Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_regression_trees1dm.wasp
Title produced by softwareRecursive Partitioning (Regression Trees)
Date of computationTue, 01 May 2012 10:19:22 -0400
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/May/01/t1335882040v5tfboxl23h4xhx.htm/, Retrieved Fri, 01 Nov 2024 01:27:50 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=165606, Retrieved Fri, 01 Nov 2024 01:27:50 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact99
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Notched Boxplots] [BA 1] [2012-05-01 10:28:30] [d47233a2cd9f9635ad611b5f9ecd3f2f]
- RMP     [Recursive Partitioning (Regression Trees)] [WA4] [2012-05-01 14:19:22] [903eb31f4cd74f994cd3b58d73d9cda7] [Current]
Feedback Forum

Post a new message




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Gertrude Mary Cox' @ cox.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=165606&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gertrude Mary Cox' @ cox.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=165606&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=165606&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net







Goodness of Fit
Correlation0.5404
R-squared0.2921
RMSE3217.9628

\begin{tabular}{lllllllll}
\hline
Goodness of Fit \tabularnewline
Correlation & 0.5404 \tabularnewline
R-squared & 0.2921 \tabularnewline
RMSE & 3217.9628 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=165606&T=1

[TABLE]
[ROW][C]Goodness of Fit[/C][/ROW]
[ROW][C]Correlation[/C][C]0.5404[/C][/ROW]
[ROW][C]R-squared[/C][C]0.2921[/C][/ROW]
[ROW][C]RMSE[/C][C]3217.9628[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=165606&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=165606&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goodness of Fit
Correlation0.5404
R-squared0.2921
RMSE3217.9628







Actuals, Predictions, and Residuals
#ActualsForecastsResiduals
114159.9110947.06882352943212.84117647059
29635.5210947.0688235294-1311.54882352941
310485.316602.333888888893882.97611111111
49096.5310947.0688235294-1850.53882352941
513043.2610947.06882352942096.19117647059
68228.396602.333888888891626.05611111111
711392.9410947.0688235294445.871176470589
814565.6210947.06882352943618.55117647059
915740.7810947.06882352944793.71117647059
109649.9810947.0688235294-1297.08882352941
1112950.0910947.06882352942003.02117647059
1210007.326602.333888888893404.98611111111
1314456.6910947.06882352943509.62117647059
14312.326602.33388888889-6290.01388888889
158000.2310947.0688235294-2946.83882352941
1612670.0510947.06882352941722.98117647059
1710443.8210947.0688235294-503.248823529411
1812364.3710947.06882352941417.30117647059
197685.1110947.0688235294-3261.95882352941
204260.966602.33388888889-2341.37388888889
214263.6510947.0688235294-6683.41882352941
229808.1610947.0688235294-1138.90882352941
236106.8610947.0688235294-4840.20882352941
249756.5710947.0688235294-1190.49882352941
257559.8810947.0688235294-3387.18882352941
26948010947.0688235294-1467.06882352941
2710012.8810947.0688235294-934.18882352941
2814942.5610947.06882352943995.49117647059
2910118.756602.333888888893516.41611111111
309503.116602.333888888892900.77611111111
319389.236602.333888888892786.89611111111
322078.36602.33388888889-4524.03388888889
3311099.2210947.0688235294152.15117647059
3412040.9510947.06882352941093.88117647059
357242.2410947.0688235294-3704.82882352941
3619323.4310947.06882352948376.36117647059
373626.596602.33388888889-2975.74388888889
38906.046602.33388888889-5696.29388888889
3914625.7710947.06882352943678.70117647059
406894.7810947.0688235294-4052.28882352941
418562.896602.333888888891960.55611111111
428514.3910947.0688235294-2432.67882352941
435641.346602.33388888889-960.993888888889
448592.510947.0688235294-2354.56882352941
4515285.8810947.06882352944338.81117647059
468228.676602.333888888891626.33611111111
477955.026602.333888888891352.68611111111
487690.8710947.0688235294-3256.19882352941
4913104.8510947.06882352942157.78117647059
505915.816602.33388888889-686.52388888889
515504.236602.33388888889-1098.10388888889
528117.736602.333888888891515.39611111111

\begin{tabular}{lllllllll}
\hline
Actuals, Predictions, and Residuals \tabularnewline
# & Actuals & Forecasts & Residuals \tabularnewline
1 & 14159.91 & 10947.0688235294 & 3212.84117647059 \tabularnewline
2 & 9635.52 & 10947.0688235294 & -1311.54882352941 \tabularnewline
3 & 10485.31 & 6602.33388888889 & 3882.97611111111 \tabularnewline
4 & 9096.53 & 10947.0688235294 & -1850.53882352941 \tabularnewline
5 & 13043.26 & 10947.0688235294 & 2096.19117647059 \tabularnewline
6 & 8228.39 & 6602.33388888889 & 1626.05611111111 \tabularnewline
7 & 11392.94 & 10947.0688235294 & 445.871176470589 \tabularnewline
8 & 14565.62 & 10947.0688235294 & 3618.55117647059 \tabularnewline
9 & 15740.78 & 10947.0688235294 & 4793.71117647059 \tabularnewline
10 & 9649.98 & 10947.0688235294 & -1297.08882352941 \tabularnewline
11 & 12950.09 & 10947.0688235294 & 2003.02117647059 \tabularnewline
12 & 10007.32 & 6602.33388888889 & 3404.98611111111 \tabularnewline
13 & 14456.69 & 10947.0688235294 & 3509.62117647059 \tabularnewline
14 & 312.32 & 6602.33388888889 & -6290.01388888889 \tabularnewline
15 & 8000.23 & 10947.0688235294 & -2946.83882352941 \tabularnewline
16 & 12670.05 & 10947.0688235294 & 1722.98117647059 \tabularnewline
17 & 10443.82 & 10947.0688235294 & -503.248823529411 \tabularnewline
18 & 12364.37 & 10947.0688235294 & 1417.30117647059 \tabularnewline
19 & 7685.11 & 10947.0688235294 & -3261.95882352941 \tabularnewline
20 & 4260.96 & 6602.33388888889 & -2341.37388888889 \tabularnewline
21 & 4263.65 & 10947.0688235294 & -6683.41882352941 \tabularnewline
22 & 9808.16 & 10947.0688235294 & -1138.90882352941 \tabularnewline
23 & 6106.86 & 10947.0688235294 & -4840.20882352941 \tabularnewline
24 & 9756.57 & 10947.0688235294 & -1190.49882352941 \tabularnewline
25 & 7559.88 & 10947.0688235294 & -3387.18882352941 \tabularnewline
26 & 9480 & 10947.0688235294 & -1467.06882352941 \tabularnewline
27 & 10012.88 & 10947.0688235294 & -934.18882352941 \tabularnewline
28 & 14942.56 & 10947.0688235294 & 3995.49117647059 \tabularnewline
29 & 10118.75 & 6602.33388888889 & 3516.41611111111 \tabularnewline
30 & 9503.11 & 6602.33388888889 & 2900.77611111111 \tabularnewline
31 & 9389.23 & 6602.33388888889 & 2786.89611111111 \tabularnewline
32 & 2078.3 & 6602.33388888889 & -4524.03388888889 \tabularnewline
33 & 11099.22 & 10947.0688235294 & 152.15117647059 \tabularnewline
34 & 12040.95 & 10947.0688235294 & 1093.88117647059 \tabularnewline
35 & 7242.24 & 10947.0688235294 & -3704.82882352941 \tabularnewline
36 & 19323.43 & 10947.0688235294 & 8376.36117647059 \tabularnewline
37 & 3626.59 & 6602.33388888889 & -2975.74388888889 \tabularnewline
38 & 906.04 & 6602.33388888889 & -5696.29388888889 \tabularnewline
39 & 14625.77 & 10947.0688235294 & 3678.70117647059 \tabularnewline
40 & 6894.78 & 10947.0688235294 & -4052.28882352941 \tabularnewline
41 & 8562.89 & 6602.33388888889 & 1960.55611111111 \tabularnewline
42 & 8514.39 & 10947.0688235294 & -2432.67882352941 \tabularnewline
43 & 5641.34 & 6602.33388888889 & -960.993888888889 \tabularnewline
44 & 8592.5 & 10947.0688235294 & -2354.56882352941 \tabularnewline
45 & 15285.88 & 10947.0688235294 & 4338.81117647059 \tabularnewline
46 & 8228.67 & 6602.33388888889 & 1626.33611111111 \tabularnewline
47 & 7955.02 & 6602.33388888889 & 1352.68611111111 \tabularnewline
48 & 7690.87 & 10947.0688235294 & -3256.19882352941 \tabularnewline
49 & 13104.85 & 10947.0688235294 & 2157.78117647059 \tabularnewline
50 & 5915.81 & 6602.33388888889 & -686.52388888889 \tabularnewline
51 & 5504.23 & 6602.33388888889 & -1098.10388888889 \tabularnewline
52 & 8117.73 & 6602.33388888889 & 1515.39611111111 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=165606&T=2

[TABLE]
[ROW][C]Actuals, Predictions, and Residuals[/C][/ROW]
[ROW][C]#[/C][C]Actuals[/C][C]Forecasts[/C][C]Residuals[/C][/ROW]
[ROW][C]1[/C][C]14159.91[/C][C]10947.0688235294[/C][C]3212.84117647059[/C][/ROW]
[ROW][C]2[/C][C]9635.52[/C][C]10947.0688235294[/C][C]-1311.54882352941[/C][/ROW]
[ROW][C]3[/C][C]10485.31[/C][C]6602.33388888889[/C][C]3882.97611111111[/C][/ROW]
[ROW][C]4[/C][C]9096.53[/C][C]10947.0688235294[/C][C]-1850.53882352941[/C][/ROW]
[ROW][C]5[/C][C]13043.26[/C][C]10947.0688235294[/C][C]2096.19117647059[/C][/ROW]
[ROW][C]6[/C][C]8228.39[/C][C]6602.33388888889[/C][C]1626.05611111111[/C][/ROW]
[ROW][C]7[/C][C]11392.94[/C][C]10947.0688235294[/C][C]445.871176470589[/C][/ROW]
[ROW][C]8[/C][C]14565.62[/C][C]10947.0688235294[/C][C]3618.55117647059[/C][/ROW]
[ROW][C]9[/C][C]15740.78[/C][C]10947.0688235294[/C][C]4793.71117647059[/C][/ROW]
[ROW][C]10[/C][C]9649.98[/C][C]10947.0688235294[/C][C]-1297.08882352941[/C][/ROW]
[ROW][C]11[/C][C]12950.09[/C][C]10947.0688235294[/C][C]2003.02117647059[/C][/ROW]
[ROW][C]12[/C][C]10007.32[/C][C]6602.33388888889[/C][C]3404.98611111111[/C][/ROW]
[ROW][C]13[/C][C]14456.69[/C][C]10947.0688235294[/C][C]3509.62117647059[/C][/ROW]
[ROW][C]14[/C][C]312.32[/C][C]6602.33388888889[/C][C]-6290.01388888889[/C][/ROW]
[ROW][C]15[/C][C]8000.23[/C][C]10947.0688235294[/C][C]-2946.83882352941[/C][/ROW]
[ROW][C]16[/C][C]12670.05[/C][C]10947.0688235294[/C][C]1722.98117647059[/C][/ROW]
[ROW][C]17[/C][C]10443.82[/C][C]10947.0688235294[/C][C]-503.248823529411[/C][/ROW]
[ROW][C]18[/C][C]12364.37[/C][C]10947.0688235294[/C][C]1417.30117647059[/C][/ROW]
[ROW][C]19[/C][C]7685.11[/C][C]10947.0688235294[/C][C]-3261.95882352941[/C][/ROW]
[ROW][C]20[/C][C]4260.96[/C][C]6602.33388888889[/C][C]-2341.37388888889[/C][/ROW]
[ROW][C]21[/C][C]4263.65[/C][C]10947.0688235294[/C][C]-6683.41882352941[/C][/ROW]
[ROW][C]22[/C][C]9808.16[/C][C]10947.0688235294[/C][C]-1138.90882352941[/C][/ROW]
[ROW][C]23[/C][C]6106.86[/C][C]10947.0688235294[/C][C]-4840.20882352941[/C][/ROW]
[ROW][C]24[/C][C]9756.57[/C][C]10947.0688235294[/C][C]-1190.49882352941[/C][/ROW]
[ROW][C]25[/C][C]7559.88[/C][C]10947.0688235294[/C][C]-3387.18882352941[/C][/ROW]
[ROW][C]26[/C][C]9480[/C][C]10947.0688235294[/C][C]-1467.06882352941[/C][/ROW]
[ROW][C]27[/C][C]10012.88[/C][C]10947.0688235294[/C][C]-934.18882352941[/C][/ROW]
[ROW][C]28[/C][C]14942.56[/C][C]10947.0688235294[/C][C]3995.49117647059[/C][/ROW]
[ROW][C]29[/C][C]10118.75[/C][C]6602.33388888889[/C][C]3516.41611111111[/C][/ROW]
[ROW][C]30[/C][C]9503.11[/C][C]6602.33388888889[/C][C]2900.77611111111[/C][/ROW]
[ROW][C]31[/C][C]9389.23[/C][C]6602.33388888889[/C][C]2786.89611111111[/C][/ROW]
[ROW][C]32[/C][C]2078.3[/C][C]6602.33388888889[/C][C]-4524.03388888889[/C][/ROW]
[ROW][C]33[/C][C]11099.22[/C][C]10947.0688235294[/C][C]152.15117647059[/C][/ROW]
[ROW][C]34[/C][C]12040.95[/C][C]10947.0688235294[/C][C]1093.88117647059[/C][/ROW]
[ROW][C]35[/C][C]7242.24[/C][C]10947.0688235294[/C][C]-3704.82882352941[/C][/ROW]
[ROW][C]36[/C][C]19323.43[/C][C]10947.0688235294[/C][C]8376.36117647059[/C][/ROW]
[ROW][C]37[/C][C]3626.59[/C][C]6602.33388888889[/C][C]-2975.74388888889[/C][/ROW]
[ROW][C]38[/C][C]906.04[/C][C]6602.33388888889[/C][C]-5696.29388888889[/C][/ROW]
[ROW][C]39[/C][C]14625.77[/C][C]10947.0688235294[/C][C]3678.70117647059[/C][/ROW]
[ROW][C]40[/C][C]6894.78[/C][C]10947.0688235294[/C][C]-4052.28882352941[/C][/ROW]
[ROW][C]41[/C][C]8562.89[/C][C]6602.33388888889[/C][C]1960.55611111111[/C][/ROW]
[ROW][C]42[/C][C]8514.39[/C][C]10947.0688235294[/C][C]-2432.67882352941[/C][/ROW]
[ROW][C]43[/C][C]5641.34[/C][C]6602.33388888889[/C][C]-960.993888888889[/C][/ROW]
[ROW][C]44[/C][C]8592.5[/C][C]10947.0688235294[/C][C]-2354.56882352941[/C][/ROW]
[ROW][C]45[/C][C]15285.88[/C][C]10947.0688235294[/C][C]4338.81117647059[/C][/ROW]
[ROW][C]46[/C][C]8228.67[/C][C]6602.33388888889[/C][C]1626.33611111111[/C][/ROW]
[ROW][C]47[/C][C]7955.02[/C][C]6602.33388888889[/C][C]1352.68611111111[/C][/ROW]
[ROW][C]48[/C][C]7690.87[/C][C]10947.0688235294[/C][C]-3256.19882352941[/C][/ROW]
[ROW][C]49[/C][C]13104.85[/C][C]10947.0688235294[/C][C]2157.78117647059[/C][/ROW]
[ROW][C]50[/C][C]5915.81[/C][C]6602.33388888889[/C][C]-686.52388888889[/C][/ROW]
[ROW][C]51[/C][C]5504.23[/C][C]6602.33388888889[/C][C]-1098.10388888889[/C][/ROW]
[ROW][C]52[/C][C]8117.73[/C][C]6602.33388888889[/C][C]1515.39611111111[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=165606&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=165606&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Actuals, Predictions, and Residuals
#ActualsForecastsResiduals
114159.9110947.06882352943212.84117647059
29635.5210947.0688235294-1311.54882352941
310485.316602.333888888893882.97611111111
49096.5310947.0688235294-1850.53882352941
513043.2610947.06882352942096.19117647059
68228.396602.333888888891626.05611111111
711392.9410947.0688235294445.871176470589
814565.6210947.06882352943618.55117647059
915740.7810947.06882352944793.71117647059
109649.9810947.0688235294-1297.08882352941
1112950.0910947.06882352942003.02117647059
1210007.326602.333888888893404.98611111111
1314456.6910947.06882352943509.62117647059
14312.326602.33388888889-6290.01388888889
158000.2310947.0688235294-2946.83882352941
1612670.0510947.06882352941722.98117647059
1710443.8210947.0688235294-503.248823529411
1812364.3710947.06882352941417.30117647059
197685.1110947.0688235294-3261.95882352941
204260.966602.33388888889-2341.37388888889
214263.6510947.0688235294-6683.41882352941
229808.1610947.0688235294-1138.90882352941
236106.8610947.0688235294-4840.20882352941
249756.5710947.0688235294-1190.49882352941
257559.8810947.0688235294-3387.18882352941
26948010947.0688235294-1467.06882352941
2710012.8810947.0688235294-934.18882352941
2814942.5610947.06882352943995.49117647059
2910118.756602.333888888893516.41611111111
309503.116602.333888888892900.77611111111
319389.236602.333888888892786.89611111111
322078.36602.33388888889-4524.03388888889
3311099.2210947.0688235294152.15117647059
3412040.9510947.06882352941093.88117647059
357242.2410947.0688235294-3704.82882352941
3619323.4310947.06882352948376.36117647059
373626.596602.33388888889-2975.74388888889
38906.046602.33388888889-5696.29388888889
3914625.7710947.06882352943678.70117647059
406894.7810947.0688235294-4052.28882352941
418562.896602.333888888891960.55611111111
428514.3910947.0688235294-2432.67882352941
435641.346602.33388888889-960.993888888889
448592.510947.0688235294-2354.56882352941
4515285.8810947.06882352944338.81117647059
468228.676602.333888888891626.33611111111
477955.026602.333888888891352.68611111111
487690.8710947.0688235294-3256.19882352941
4913104.8510947.06882352942157.78117647059
505915.816602.33388888889-686.52388888889
515504.236602.33388888889-1098.10388888889
528117.736602.333888888891515.39611111111



Parameters (Session):
par1 = average ; par2 = 2 ; par3 = FALSE ; par4 = FALSE ; par5 = all ; par6 = all ; par7 = all ; par8 = ATTLES connected ; par9 = cases ;
Parameters (R input):
par1 = 0 ; par2 = none ; par3 = 3 ; par4 = no ; par5 = male ; par6 = bachelor ; par7 = 2 ; par8 = CSUQ ; par9 = Learning Activities ;
R code (references can be found in the software module):
par9 <- 'Learning Activities'
par8 <- 'ATTLES connected'
par7 <- '2'
par6 <- 'bachelor'
par5 <- 'male'
par4 <- 'no'
par3 <- '3'
par2 <- 'none'
par1 <- '0'
library(party)
library(Hmisc)
par1 <- as.numeric(par1)
par3 <- as.numeric(par3)
x <- as.data.frame(read.table(file='https://automated.biganalytics.eu/download/utaut.csv',sep=',',header=T))
x$U25 <- 6-x$U25
if(par5 == 'female') x <- x[x$Gender==0,]
if(par5 == 'male') x <- x[x$Gender==1,]
if(par6 == 'prep') x <- x[x$Pop==1,]
if(par6 == 'bachelor') x <- x[x$Pop==0,]
if(par7 != 'all') {
x <- x[x$Year==as.numeric(par7),]
}
cAc <- with(x,cbind( A1, A2, A3, A4, A5, A6, A7, A8, A9,A10))
cAs <- with(x,cbind(A11,A12,A13,A14,A15,A16,A17,A18,A19,A20))
cA <- cbind(cAc,cAs)
cCa <- with(x,cbind(C1,C3,C5,C7, C9,C11,C13,C15,C17,C19,C21,C23,C25,C27,C29,C31,C33,C35,C37,C39,C41,C43,C45,C47))
cCp <- with(x,cbind(C2,C4,C6,C8,C10,C12,C14,C16,C18,C20,C22,C24,C26,C28,C30,C32,C34,C36,C38,C40,C42,C44,C46,C48))
cC <- cbind(cCa,cCp)
cU <- with(x,cbind(U1,U2,U3,U4,U5,U6,U7,U8,U9,U10,U11,U12,U13,U14,U15,U16,U17,U18,U19,U20,U21,U22,U23,U24,U25,U26,U27,U28,U29,U30,U31,U32,U33))
cE <- with(x,cbind(BC,NNZFG,MRT,AFL,LPM,LPC,W,WPA))
cX <- with(x,cbind(X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18))
if (par8=='ATTLES connected') x <- cAc
if (par8=='ATTLES separate') x <- cAs
if (par8=='ATTLES all') x <- cA
if (par8=='COLLES actuals') x <- cCa
if (par8=='COLLES preferred') x <- cCp
if (par8=='COLLES all') x <- cC
if (par8=='CSUQ') x <- cU
if (par8=='Learning Activities') x <- cE
if (par8=='Exam Items') x <- cX
if (par9=='ATTLES connected') y <- cAc
if (par9=='ATTLES separate') y <- cAs
if (par9=='ATTLES all') y <- cA
if (par9=='COLLES actuals') y <- cCa
if (par9=='COLLES preferred') y <- cCp
if (par9=='COLLES all') y <- cC
if (par9=='CSUQ') y <- cU
if (par9=='Learning Activities') y <- cE
if (par9=='Exam Items') y <- cX
if (par1==0) {
nr <- length(y[,1])
nc <- length(y[1,])
mysum <- array(0,dim=nr)
for(jjj in 1:nr) {
for(iii in 1:nc) {
mysum[jjj] = mysum[jjj] + y[jjj,iii]
}
}
y <- mysum
} else {
y <- y[,par1]
}
nx <- cbind(y,x)
colnames(nx) <- c('endo',colnames(x))
x <- nx
par1=1
ncol <- length(x[1,])
for (jjj in 1:ncol) {
x <- x[!is.na(x[,jjj]),]
}
x <- as.data.frame(x)
k <- length(x[1,])
n <- length(x[,1])
colnames(x)[par1]
x[,par1]
if (par2 == 'kmeans') {
cl <- kmeans(x[,par1], par3)
print(cl)
clm <- matrix(cbind(cl$centers,1:par3),ncol=2)
clm <- clm[sort.list(clm[,1]),]
for (i in 1:par3) {
cl$cluster[cl$cluster==clm[i,2]] <- paste('C',i,sep='')
}
cl$cluster <- as.factor(cl$cluster)
print(cl$cluster)
x[,par1] <- cl$cluster
}
if (par2 == 'quantiles') {
x[,par1] <- cut2(x[,par1],g=par3)
}
if (par2 == 'hclust') {
hc <- hclust(dist(x[,par1])^2, 'cen')
print(hc)
memb <- cutree(hc, k = par3)
dum <- c(mean(x[memb==1,par1]))
for (i in 2:par3) {
dum <- c(dum, mean(x[memb==i,par1]))
}
hcm <- matrix(cbind(dum,1:par3),ncol=2)
hcm <- hcm[sort.list(hcm[,1]),]
for (i in 1:par3) {
memb[memb==hcm[i,2]] <- paste('C',i,sep='')
}
memb <- as.factor(memb)
print(memb)
x[,par1] <- memb
}
if (par2=='equal') {
ed <- cut(as.numeric(x[,par1]),par3,labels=paste('C',1:par3,sep=''))
x[,par1] <- as.factor(ed)
}
table(x[,par1])
colnames(x)
colnames(x)[par1]
x[,par1]
if (par2 == 'none') {
m <- ctree(as.formula(paste(colnames(x)[par1],' ~ .',sep='')),data = x)
}
load(file='createtable')
if (par2 != 'none') {
m <- ctree(as.formula(paste('as.factor(',colnames(x)[par1],') ~ .',sep='')),data = x)
if (par4=='yes') {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'10-Fold Cross Validation',3+2*par3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'',1,TRUE)
a<-table.element(a,'Prediction (training)',par3+1,TRUE)
a<-table.element(a,'Prediction (testing)',par3+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Actual',1,TRUE)
for (jjj in 1:par3) a<-table.element(a,paste('C',jjj,sep=''),1,TRUE)
a<-table.element(a,'CV',1,TRUE)
for (jjj in 1:par3) a<-table.element(a,paste('C',jjj,sep=''),1,TRUE)
a<-table.element(a,'CV',1,TRUE)
a<-table.row.end(a)
for (i in 1:10) {
ind <- sample(2, nrow(x), replace=T, prob=c(0.9,0.1))
m.ct <- ctree(as.formula(paste('as.factor(',colnames(x)[par1],') ~ .',sep='')),data =x[ind==1,])
if (i==1) {
m.ct.i.pred <- predict(m.ct, newdata=x[ind==1,])
m.ct.i.actu <- x[ind==1,par1]
m.ct.x.pred <- predict(m.ct, newdata=x[ind==2,])
m.ct.x.actu <- x[ind==2,par1]
} else {
m.ct.i.pred <- c(m.ct.i.pred,predict(m.ct, newdata=x[ind==1,]))
m.ct.i.actu <- c(m.ct.i.actu,x[ind==1,par1])
m.ct.x.pred <- c(m.ct.x.pred,predict(m.ct, newdata=x[ind==2,]))
m.ct.x.actu <- c(m.ct.x.actu,x[ind==2,par1])
}
}
print(m.ct.i.tab <- table(m.ct.i.actu,m.ct.i.pred))
numer <- 0
for (i in 1:par3) {
print(m.ct.i.tab[i,i] / sum(m.ct.i.tab[i,]))
numer <- numer + m.ct.i.tab[i,i]
}
print(m.ct.i.cp <- numer / sum(m.ct.i.tab))
print(m.ct.x.tab <- table(m.ct.x.actu,m.ct.x.pred))
numer <- 0
for (i in 1:par3) {
print(m.ct.x.tab[i,i] / sum(m.ct.x.tab[i,]))
numer <- numer + m.ct.x.tab[i,i]
}
print(m.ct.x.cp <- numer / sum(m.ct.x.tab))
for (i in 1:par3) {
a<-table.row.start(a)
a<-table.element(a,paste('C',i,sep=''),1,TRUE)
for (jjj in 1:par3) a<-table.element(a,m.ct.i.tab[i,jjj])
a<-table.element(a,round(m.ct.i.tab[i,i]/sum(m.ct.i.tab[i,]),4))
for (jjj in 1:par3) a<-table.element(a,m.ct.x.tab[i,jjj])
a<-table.element(a,round(m.ct.x.tab[i,i]/sum(m.ct.x.tab[i,]),4))
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'Overall',1,TRUE)
for (jjj in 1:par3) a<-table.element(a,'-')
a<-table.element(a,round(m.ct.i.cp,4))
for (jjj in 1:par3) a<-table.element(a,'-')
a<-table.element(a,round(m.ct.x.cp,4))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
}
}
m
bitmap(file='test1.png')
plot(m)
dev.off()
bitmap(file='test1a.png')
plot(x[,par1] ~ as.factor(where(m)),main='Response by Terminal Node',xlab='Terminal Node',ylab='Response')
dev.off()
if (par2 == 'none') {
forec <- predict(m)
result <- as.data.frame(cbind(x[,par1],forec,x[,par1]-forec))
colnames(result) <- c('Actuals','Forecasts','Residuals')
print(result)
}
if (par2 != 'none') {
print(cbind(as.factor(x[,par1]),predict(m)))
myt <- table(as.factor(x[,par1]),predict(m))
print(myt)
}
bitmap(file='test2.png')
if(par2=='none') {
op <- par(mfrow=c(2,2))
plot(density(result$Actuals),main='Kernel Density Plot of Actuals')
plot(density(result$Residuals),main='Kernel Density Plot of Residuals')
plot(result$Forecasts,result$Actuals,main='Actuals versus Predictions',xlab='Predictions',ylab='Actuals')
plot(density(result$Forecasts),main='Kernel Density Plot of Predictions')
par(op)
}
if(par2!='none') {
plot(myt,main='Confusion Matrix',xlab='Actual',ylab='Predicted')
}
dev.off()
if (par2 == 'none') {
detcoef <- cor(result$Forecasts,result$Actuals)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goodness of Fit',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Correlation',1,TRUE)
a<-table.element(a,round(detcoef,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'R-squared',1,TRUE)
a<-table.element(a,round(detcoef*detcoef,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'RMSE',1,TRUE)
a<-table.element(a,round(sqrt(mean((result$Residuals)^2)),4))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Actuals, Predictions, and Residuals',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'#',header=TRUE)
a<-table.element(a,'Actuals',header=TRUE)
a<-table.element(a,'Forecasts',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(result$Actuals)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,result$Actuals[i])
a<-table.element(a,result$Forecasts[i])
a<-table.element(a,result$Residuals[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
}
if (par2 != 'none') {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Confusion Matrix (predicted in columns / actuals in rows)',par3+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'',1,TRUE)
for (i in 1:par3) {
a<-table.element(a,paste('C',i,sep=''),1,TRUE)
}
a<-table.row.end(a)
for (i in 1:par3) {
a<-table.row.start(a)
a<-table.element(a,paste('C',i,sep=''),1,TRUE)
for (j in 1:par3) {
a<-table.element(a,myt[i,j])
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
}