-06 & 2.27036991066383e-06 \tabularnewline
93 & 0.999997899286054 & 4.20142789295091e-06 & 2.10071394647546e-06 \tabularnewline
94 & 0.999995879061144 & 8.24187771140657e-06 & 4.12093885570329e-06 \tabularnewline
95 & 0.999996417831323 & 7.16433735453915e-06 & 3.58216867726957e-06 \tabularnewline
96 & 0.999994603303211 & 1.07933935771294e-05 & 5.39669678856472e-06 \tabularnewline
97 & 0.999992938974075 & 1.41220518495623e-05 & 7.06102592478115e-06 \tabularnewline
98 & 0.999986136639453 & 2.77267210933988e-05 & 1.38633605466994e-05 \tabularnewline
99 & 0.9999791359563 & 4.17280873991352e-05 & 2.08640436995676e-05 \tabularnewline
100 & 0.999994935805774 & 1.01283884524944e-05 & 5.0641942262472e-06 \tabularnewline
101 & 0.999991397684491 & 1.72046310179377e-05 & 8.60231550896883e-06 \tabularnewline
102 & 0.999985642045392 & 2.87159092153291e-05 & 1.43579546076646e-05 \tabularnewline
103 & 0.999973422266094 & 5.31554678120904e-05 & 2.65777339060452e-05 \tabularnewline
104 & 0.999951621907753 & 9.67561844930163e-05 & 4.83780922465081e-05 \tabularnewline
105 & 0.999915754353345 & 0.000168491293309065 & 8.42456466545326e-05 \tabularnewline
106 & 0.99993997396646 & 0.000120052067080041 & 6.00260335400206e-05 \tabularnewline
107 & 0.999912150498103 & 0.000175699003793754 & 8.7849501896877e-05 \tabularnewline
108 & 0.999949152127868 & 0.000101695744263147 & 5.08478721315734e-05 \tabularnewline
109 & 0.999898033285626 & 0.000203933428748885 & 0.000101966714374443 \tabularnewline
110 & 0.999870099908534 & 0.000259800182931967 & 0.000129900091465984 \tabularnewline
111 & 0.999787383715817 & 0.000425232568365117 & 0.000212616284182559 \tabularnewline
112 & 0.99959627194961 & 0.000807456100780194 & 0.000403728050390097 \tabularnewline
113 & 0.999331887538778 & 0.00133622492244371 & 0.000668112461221854 \tabularnewline
114 & 0.999076524623808 & 0.00184695075238467 & 0.000923475376192337 \tabularnewline
115 & 0.998287566162713 & 0.00342486767457446 & 0.00171243383728723 \tabularnewline
116 & 0.996898631006812 & 0.00620273798637612 & 0.00310136899318806 \tabularnewline
117 & 0.99997016962749 & 5.96607450196169e-05 & 2.98303725098085e-05 \tabularnewline
118 & 0.999998643183671 & 2.71363265808785e-06 & 1.35681632904392e-06 \tabularnewline
119 & 0.999999749062035 & 5.01875929474185e-07 & 2.50937964737092e-07 \tabularnewline
120 & 0.99999919687321 & 1.6062535803172e-06 & 8.031267901586e-07 \tabularnewline
121 & 0.999998295496428 & 3.40900714393325e-06 & 1.70450357196663e-06 \tabularnewline
122 & 0.999994619665991 & 1.07606680174696e-05 & 5.3803340087348e-06 \tabularnewline
123 & 0.999983443206437 & 3.3113587126862e-05 & 1.6556793563431e-05 \tabularnewline
124 & 0.999980825861778 & 3.83482764450249e-05 & 1.91741382225124e-05 \tabularnewline
125 & 0.999974208196853 & 5.15836062933848e-05 & 2.57918031466924e-05 \tabularnewline
126 & 0.999911558297031 & 0.00017688340593777 & 8.8441702968885e-05 \tabularnewline
127 & 0.999851930943842 & 0.000296138112316229 & 0.000148069056158115 \tabularnewline
128 & 0.999775331208399 & 0.000449337583202494 & 0.000224668791601247 \tabularnewline
129 & 0.999325879491889 & 0.00134824101622182 & 0.000674120508110908 \tabularnewline
130 & 0.998012909551225 & 0.00397418089754986 & 0.00198709044877493 \tabularnewline
131 & 0.993545027225062 & 0.0129099455498763 & 0.00645497277493814 \tabularnewline
132 & 0.988009118380897 & 0.0239817632382051 & 0.0119908816191026 \tabularnewline
133 & 0.963416990808418 & 0.0731660183831638 & 0.0365830091915819 \tabularnewline
134 & 0.897711263246619 & 0.204577473506762 & 0.102288736753381 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=158825&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]10[/C][C]0.696608454783176[/C][C]0.606783090433648[/C][C]0.303391545216824[/C][/ROW]
[ROW][C]11[/C][C]0.850274516163188[/C][C]0.299450967673623[/C][C]0.149725483836812[/C][/ROW]
[ROW][C]12[/C][C]0.770265695490263[/C][C]0.459468609019474[/C][C]0.229734304509737[/C][/ROW]
[ROW][C]13[/C][C]0.723842138805818[/C][C]0.552315722388365[/C][C]0.276157861194182[/C][/ROW]
[ROW][C]14[/C][C]0.661540295103145[/C][C]0.676919409793709[/C][C]0.338459704896855[/C][/ROW]
[ROW][C]15[/C][C]0.674234699457668[/C][C]0.651530601084664[/C][C]0.325765300542332[/C][/ROW]
[ROW][C]16[/C][C]0.582893808649993[/C][C]0.834212382700015[/C][C]0.417106191350007[/C][/ROW]
[ROW][C]17[/C][C]0.556580988520295[/C][C]0.886838022959409[/C][C]0.443419011479705[/C][/ROW]
[ROW][C]18[/C][C]0.706529901065922[/C][C]0.586940197868156[/C][C]0.293470098934078[/C][/ROW]
[ROW][C]19[/C][C]0.847966080523852[/C][C]0.304067838952296[/C][C]0.152033919476148[/C][/ROW]
[ROW][C]20[/C][C]0.851633246326385[/C][C]0.29673350734723[/C][C]0.148366753673615[/C][/ROW]
[ROW][C]21[/C][C]0.809860802142873[/C][C]0.380278395714253[/C][C]0.190139197857127[/C][/ROW]
[ROW][C]22[/C][C]0.754516891309084[/C][C]0.490966217381833[/C][C]0.245483108690916[/C][/ROW]
[ROW][C]23[/C][C]0.899218108910022[/C][C]0.201563782179956[/C][C]0.100781891089978[/C][/ROW]
[ROW][C]24[/C][C]0.891282236580448[/C][C]0.217435526839103[/C][C]0.108717763419552[/C][/ROW]
[ROW][C]25[/C][C]0.872762050909304[/C][C]0.254475898181392[/C][C]0.127237949090696[/C][/ROW]
[ROW][C]26[/C][C]0.926173635063675[/C][C]0.14765272987265[/C][C]0.0738263649363249[/C][/ROW]
[ROW][C]27[/C][C]0.94340843371732[/C][C]0.11318313256536[/C][C]0.05659156628268[/C][/ROW]
[ROW][C]28[/C][C]0.968177437869632[/C][C]0.0636451242607351[/C][C]0.0318225621303676[/C][/ROW]
[ROW][C]29[/C][C]0.99876960937941[/C][C]0.00246078124118091[/C][C]0.00123039062059046[/C][/ROW]
[ROW][C]30[/C][C]0.99798764371617[/C][C]0.00402471256766064[/C][C]0.00201235628383032[/C][/ROW]
[ROW][C]31[/C][C]0.997566184130066[/C][C]0.00486763173986771[/C][C]0.00243381586993386[/C][/ROW]
[ROW][C]32[/C][C]0.998543000308282[/C][C]0.00291399938343603[/C][C]0.00145699969171801[/C][/ROW]
[ROW][C]33[/C][C]0.999173909079872[/C][C]0.00165218184025569[/C][C]0.000826090920127847[/C][/ROW]
[ROW][C]34[/C][C]0.99912489385722[/C][C]0.00175021228555927[/C][C]0.000875106142779636[/C][/ROW]
[ROW][C]35[/C][C]0.998702307753104[/C][C]0.00259538449379203[/C][C]0.00129769224689601[/C][/ROW]
[ROW][C]36[/C][C]0.99796913463824[/C][C]0.00406173072352008[/C][C]0.00203086536176004[/C][/ROW]
[ROW][C]37[/C][C]0.996902689379298[/C][C]0.00619462124140369[/C][C]0.00309731062070185[/C][/ROW]
[ROW][C]38[/C][C]0.995845537824996[/C][C]0.00830892435000776[/C][C]0.00415446217500388[/C][/ROW]
[ROW][C]39[/C][C]0.994014705836572[/C][C]0.0119705883268568[/C][C]0.0059852941634284[/C][/ROW]
[ROW][C]40[/C][C]0.993437671742931[/C][C]0.0131246565141383[/C][C]0.00656232825706914[/C][/ROW]
[ROW][C]41[/C][C]0.995163073753529[/C][C]0.00967385249294169[/C][C]0.00483692624647084[/C][/ROW]
[ROW][C]42[/C][C]0.996015235155569[/C][C]0.00796952968886253[/C][C]0.00398476484443127[/C][/ROW]
[ROW][C]43[/C][C]0.994348032442819[/C][C]0.0113039351143619[/C][C]0.00565196755718095[/C][/ROW]
[ROW][C]44[/C][C]0.991859566989107[/C][C]0.0162808660217866[/C][C]0.0081404330108933[/C][/ROW]
[ROW][C]45[/C][C]0.988951585966666[/C][C]0.022096828066668[/C][C]0.011048414033334[/C][/ROW]
[ROW][C]46[/C][C]0.989696184441434[/C][C]0.0206076311171313[/C][C]0.0103038155585656[/C][/ROW]
[ROW][C]47[/C][C]0.986195696944001[/C][C]0.0276086061119982[/C][C]0.0138043030559991[/C][/ROW]
[ROW][C]48[/C][C]0.986277003138496[/C][C]0.0274459937230077[/C][C]0.0137229968615039[/C][/ROW]
[ROW][C]49[/C][C]0.984121346209951[/C][C]0.0317573075800982[/C][C]0.0158786537900491[/C][/ROW]
[ROW][C]50[/C][C]0.984811979984641[/C][C]0.0303760400307186[/C][C]0.0151880200153593[/C][/ROW]
[ROW][C]51[/C][C]0.984267436404395[/C][C]0.0314651271912093[/C][C]0.0157325635956046[/C][/ROW]
[ROW][C]52[/C][C]0.97862273713023[/C][C]0.0427545257395405[/C][C]0.0213772628697703[/C][/ROW]
[ROW][C]53[/C][C]0.997759257609309[/C][C]0.00448148478138248[/C][C]0.00224074239069124[/C][/ROW]
[ROW][C]54[/C][C]0.998561645498026[/C][C]0.00287670900394856[/C][C]0.00143835450197428[/C][/ROW]
[ROW][C]55[/C][C]0.998033316687242[/C][C]0.00393336662551584[/C][C]0.00196668331275792[/C][/ROW]
[ROW][C]56[/C][C]0.99782971849933[/C][C]0.0043405630013397[/C][C]0.00217028150066985[/C][/ROW]
[ROW][C]57[/C][C]0.998796507198053[/C][C]0.00240698560389343[/C][C]0.00120349280194671[/C][/ROW]
[ROW][C]58[/C][C]0.998244245461484[/C][C]0.00351150907703151[/C][C]0.00175575453851576[/C][/ROW]
[ROW][C]59[/C][C]0.997972642254371[/C][C]0.00405471549125789[/C][C]0.00202735774562895[/C][/ROW]
[ROW][C]60[/C][C]0.998439566086445[/C][C]0.00312086782710944[/C][C]0.00156043391355472[/C][/ROW]
[ROW][C]61[/C][C]0.997674877048706[/C][C]0.0046502459025888[/C][C]0.0023251229512944[/C][/ROW]
[ROW][C]62[/C][C]0.998830822708899[/C][C]0.00233835458220244[/C][C]0.00116917729110122[/C][/ROW]
[ROW][C]63[/C][C]0.998922296063476[/C][C]0.00215540787304718[/C][C]0.00107770393652359[/C][/ROW]
[ROW][C]64[/C][C]0.998417755814925[/C][C]0.00316448837015015[/C][C]0.00158224418507508[/C][/ROW]
[ROW][C]65[/C][C]0.998650608886539[/C][C]0.002698782226922[/C][C]0.001349391113461[/C][/ROW]
[ROW][C]66[/C][C]0.998889772527697[/C][C]0.00222045494460604[/C][C]0.00111022747230302[/C][/ROW]
[ROW][C]67[/C][C]0.998900621472588[/C][C]0.0021987570548241[/C][C]0.00109937852741205[/C][/ROW]
[ROW][C]68[/C][C]0.99991566550224[/C][C]0.000168668995519396[/C][C]8.4334497759698e-05[/C][/ROW]
[ROW][C]69[/C][C]0.999882243332556[/C][C]0.000235513334887968[/C][C]0.000117756667443984[/C][/ROW]
[ROW][C]70[/C][C]0.999836582181652[/C][C]0.000326835636696715[/C][C]0.000163417818348357[/C][/ROW]
[ROW][C]71[/C][C]0.999772979511992[/C][C]0.0004540409760165[/C][C]0.00022702048800825[/C][/ROW]
[ROW][C]72[/C][C]0.999715809394187[/C][C]0.000568381211626658[/C][C]0.000284190605813329[/C][/ROW]
[ROW][C]73[/C][C]0.99969785550768[/C][C]0.000604288984640695[/C][C]0.000302144492320348[/C][/ROW]
[ROW][C]74[/C][C]0.999645237351306[/C][C]0.000709525297388232[/C][C]0.000354762648694116[/C][/ROW]
[ROW][C]75[/C][C]0.999867095762535[/C][C]0.000265808474930917[/C][C]0.000132904237465459[/C][/ROW]
[ROW][C]76[/C][C]0.999875840362449[/C][C]0.000248319275102274[/C][C]0.000124159637551137[/C][/ROW]
[ROW][C]77[/C][C]0.999862803310727[/C][C]0.000274393378545769[/C][C]0.000137196689272884[/C][/ROW]
[ROW][C]78[/C][C]0.999994781626376[/C][C]1.04367472484993e-05[/C][C]5.21837362424963e-06[/C][/ROW]
[ROW][C]79[/C][C]0.999991819354444[/C][C]1.63612911126865e-05[/C][C]8.18064555634323e-06[/C][/ROW]
[ROW][C]80[/C][C]0.99999503040698[/C][C]9.93918603998919e-06[/C][C]4.96959301999459e-06[/C][/ROW]
[ROW][C]81[/C][C]0.999991997561582[/C][C]1.60048768369766e-05[/C][C]8.00243841848829e-06[/C][/ROW]
[ROW][C]82[/C][C]0.999999901292625[/C][C]1.97414749307401e-07[/C][C]9.87073746537007e-08[/C][/ROW]
[ROW][C]83[/C][C]0.999999908214419[/C][C]1.83571162181391e-07[/C][C]9.17855810906954e-08[/C][/ROW]
[ROW][C]84[/C][C]0.99999988317343[/C][C]2.33653139428598e-07[/C][C]1.16826569714299e-07[/C][/ROW]
[ROW][C]85[/C][C]0.999999886350262[/C][C]2.27299476561409e-07[/C][C]1.13649738280704e-07[/C][/ROW]
[ROW][C]86[/C][C]0.999999764667753[/C][C]4.70664494443568e-07[/C][C]2.35332247221784e-07[/C][/ROW]
[ROW][C]87[/C][C]0.999999627522881[/C][C]7.44954237442293e-07[/C][C]3.72477118721146e-07[/C][/ROW]
[ROW][C]88[/C][C]0.999999399872446[/C][C]1.20025510723528e-06[/C][C]6.00127553617641e-07[/C][/ROW]
[ROW][C]89[/C][C]0.999998826799535[/C][C]2.34640093085444e-06[/C][C]1.17320046542722e-06[/C][/ROW]
[ROW][C]90[/C][C]0.999997917904501[/C][C]4.16419099787532e-06[/C][C]2.08209549893766e-06[/C][/ROW]
[ROW][C]91[/C][C]0.9999962429126[/C][C]7.51417479933516e-06[/C][C]3.75708739966758e-06[/C][/ROW]
[ROW][C]92[/C][C]0.999997729630089[/C][C]4.54073982132766e-06[/C][C]2.27036991066383e-06[/C][/ROW]
[ROW][C]93[/C][C]0.999997899286054[/C][C]4.20142789295091e-06[/C][C]2.10071394647546e-06[/C][/ROW]
[ROW][C]94[/C][C]0.999995879061144[/C][C]8.24187771140657e-06[/C][C]4.12093885570329e-06[/C][/ROW]
[ROW][C]95[/C][C]0.999996417831323[/C][C]7.16433735453915e-06[/C][C]3.58216867726957e-06[/C][/ROW]
[ROW][C]96[/C][C]0.999994603303211[/C][C]1.07933935771294e-05[/C][C]5.39669678856472e-06[/C][/ROW]
[ROW][C]97[/C][C]0.999992938974075[/C][C]1.41220518495623e-05[/C][C]7.06102592478115e-06[/C][/ROW]
[ROW][C]98[/C][C]0.999986136639453[/C][C]2.77267210933988e-05[/C][C]1.38633605466994e-05[/C][/ROW]
[ROW][C]99[/C][C]0.9999791359563[/C][C]4.17280873991352e-05[/C][C]2.08640436995676e-05[/C][/ROW]
[ROW][C]100[/C][C]0.999994935805774[/C][C]1.01283884524944e-05[/C][C]5.0641942262472e-06[/C][/ROW]
[ROW][C]101[/C][C]0.999991397684491[/C][C]1.72046310179377e-05[/C][C]8.60231550896883e-06[/C][/ROW]
[ROW][C]102[/C][C]0.999985642045392[/C][C]2.87159092153291e-05[/C][C]1.43579546076646e-05[/C][/ROW]
[ROW][C]103[/C][C]0.999973422266094[/C][C]5.31554678120904e-05[/C][C]2.65777339060452e-05[/C][/ROW]
[ROW][C]104[/C][C]0.999951621907753[/C][C]9.67561844930163e-05[/C][C]4.83780922465081e-05[/C][/ROW]
[ROW][C]105[/C][C]0.999915754353345[/C][C]0.000168491293309065[/C][C]8.42456466545326e-05[/C][/ROW]
[ROW][C]106[/C][C]0.99993997396646[/C][C]0.000120052067080041[/C][C]6.00260335400206e-05[/C][/ROW]
[ROW][C]107[/C][C]0.999912150498103[/C][C]0.000175699003793754[/C][C]8.7849501896877e-05[/C][/ROW]
[ROW][C]108[/C][C]0.999949152127868[/C][C]0.000101695744263147[/C][C]5.08478721315734e-05[/C][/ROW]
[ROW][C]109[/C][C]0.999898033285626[/C][C]0.000203933428748885[/C][C]0.000101966714374443[/C][/ROW]
[ROW][C]110[/C][C]0.999870099908534[/C][C]0.000259800182931967[/C][C]0.000129900091465984[/C][/ROW]
[ROW][C]111[/C][C]0.999787383715817[/C][C]0.000425232568365117[/C][C]0.000212616284182559[/C][/ROW]
[ROW][C]112[/C][C]0.99959627194961[/C][C]0.000807456100780194[/C][C]0.000403728050390097[/C][/ROW]
[ROW][C]113[/C][C]0.999331887538778[/C][C]0.00133622492244371[/C][C]0.000668112461221854[/C][/ROW]
[ROW][C]114[/C][C]0.999076524623808[/C][C]0.00184695075238467[/C][C]0.000923475376192337[/C][/ROW]
[ROW][C]115[/C][C]0.998287566162713[/C][C]0.00342486767457446[/C][C]0.00171243383728723[/C][/ROW]
[ROW][C]116[/C][C]0.996898631006812[/C][C]0.00620273798637612[/C][C]0.00310136899318806[/C][/ROW]
[ROW][C]117[/C][C]0.99997016962749[/C][C]5.96607450196169e-05[/C][C]2.98303725098085e-05[/C][/ROW]
[ROW][C]118[/C][C]0.999998643183671[/C][C]2.71363265808785e-06[/C][C]1.35681632904392e-06[/C][/ROW]
[ROW][C]119[/C][C]0.999999749062035[/C][C]5.01875929474185e-07[/C][C]2.50937964737092e-07[/C][/ROW]
[ROW][C]120[/C][C]0.99999919687321[/C][C]1.6062535803172e-06[/C][C]8.031267901586e-07[/C][/ROW]
[ROW][C]121[/C][C]0.999998295496428[/C][C]3.40900714393325e-06[/C][C]1.70450357196663e-06[/C][/ROW]
[ROW][C]122[/C][C]0.999994619665991[/C][C]1.07606680174696e-05[/C][C]5.3803340087348e-06[/C][/ROW]
[ROW][C]123[/C][C]0.999983443206437[/C][C]3.3113587126862e-05[/C][C]1.6556793563431e-05[/C][/ROW]
[ROW][C]124[/C][C]0.999980825861778[/C][C]3.83482764450249e-05[/C][C]1.91741382225124e-05[/C][/ROW]
[ROW][C]125[/C][C]0.999974208196853[/C][C]5.15836062933848e-05[/C][C]2.57918031466924e-05[/C][/ROW]
[ROW][C]126[/C][C]0.999911558297031[/C][C]0.00017688340593777[/C][C]8.8441702968885e-05[/C][/ROW]
[ROW][C]127[/C][C]0.999851930943842[/C][C]0.000296138112316229[/C][C]0.000148069056158115[/C][/ROW]
[ROW][C]128[/C][C]0.999775331208399[/C][C]0.000449337583202494[/C][C]0.000224668791601247[/C][/ROW]
[ROW][C]129[/C][C]0.999325879491889[/C][C]0.00134824101622182[/C][C]0.000674120508110908[/C][/ROW]
[ROW][C]130[/C][C]0.998012909551225[/C][C]0.00397418089754986[/C][C]0.00198709044877493[/C][/ROW]
[ROW][C]131[/C][C]0.993545027225062[/C][C]0.0129099455498763[/C][C]0.00645497277493814[/C][/ROW]
[ROW][C]132[/C][C]0.988009118380897[/C][C]0.0239817632382051[/C][C]0.0119908816191026[/C][/ROW]
[ROW][C]133[/C][C]0.963416990808418[/C][C]0.0731660183831638[/C][C]0.0365830091915819[/C][/ROW]
[ROW][C]134[/C][C]0.897711263246619[/C][C]0.204577473506762[/C][C]0.102288736753381[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=158825&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=158825&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
100.6966084547831760.6067830904336480.303391545216824
110.8502745161631880.2994509676736230.149725483836812
120.7702656954902630.4594686090194740.229734304509737
130.7238421388058180.5523157223883650.276157861194182
140.6615402951031450.6769194097937090.338459704896855
150.6742346994576680.6515306010846640.325765300542332
160.5828938086499930.8342123827000150.417106191350007
170.5565809885202950.8868380229594090.443419011479705
180.7065299010659220.5869401978681560.293470098934078
190.8479660805238520.3040678389522960.152033919476148
200.8516332463263850.296733507347230.148366753673615
210.8098608021428730.3802783957142530.190139197857127
220.7545168913090840.4909662173818330.245483108690916
230.8992181089100220.2015637821799560.100781891089978
240.8912822365804480.2174355268391030.108717763419552
250.8727620509093040.2544758981813920.127237949090696
260.9261736350636750.147652729872650.0738263649363249
270.943408433717320.113183132565360.05659156628268
280.9681774378696320.06364512426073510.0318225621303676
290.998769609379410.002460781241180910.00123039062059046
300.997987643716170.004024712567660640.00201235628383032
310.9975661841300660.004867631739867710.00243381586993386
320.9985430003082820.002913999383436030.00145699969171801
330.9991739090798720.001652181840255690.000826090920127847
340.999124893857220.001750212285559270.000875106142779636
350.9987023077531040.002595384493792030.00129769224689601
360.997969134638240.004061730723520080.00203086536176004
370.9969026893792980.006194621241403690.00309731062070185
380.9958455378249960.008308924350007760.00415446217500388
390.9940147058365720.01197058832685680.0059852941634284
400.9934376717429310.01312465651413830.00656232825706914
410.9951630737535290.009673852492941690.00483692624647084
420.9960152351555690.007969529688862530.00398476484443127
430.9943480324428190.01130393511436190.00565196755718095
440.9918595669891070.01628086602178660.0081404330108933
450.9889515859666660.0220968280666680.011048414033334
460.9896961844414340.02060763111713130.0103038155585656
470.9861956969440010.02760860611199820.0138043030559991
480.9862770031384960.02744599372300770.0137229968615039
490.9841213462099510.03175730758009820.0158786537900491
500.9848119799846410.03037604003071860.0151880200153593
510.9842674364043950.03146512719120930.0157325635956046
520.978622737130230.04275452573954050.0213772628697703
530.9977592576093090.004481484781382480.00224074239069124
540.9985616454980260.002876709003948560.00143835450197428
550.9980333166872420.003933366625515840.00196668331275792
560.997829718499330.00434056300133970.00217028150066985
570.9987965071980530.002406985603893430.00120349280194671
580.9982442454614840.003511509077031510.00175575453851576
590.9979726422543710.004054715491257890.00202735774562895
600.9984395660864450.003120867827109440.00156043391355472
610.9976748770487060.00465024590258880.0023251229512944
620.9988308227088990.002338354582202440.00116917729110122
630.9989222960634760.002155407873047180.00107770393652359
640.9984177558149250.003164488370150150.00158224418507508
650.9986506088865390.0026987822269220.001349391113461
660.9988897725276970.002220454944606040.00111022747230302
670.9989006214725880.00219875705482410.00109937852741205
680.999915665502240.0001686689955193968.4334497759698e-05
690.9998822433325560.0002355133348879680.000117756667443984
700.9998365821816520.0003268356366967150.000163417818348357
710.9997729795119920.00045404097601650.00022702048800825
720.9997158093941870.0005683812116266580.000284190605813329
730.999697855507680.0006042889846406950.000302144492320348
740.9996452373513060.0007095252973882320.000354762648694116
750.9998670957625350.0002658084749309170.000132904237465459
760.9998758403624490.0002483192751022740.000124159637551137
770.9998628033107270.0002743933785457690.000137196689272884
780.9999947816263761.04367472484993e-055.21837362424963e-06
790.9999918193544441.63612911126865e-058.18064555634323e-06
800.999995030406989.93918603998919e-064.96959301999459e-06
810.9999919975615821.60048768369766e-058.00243841848829e-06
820.9999999012926251.97414749307401e-079.87073746537007e-08
830.9999999082144191.83571162181391e-079.17855810906954e-08
840.999999883173432.33653139428598e-071.16826569714299e-07
850.9999998863502622.27299476561409e-071.13649738280704e-07
860.9999997646677534.70664494443568e-072.35332247221784e-07
870.9999996275228817.44954237442293e-073.72477118721146e-07
880.9999993998724461.20025510723528e-066.00127553617641e-07
890.9999988267995352.34640093085444e-061.17320046542722e-06
900.9999979179045014.16419099787532e-062.08209549893766e-06
910.99999624291267.51417479933516e-063.75708739966758e-06
920.9999977296300894.54073982132766e-062.27036991066383e-06
930.9999978992860544.20142789295091e-062.10071394647546e-06
940.9999958790611448.24187771140657e-064.12093885570329e-06
950.9999964178313237.16433735453915e-063.58216867726957e-06
960.9999946033032111.07933935771294e-055.39669678856472e-06
970.9999929389740751.41220518495623e-057.06102592478115e-06
980.9999861366394532.77267210933988e-051.38633605466994e-05
990.99997913595634.17280873991352e-052.08640436995676e-05
1000.9999949358057741.01283884524944e-055.0641942262472e-06
1010.9999913976844911.72046310179377e-058.60231550896883e-06
1020.9999856420453922.87159092153291e-051.43579546076646e-05
1030.9999734222660945.31554678120904e-052.65777339060452e-05
1040.9999516219077539.67561844930163e-054.83780922465081e-05
1050.9999157543533450.0001684912933090658.42456466545326e-05
1060.999939973966460.0001200520670800416.00260335400206e-05
1070.9999121504981030.0001756990037937548.7849501896877e-05
1080.9999491521278680.0001016957442631475.08478721315734e-05
1090.9998980332856260.0002039334287488850.000101966714374443
1100.9998700999085340.0002598001829319670.000129900091465984
1110.9997873837158170.0004252325683651170.000212616284182559
1120.999596271949610.0008074561007801940.000403728050390097
1130.9993318875387780.001336224922443710.000668112461221854
1140.9990765246238080.001846950752384670.000923475376192337
1150.9982875661627130.003424867674574460.00171243383728723
1160.9968986310068120.006202737986376120.00310136899318806
1170.999970169627495.96607450196169e-052.98303725098085e-05
1180.9999986431836712.71363265808785e-061.35681632904392e-06
1190.9999997490620355.01875929474185e-072.50937964737092e-07
1200.999999196873211.6062535803172e-068.031267901586e-07
1210.9999982954964283.40900714393325e-061.70450357196663e-06
1220.9999946196659911.07606680174696e-055.3803340087348e-06
1230.9999834432064373.3113587126862e-051.6556793563431e-05
1240.9999808258617783.83482764450249e-051.91741382225124e-05
1250.9999742081968535.15836062933848e-052.57918031466924e-05
1260.9999115582970310.000176883405937778.8441702968885e-05
1270.9998519309438420.0002961381123162290.000148069056158115
1280.9997753312083990.0004493375832024940.000224668791601247
1290.9993258794918890.001348241016221820.000674120508110908
1300.9980129095512250.003974180897549860.00198709044877493
1310.9935450272250620.01290994554987630.00645497277493814
1320.9880091183808970.02398176323820510.0119908816191026
1330.9634169908084180.07316601838316380.0365830091915819
1340.8977112632466190.2045774735067620.102288736753381







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level900.72NOK
5% type I error level1040.832NOK
10% type I error level1060.848NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 90 & 0.72 & NOK \tabularnewline
5% type I error level & 104 & 0.832 & NOK \tabularnewline
10% type I error level & 106 & 0.848 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=158825&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]90[/C][C]0.72[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]104[/C][C]0.832[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]106[/C][C]0.848[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=158825&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=158825&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level900.72NOK
5% type I error level1040.832NOK
10% type I error level1060.848NOK



Parameters (Session):
par1 = 2 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 2 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}