Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationMon, 12 May 2014 16:51:09 -0400
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/May/12/t1399927933xy7h7nis3zlzfyh.htm/, Retrieved Fri, 01 Nov 2024 00:15:54 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=234853, Retrieved Fri, 01 Nov 2024 00:15:54 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact159
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [] [2014-05-12 20:51:09] [96ebdc07ff9a2e15bbb43047b24a21ad] [Current]
Feedback Forum

Post a new message
Dataseries X:
7,72
7,67
7,84
7,79
7,83
7,94
8,02
8,06
8,12
8,13
7,97
8,01
8
7,9
7,99
8,02
8,08
8,02
8,07
8,11
8,19
8,16
8,08
8,22
8,15
8,19
8,31
8,3
8,34
8,31
8,38
8,34
8,44
8,64
8,6
8,61
8,54
8,69
8,73
8,91
9,01
9,08
8,94
9,03
9,02
8,96
9,03
8,94
8,95
8,95
8,99
8,93
8,98
8,95
9,02
8,92
9,1
9,06
8,97
8,89
8,99
8,79
8,83
8,61
8,71
8,91
8,91
8,89
8,98
9
8,99
8,88
8,93
8,96
9,21
9,08
9,11
9,12
9,2
9,43
9,64
9,72
9,72
9,62




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=234853&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=234853&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=234853&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
17.72NANA-0.0402662NA
27.67NANA-0.0713079NA
37.84NANA0.00528935NA
47.79NANA-0.0513079NA
57.83NANA-0.011169NA
67.94NANA-0.00783565NA
78.027.965367.936670.02869210.0546412
88.067.970917.957920.01299770.0890856
98.128.051617.973750.07785880.0683912
108.138.065647.989580.07605320.0643634
117.978.016128.009580.00653935-0.0461227
128.017.997798.02333-0.0255440.0122106
1387.988488.02875-0.04026620.0115162
147.97.961618.03292-0.0713079-0.0616088
157.998.043218.037920.00528935-0.053206
168.027.990788.04208-0.05130790.0292245
178.088.036758.04792-0.0111690.0432523
188.028.053418.06125-0.00783565-0.0334144
198.078.104948.076250.0286921-0.0349421
208.118.107588.094580.01299770.00241898
218.198.197868.120.0778588-0.0078588
228.168.221058.1450.0760532-0.0610532
238.088.174048.16750.00653935-0.0940394
248.228.164878.19042-0.0255440.0551273
258.158.175158.21542-0.0402662-0.0251505
268.198.166618.23792-0.07130790.0233912
278.318.263218.257920.005289350.046794
288.38.237038.28833-0.05130790.0629745
298.348.318838.33-0.0111690.021169
308.318.360088.36792-0.00783565-0.050081
318.388.429118.400420.0286921-0.0491088
328.348.45058.43750.0129977-0.110498
338.448.553698.475830.0778588-0.113692
348.648.59488.518750.07605320.0451968
358.68.578628.572080.006539350.0213773
368.618.606548.63208-0.0255440.00346065
378.548.647238.6875-0.0402662-0.107234
388.698.668288.73958-0.07130790.0217245
398.738.797798.79250.00528935-0.0677894
408.918.778698.83-0.05130790.131308
419.018.850088.86125-0.0111690.159919
429.088.885088.89292-0.007835650.194919
438.948.952448.923750.0286921-0.0124421
449.038.964668.951670.01299770.0653356
459.029.051198.973330.0778588-0.0311921
468.969.061058.9850.0760532-0.101053
479.038.991128.984580.006539350.0388773
488.948.952378.97792-0.025544-0.0123727
498.958.935578.97583-0.04026620.0144329
508.958.903288.97458-0.07130790.0467245
518.998.978628.973330.005289350.0113773
528.938.929538.98083-0.05130790.000474537
538.988.971338.9825-0.0111690.00866898
548.958.970088.97792-0.00783565-0.020081
559.029.006198.97750.02869210.0138079
568.928.98558.97250.0129977-0.0654977
579.19.037038.959170.07785880.0629745
589.069.015228.939170.07605320.0447801
598.978.921128.914580.006539350.0488773
608.898.876128.90167-0.0255440.0138773
618.998.855158.89542-0.04026620.13485
628.798.818288.88958-0.0713079-0.0282755
638.838.888628.883330.00528935-0.0586227
648.618.824538.87583-0.0513079-0.214525
658.718.8638.87417-0.011169-0.152998
668.918.866758.87458-0.007835650.0432523
678.918.900368.871670.02869210.0096412
688.898.889258.876250.01299770.000752315
698.988.977038.899170.07785880.00297454
7099.010648.934580.0760532-0.0106366
718.998.977378.970830.006539350.0126273
728.888.970718.99625-0.025544-0.090706
738.938.976829.01708-0.0402662-0.0468171
748.968.980369.05167-0.0713079-0.0203588
759.219.106969.101670.005289350.103044
769.089.107869.15917-0.0513079-0.0278588
779.119.208419.21958-0.011169-0.0984144
789.129.2739.28083-0.00783565-0.152998
799.2NANA0.0286921NA
809.43NANA0.0129977NA
819.64NANA0.0778588NA
829.72NANA0.0760532NA
839.72NANA0.00653935NA
849.62NANA-0.025544NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 7.72 & NA & NA & -0.0402662 & NA \tabularnewline
2 & 7.67 & NA & NA & -0.0713079 & NA \tabularnewline
3 & 7.84 & NA & NA & 0.00528935 & NA \tabularnewline
4 & 7.79 & NA & NA & -0.0513079 & NA \tabularnewline
5 & 7.83 & NA & NA & -0.011169 & NA \tabularnewline
6 & 7.94 & NA & NA & -0.00783565 & NA \tabularnewline
7 & 8.02 & 7.96536 & 7.93667 & 0.0286921 & 0.0546412 \tabularnewline
8 & 8.06 & 7.97091 & 7.95792 & 0.0129977 & 0.0890856 \tabularnewline
9 & 8.12 & 8.05161 & 7.97375 & 0.0778588 & 0.0683912 \tabularnewline
10 & 8.13 & 8.06564 & 7.98958 & 0.0760532 & 0.0643634 \tabularnewline
11 & 7.97 & 8.01612 & 8.00958 & 0.00653935 & -0.0461227 \tabularnewline
12 & 8.01 & 7.99779 & 8.02333 & -0.025544 & 0.0122106 \tabularnewline
13 & 8 & 7.98848 & 8.02875 & -0.0402662 & 0.0115162 \tabularnewline
14 & 7.9 & 7.96161 & 8.03292 & -0.0713079 & -0.0616088 \tabularnewline
15 & 7.99 & 8.04321 & 8.03792 & 0.00528935 & -0.053206 \tabularnewline
16 & 8.02 & 7.99078 & 8.04208 & -0.0513079 & 0.0292245 \tabularnewline
17 & 8.08 & 8.03675 & 8.04792 & -0.011169 & 0.0432523 \tabularnewline
18 & 8.02 & 8.05341 & 8.06125 & -0.00783565 & -0.0334144 \tabularnewline
19 & 8.07 & 8.10494 & 8.07625 & 0.0286921 & -0.0349421 \tabularnewline
20 & 8.11 & 8.10758 & 8.09458 & 0.0129977 & 0.00241898 \tabularnewline
21 & 8.19 & 8.19786 & 8.12 & 0.0778588 & -0.0078588 \tabularnewline
22 & 8.16 & 8.22105 & 8.145 & 0.0760532 & -0.0610532 \tabularnewline
23 & 8.08 & 8.17404 & 8.1675 & 0.00653935 & -0.0940394 \tabularnewline
24 & 8.22 & 8.16487 & 8.19042 & -0.025544 & 0.0551273 \tabularnewline
25 & 8.15 & 8.17515 & 8.21542 & -0.0402662 & -0.0251505 \tabularnewline
26 & 8.19 & 8.16661 & 8.23792 & -0.0713079 & 0.0233912 \tabularnewline
27 & 8.31 & 8.26321 & 8.25792 & 0.00528935 & 0.046794 \tabularnewline
28 & 8.3 & 8.23703 & 8.28833 & -0.0513079 & 0.0629745 \tabularnewline
29 & 8.34 & 8.31883 & 8.33 & -0.011169 & 0.021169 \tabularnewline
30 & 8.31 & 8.36008 & 8.36792 & -0.00783565 & -0.050081 \tabularnewline
31 & 8.38 & 8.42911 & 8.40042 & 0.0286921 & -0.0491088 \tabularnewline
32 & 8.34 & 8.4505 & 8.4375 & 0.0129977 & -0.110498 \tabularnewline
33 & 8.44 & 8.55369 & 8.47583 & 0.0778588 & -0.113692 \tabularnewline
34 & 8.64 & 8.5948 & 8.51875 & 0.0760532 & 0.0451968 \tabularnewline
35 & 8.6 & 8.57862 & 8.57208 & 0.00653935 & 0.0213773 \tabularnewline
36 & 8.61 & 8.60654 & 8.63208 & -0.025544 & 0.00346065 \tabularnewline
37 & 8.54 & 8.64723 & 8.6875 & -0.0402662 & -0.107234 \tabularnewline
38 & 8.69 & 8.66828 & 8.73958 & -0.0713079 & 0.0217245 \tabularnewline
39 & 8.73 & 8.79779 & 8.7925 & 0.00528935 & -0.0677894 \tabularnewline
40 & 8.91 & 8.77869 & 8.83 & -0.0513079 & 0.131308 \tabularnewline
41 & 9.01 & 8.85008 & 8.86125 & -0.011169 & 0.159919 \tabularnewline
42 & 9.08 & 8.88508 & 8.89292 & -0.00783565 & 0.194919 \tabularnewline
43 & 8.94 & 8.95244 & 8.92375 & 0.0286921 & -0.0124421 \tabularnewline
44 & 9.03 & 8.96466 & 8.95167 & 0.0129977 & 0.0653356 \tabularnewline
45 & 9.02 & 9.05119 & 8.97333 & 0.0778588 & -0.0311921 \tabularnewline
46 & 8.96 & 9.06105 & 8.985 & 0.0760532 & -0.101053 \tabularnewline
47 & 9.03 & 8.99112 & 8.98458 & 0.00653935 & 0.0388773 \tabularnewline
48 & 8.94 & 8.95237 & 8.97792 & -0.025544 & -0.0123727 \tabularnewline
49 & 8.95 & 8.93557 & 8.97583 & -0.0402662 & 0.0144329 \tabularnewline
50 & 8.95 & 8.90328 & 8.97458 & -0.0713079 & 0.0467245 \tabularnewline
51 & 8.99 & 8.97862 & 8.97333 & 0.00528935 & 0.0113773 \tabularnewline
52 & 8.93 & 8.92953 & 8.98083 & -0.0513079 & 0.000474537 \tabularnewline
53 & 8.98 & 8.97133 & 8.9825 & -0.011169 & 0.00866898 \tabularnewline
54 & 8.95 & 8.97008 & 8.97792 & -0.00783565 & -0.020081 \tabularnewline
55 & 9.02 & 9.00619 & 8.9775 & 0.0286921 & 0.0138079 \tabularnewline
56 & 8.92 & 8.9855 & 8.9725 & 0.0129977 & -0.0654977 \tabularnewline
57 & 9.1 & 9.03703 & 8.95917 & 0.0778588 & 0.0629745 \tabularnewline
58 & 9.06 & 9.01522 & 8.93917 & 0.0760532 & 0.0447801 \tabularnewline
59 & 8.97 & 8.92112 & 8.91458 & 0.00653935 & 0.0488773 \tabularnewline
60 & 8.89 & 8.87612 & 8.90167 & -0.025544 & 0.0138773 \tabularnewline
61 & 8.99 & 8.85515 & 8.89542 & -0.0402662 & 0.13485 \tabularnewline
62 & 8.79 & 8.81828 & 8.88958 & -0.0713079 & -0.0282755 \tabularnewline
63 & 8.83 & 8.88862 & 8.88333 & 0.00528935 & -0.0586227 \tabularnewline
64 & 8.61 & 8.82453 & 8.87583 & -0.0513079 & -0.214525 \tabularnewline
65 & 8.71 & 8.863 & 8.87417 & -0.011169 & -0.152998 \tabularnewline
66 & 8.91 & 8.86675 & 8.87458 & -0.00783565 & 0.0432523 \tabularnewline
67 & 8.91 & 8.90036 & 8.87167 & 0.0286921 & 0.0096412 \tabularnewline
68 & 8.89 & 8.88925 & 8.87625 & 0.0129977 & 0.000752315 \tabularnewline
69 & 8.98 & 8.97703 & 8.89917 & 0.0778588 & 0.00297454 \tabularnewline
70 & 9 & 9.01064 & 8.93458 & 0.0760532 & -0.0106366 \tabularnewline
71 & 8.99 & 8.97737 & 8.97083 & 0.00653935 & 0.0126273 \tabularnewline
72 & 8.88 & 8.97071 & 8.99625 & -0.025544 & -0.090706 \tabularnewline
73 & 8.93 & 8.97682 & 9.01708 & -0.0402662 & -0.0468171 \tabularnewline
74 & 8.96 & 8.98036 & 9.05167 & -0.0713079 & -0.0203588 \tabularnewline
75 & 9.21 & 9.10696 & 9.10167 & 0.00528935 & 0.103044 \tabularnewline
76 & 9.08 & 9.10786 & 9.15917 & -0.0513079 & -0.0278588 \tabularnewline
77 & 9.11 & 9.20841 & 9.21958 & -0.011169 & -0.0984144 \tabularnewline
78 & 9.12 & 9.273 & 9.28083 & -0.00783565 & -0.152998 \tabularnewline
79 & 9.2 & NA & NA & 0.0286921 & NA \tabularnewline
80 & 9.43 & NA & NA & 0.0129977 & NA \tabularnewline
81 & 9.64 & NA & NA & 0.0778588 & NA \tabularnewline
82 & 9.72 & NA & NA & 0.0760532 & NA \tabularnewline
83 & 9.72 & NA & NA & 0.00653935 & NA \tabularnewline
84 & 9.62 & NA & NA & -0.025544 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=234853&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]7.72[/C][C]NA[/C][C]NA[/C][C]-0.0402662[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]7.67[/C][C]NA[/C][C]NA[/C][C]-0.0713079[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]7.84[/C][C]NA[/C][C]NA[/C][C]0.00528935[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]7.79[/C][C]NA[/C][C]NA[/C][C]-0.0513079[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]7.83[/C][C]NA[/C][C]NA[/C][C]-0.011169[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]7.94[/C][C]NA[/C][C]NA[/C][C]-0.00783565[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]8.02[/C][C]7.96536[/C][C]7.93667[/C][C]0.0286921[/C][C]0.0546412[/C][/ROW]
[ROW][C]8[/C][C]8.06[/C][C]7.97091[/C][C]7.95792[/C][C]0.0129977[/C][C]0.0890856[/C][/ROW]
[ROW][C]9[/C][C]8.12[/C][C]8.05161[/C][C]7.97375[/C][C]0.0778588[/C][C]0.0683912[/C][/ROW]
[ROW][C]10[/C][C]8.13[/C][C]8.06564[/C][C]7.98958[/C][C]0.0760532[/C][C]0.0643634[/C][/ROW]
[ROW][C]11[/C][C]7.97[/C][C]8.01612[/C][C]8.00958[/C][C]0.00653935[/C][C]-0.0461227[/C][/ROW]
[ROW][C]12[/C][C]8.01[/C][C]7.99779[/C][C]8.02333[/C][C]-0.025544[/C][C]0.0122106[/C][/ROW]
[ROW][C]13[/C][C]8[/C][C]7.98848[/C][C]8.02875[/C][C]-0.0402662[/C][C]0.0115162[/C][/ROW]
[ROW][C]14[/C][C]7.9[/C][C]7.96161[/C][C]8.03292[/C][C]-0.0713079[/C][C]-0.0616088[/C][/ROW]
[ROW][C]15[/C][C]7.99[/C][C]8.04321[/C][C]8.03792[/C][C]0.00528935[/C][C]-0.053206[/C][/ROW]
[ROW][C]16[/C][C]8.02[/C][C]7.99078[/C][C]8.04208[/C][C]-0.0513079[/C][C]0.0292245[/C][/ROW]
[ROW][C]17[/C][C]8.08[/C][C]8.03675[/C][C]8.04792[/C][C]-0.011169[/C][C]0.0432523[/C][/ROW]
[ROW][C]18[/C][C]8.02[/C][C]8.05341[/C][C]8.06125[/C][C]-0.00783565[/C][C]-0.0334144[/C][/ROW]
[ROW][C]19[/C][C]8.07[/C][C]8.10494[/C][C]8.07625[/C][C]0.0286921[/C][C]-0.0349421[/C][/ROW]
[ROW][C]20[/C][C]8.11[/C][C]8.10758[/C][C]8.09458[/C][C]0.0129977[/C][C]0.00241898[/C][/ROW]
[ROW][C]21[/C][C]8.19[/C][C]8.19786[/C][C]8.12[/C][C]0.0778588[/C][C]-0.0078588[/C][/ROW]
[ROW][C]22[/C][C]8.16[/C][C]8.22105[/C][C]8.145[/C][C]0.0760532[/C][C]-0.0610532[/C][/ROW]
[ROW][C]23[/C][C]8.08[/C][C]8.17404[/C][C]8.1675[/C][C]0.00653935[/C][C]-0.0940394[/C][/ROW]
[ROW][C]24[/C][C]8.22[/C][C]8.16487[/C][C]8.19042[/C][C]-0.025544[/C][C]0.0551273[/C][/ROW]
[ROW][C]25[/C][C]8.15[/C][C]8.17515[/C][C]8.21542[/C][C]-0.0402662[/C][C]-0.0251505[/C][/ROW]
[ROW][C]26[/C][C]8.19[/C][C]8.16661[/C][C]8.23792[/C][C]-0.0713079[/C][C]0.0233912[/C][/ROW]
[ROW][C]27[/C][C]8.31[/C][C]8.26321[/C][C]8.25792[/C][C]0.00528935[/C][C]0.046794[/C][/ROW]
[ROW][C]28[/C][C]8.3[/C][C]8.23703[/C][C]8.28833[/C][C]-0.0513079[/C][C]0.0629745[/C][/ROW]
[ROW][C]29[/C][C]8.34[/C][C]8.31883[/C][C]8.33[/C][C]-0.011169[/C][C]0.021169[/C][/ROW]
[ROW][C]30[/C][C]8.31[/C][C]8.36008[/C][C]8.36792[/C][C]-0.00783565[/C][C]-0.050081[/C][/ROW]
[ROW][C]31[/C][C]8.38[/C][C]8.42911[/C][C]8.40042[/C][C]0.0286921[/C][C]-0.0491088[/C][/ROW]
[ROW][C]32[/C][C]8.34[/C][C]8.4505[/C][C]8.4375[/C][C]0.0129977[/C][C]-0.110498[/C][/ROW]
[ROW][C]33[/C][C]8.44[/C][C]8.55369[/C][C]8.47583[/C][C]0.0778588[/C][C]-0.113692[/C][/ROW]
[ROW][C]34[/C][C]8.64[/C][C]8.5948[/C][C]8.51875[/C][C]0.0760532[/C][C]0.0451968[/C][/ROW]
[ROW][C]35[/C][C]8.6[/C][C]8.57862[/C][C]8.57208[/C][C]0.00653935[/C][C]0.0213773[/C][/ROW]
[ROW][C]36[/C][C]8.61[/C][C]8.60654[/C][C]8.63208[/C][C]-0.025544[/C][C]0.00346065[/C][/ROW]
[ROW][C]37[/C][C]8.54[/C][C]8.64723[/C][C]8.6875[/C][C]-0.0402662[/C][C]-0.107234[/C][/ROW]
[ROW][C]38[/C][C]8.69[/C][C]8.66828[/C][C]8.73958[/C][C]-0.0713079[/C][C]0.0217245[/C][/ROW]
[ROW][C]39[/C][C]8.73[/C][C]8.79779[/C][C]8.7925[/C][C]0.00528935[/C][C]-0.0677894[/C][/ROW]
[ROW][C]40[/C][C]8.91[/C][C]8.77869[/C][C]8.83[/C][C]-0.0513079[/C][C]0.131308[/C][/ROW]
[ROW][C]41[/C][C]9.01[/C][C]8.85008[/C][C]8.86125[/C][C]-0.011169[/C][C]0.159919[/C][/ROW]
[ROW][C]42[/C][C]9.08[/C][C]8.88508[/C][C]8.89292[/C][C]-0.00783565[/C][C]0.194919[/C][/ROW]
[ROW][C]43[/C][C]8.94[/C][C]8.95244[/C][C]8.92375[/C][C]0.0286921[/C][C]-0.0124421[/C][/ROW]
[ROW][C]44[/C][C]9.03[/C][C]8.96466[/C][C]8.95167[/C][C]0.0129977[/C][C]0.0653356[/C][/ROW]
[ROW][C]45[/C][C]9.02[/C][C]9.05119[/C][C]8.97333[/C][C]0.0778588[/C][C]-0.0311921[/C][/ROW]
[ROW][C]46[/C][C]8.96[/C][C]9.06105[/C][C]8.985[/C][C]0.0760532[/C][C]-0.101053[/C][/ROW]
[ROW][C]47[/C][C]9.03[/C][C]8.99112[/C][C]8.98458[/C][C]0.00653935[/C][C]0.0388773[/C][/ROW]
[ROW][C]48[/C][C]8.94[/C][C]8.95237[/C][C]8.97792[/C][C]-0.025544[/C][C]-0.0123727[/C][/ROW]
[ROW][C]49[/C][C]8.95[/C][C]8.93557[/C][C]8.97583[/C][C]-0.0402662[/C][C]0.0144329[/C][/ROW]
[ROW][C]50[/C][C]8.95[/C][C]8.90328[/C][C]8.97458[/C][C]-0.0713079[/C][C]0.0467245[/C][/ROW]
[ROW][C]51[/C][C]8.99[/C][C]8.97862[/C][C]8.97333[/C][C]0.00528935[/C][C]0.0113773[/C][/ROW]
[ROW][C]52[/C][C]8.93[/C][C]8.92953[/C][C]8.98083[/C][C]-0.0513079[/C][C]0.000474537[/C][/ROW]
[ROW][C]53[/C][C]8.98[/C][C]8.97133[/C][C]8.9825[/C][C]-0.011169[/C][C]0.00866898[/C][/ROW]
[ROW][C]54[/C][C]8.95[/C][C]8.97008[/C][C]8.97792[/C][C]-0.00783565[/C][C]-0.020081[/C][/ROW]
[ROW][C]55[/C][C]9.02[/C][C]9.00619[/C][C]8.9775[/C][C]0.0286921[/C][C]0.0138079[/C][/ROW]
[ROW][C]56[/C][C]8.92[/C][C]8.9855[/C][C]8.9725[/C][C]0.0129977[/C][C]-0.0654977[/C][/ROW]
[ROW][C]57[/C][C]9.1[/C][C]9.03703[/C][C]8.95917[/C][C]0.0778588[/C][C]0.0629745[/C][/ROW]
[ROW][C]58[/C][C]9.06[/C][C]9.01522[/C][C]8.93917[/C][C]0.0760532[/C][C]0.0447801[/C][/ROW]
[ROW][C]59[/C][C]8.97[/C][C]8.92112[/C][C]8.91458[/C][C]0.00653935[/C][C]0.0488773[/C][/ROW]
[ROW][C]60[/C][C]8.89[/C][C]8.87612[/C][C]8.90167[/C][C]-0.025544[/C][C]0.0138773[/C][/ROW]
[ROW][C]61[/C][C]8.99[/C][C]8.85515[/C][C]8.89542[/C][C]-0.0402662[/C][C]0.13485[/C][/ROW]
[ROW][C]62[/C][C]8.79[/C][C]8.81828[/C][C]8.88958[/C][C]-0.0713079[/C][C]-0.0282755[/C][/ROW]
[ROW][C]63[/C][C]8.83[/C][C]8.88862[/C][C]8.88333[/C][C]0.00528935[/C][C]-0.0586227[/C][/ROW]
[ROW][C]64[/C][C]8.61[/C][C]8.82453[/C][C]8.87583[/C][C]-0.0513079[/C][C]-0.214525[/C][/ROW]
[ROW][C]65[/C][C]8.71[/C][C]8.863[/C][C]8.87417[/C][C]-0.011169[/C][C]-0.152998[/C][/ROW]
[ROW][C]66[/C][C]8.91[/C][C]8.86675[/C][C]8.87458[/C][C]-0.00783565[/C][C]0.0432523[/C][/ROW]
[ROW][C]67[/C][C]8.91[/C][C]8.90036[/C][C]8.87167[/C][C]0.0286921[/C][C]0.0096412[/C][/ROW]
[ROW][C]68[/C][C]8.89[/C][C]8.88925[/C][C]8.87625[/C][C]0.0129977[/C][C]0.000752315[/C][/ROW]
[ROW][C]69[/C][C]8.98[/C][C]8.97703[/C][C]8.89917[/C][C]0.0778588[/C][C]0.00297454[/C][/ROW]
[ROW][C]70[/C][C]9[/C][C]9.01064[/C][C]8.93458[/C][C]0.0760532[/C][C]-0.0106366[/C][/ROW]
[ROW][C]71[/C][C]8.99[/C][C]8.97737[/C][C]8.97083[/C][C]0.00653935[/C][C]0.0126273[/C][/ROW]
[ROW][C]72[/C][C]8.88[/C][C]8.97071[/C][C]8.99625[/C][C]-0.025544[/C][C]-0.090706[/C][/ROW]
[ROW][C]73[/C][C]8.93[/C][C]8.97682[/C][C]9.01708[/C][C]-0.0402662[/C][C]-0.0468171[/C][/ROW]
[ROW][C]74[/C][C]8.96[/C][C]8.98036[/C][C]9.05167[/C][C]-0.0713079[/C][C]-0.0203588[/C][/ROW]
[ROW][C]75[/C][C]9.21[/C][C]9.10696[/C][C]9.10167[/C][C]0.00528935[/C][C]0.103044[/C][/ROW]
[ROW][C]76[/C][C]9.08[/C][C]9.10786[/C][C]9.15917[/C][C]-0.0513079[/C][C]-0.0278588[/C][/ROW]
[ROW][C]77[/C][C]9.11[/C][C]9.20841[/C][C]9.21958[/C][C]-0.011169[/C][C]-0.0984144[/C][/ROW]
[ROW][C]78[/C][C]9.12[/C][C]9.273[/C][C]9.28083[/C][C]-0.00783565[/C][C]-0.152998[/C][/ROW]
[ROW][C]79[/C][C]9.2[/C][C]NA[/C][C]NA[/C][C]0.0286921[/C][C]NA[/C][/ROW]
[ROW][C]80[/C][C]9.43[/C][C]NA[/C][C]NA[/C][C]0.0129977[/C][C]NA[/C][/ROW]
[ROW][C]81[/C][C]9.64[/C][C]NA[/C][C]NA[/C][C]0.0778588[/C][C]NA[/C][/ROW]
[ROW][C]82[/C][C]9.72[/C][C]NA[/C][C]NA[/C][C]0.0760532[/C][C]NA[/C][/ROW]
[ROW][C]83[/C][C]9.72[/C][C]NA[/C][C]NA[/C][C]0.00653935[/C][C]NA[/C][/ROW]
[ROW][C]84[/C][C]9.62[/C][C]NA[/C][C]NA[/C][C]-0.025544[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=234853&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=234853&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
17.72NANA-0.0402662NA
27.67NANA-0.0713079NA
37.84NANA0.00528935NA
47.79NANA-0.0513079NA
57.83NANA-0.011169NA
67.94NANA-0.00783565NA
78.027.965367.936670.02869210.0546412
88.067.970917.957920.01299770.0890856
98.128.051617.973750.07785880.0683912
108.138.065647.989580.07605320.0643634
117.978.016128.009580.00653935-0.0461227
128.017.997798.02333-0.0255440.0122106
1387.988488.02875-0.04026620.0115162
147.97.961618.03292-0.0713079-0.0616088
157.998.043218.037920.00528935-0.053206
168.027.990788.04208-0.05130790.0292245
178.088.036758.04792-0.0111690.0432523
188.028.053418.06125-0.00783565-0.0334144
198.078.104948.076250.0286921-0.0349421
208.118.107588.094580.01299770.00241898
218.198.197868.120.0778588-0.0078588
228.168.221058.1450.0760532-0.0610532
238.088.174048.16750.00653935-0.0940394
248.228.164878.19042-0.0255440.0551273
258.158.175158.21542-0.0402662-0.0251505
268.198.166618.23792-0.07130790.0233912
278.318.263218.257920.005289350.046794
288.38.237038.28833-0.05130790.0629745
298.348.318838.33-0.0111690.021169
308.318.360088.36792-0.00783565-0.050081
318.388.429118.400420.0286921-0.0491088
328.348.45058.43750.0129977-0.110498
338.448.553698.475830.0778588-0.113692
348.648.59488.518750.07605320.0451968
358.68.578628.572080.006539350.0213773
368.618.606548.63208-0.0255440.00346065
378.548.647238.6875-0.0402662-0.107234
388.698.668288.73958-0.07130790.0217245
398.738.797798.79250.00528935-0.0677894
408.918.778698.83-0.05130790.131308
419.018.850088.86125-0.0111690.159919
429.088.885088.89292-0.007835650.194919
438.948.952448.923750.0286921-0.0124421
449.038.964668.951670.01299770.0653356
459.029.051198.973330.0778588-0.0311921
468.969.061058.9850.0760532-0.101053
479.038.991128.984580.006539350.0388773
488.948.952378.97792-0.025544-0.0123727
498.958.935578.97583-0.04026620.0144329
508.958.903288.97458-0.07130790.0467245
518.998.978628.973330.005289350.0113773
528.938.929538.98083-0.05130790.000474537
538.988.971338.9825-0.0111690.00866898
548.958.970088.97792-0.00783565-0.020081
559.029.006198.97750.02869210.0138079
568.928.98558.97250.0129977-0.0654977
579.19.037038.959170.07785880.0629745
589.069.015228.939170.07605320.0447801
598.978.921128.914580.006539350.0488773
608.898.876128.90167-0.0255440.0138773
618.998.855158.89542-0.04026620.13485
628.798.818288.88958-0.0713079-0.0282755
638.838.888628.883330.00528935-0.0586227
648.618.824538.87583-0.0513079-0.214525
658.718.8638.87417-0.011169-0.152998
668.918.866758.87458-0.007835650.0432523
678.918.900368.871670.02869210.0096412
688.898.889258.876250.01299770.000752315
698.988.977038.899170.07785880.00297454
7099.010648.934580.0760532-0.0106366
718.998.977378.970830.006539350.0126273
728.888.970718.99625-0.025544-0.090706
738.938.976829.01708-0.0402662-0.0468171
748.968.980369.05167-0.0713079-0.0203588
759.219.106969.101670.005289350.103044
769.089.107869.15917-0.0513079-0.0278588
779.119.208419.21958-0.011169-0.0984144
789.129.2739.28083-0.00783565-0.152998
799.2NANA0.0286921NA
809.43NANA0.0129977NA
819.64NANA0.0778588NA
829.72NANA0.0760532NA
839.72NANA0.00653935NA
849.62NANA-0.025544NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')