Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationTue, 05 Aug 2014 15:43:00 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Aug/05/t14072498077yahayoqial6wqz.htm/, Retrieved Fri, 01 Nov 2024 00:12:03 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=235413, Retrieved Fri, 01 Nov 2024 00:12:03 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsInes Van Dessel
Estimated Impact158
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Histogram] [Tijdreeks 1 - Stap 3] [2014-08-03 19:11:32] [ae3d1feb555b13e324db089723206180]
- R P   [Histogram] [Tijdreeks 1 - Stap 5] [2014-08-04 09:44:37] [74be16979710d4c4e7c6647856088456]
-   P     [Histogram] [Tijdreeks 1 - Stap 5] [2014-08-04 09:47:49] [74be16979710d4c4e7c6647856088456]
- RMP       [(Partial) Autocorrelation Function] [Tijdreeks 1 - Sta...] [2014-08-04 16:49:46] [ae3d1feb555b13e324db089723206180]
- R P         [(Partial) Autocorrelation Function] [Tijdreeks 1 - Sta...] [2014-08-05 08:15:03] [74be16979710d4c4e7c6647856088456]
- RMPD          [Harrell-Davis Quantiles] [Tijdreeks 2 - Stap 6] [2014-08-05 08:50:48] [ae3d1feb555b13e324db089723206180]
- RMP             [(Partial) Autocorrelation Function] [Tijdreeks 2 - Sta...] [2014-08-05 13:41:38] [ae3d1feb555b13e324db089723206180]
- RM                  [Exponential Smoothing] [Tijdreeks 2 - Sta...] [2014-08-05 14:43:00] [188bf81caccb86647293be436f272d1b] [Current]
Feedback Forum

Post a new message
Dataseries X:
340
307
380
347
313
333
347
333
387
307
353
407
307
253
380
320
353
353
387
280
387
307
347
427
253
240
407
293
347
360
387
240
333
353
313
440
273
240
407
240
360
373
387
320
373
373
260
420
253
293
413
207
333
440
280
367
380
373
193
373
213
293
407
167
340
447
233
393
333
353
200
413
187
300
413
213
373
453
247
447
340
320
187
380
160
307
400
213
380
453
260
467
380
300
180
427
153
327
393
207
380
440
247
400
360
340
220
393




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gertrude Mary Cox' @ cox.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=235413&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gertrude Mary Cox' @ cox.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=235413&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=235413&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0
beta0
gamma1

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0 \tabularnewline
beta & 0 \tabularnewline
gamma & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=235413&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0[/C][/ROW]
[ROW][C]beta[/C][C]0[/C][/ROW]
[ROW][C]gamma[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=235413&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=235413&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0
beta0
gamma1







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
13307303.8950320512823.10496794871784
14253250.4065413752922.59345862470849
15380379.5847173659670.415282634032508
16320319.554560023310.445439976689897
17353352.7744026806530.225597319347116
18353352.1609120046620.839087995337763
19387342.25575466200544.7442453379952
20280331.850597319347-51.8505973193475
21387388.07043997669-1.07043997669018
22307309.165282634033-2.16528263403285
23347354.593458624709-7.59345862470877
24427406.06330128205120.9366987179485
25253306.638111888112-53.638111888112
26240252.638111888112-12.638111888112
27407379.63811188811227.361888111888
28293319.638111888112-26.638111888112
29347352.638111888112-5.63811188811201
30360352.6381118881127.36188811188799
31387386.6381118881120.361888111887993
32240279.638111888112-39.638111888112
33333386.638111888112-53.638111888112
34353306.63811188811246.361888111888
35313346.638111888112-33.638111888112
36440426.63811188811213.361888111888
37273252.63811188811220.361888111888
38240239.6381118881120.361888111887993
39407406.6381118881120.361888111887993
40240292.638111888112-52.638111888112
41360346.63811188811213.361888111888
42373359.63811188811213.361888111888
43387386.6381118881120.361888111887993
44320239.63811188811280.361888111888
45373332.63811188811240.361888111888
46373352.63811188811220.361888111888
47260312.638111888112-52.638111888112
48420439.638111888112-19.638111888112
49253272.638111888112-19.638111888112
50293239.63811188811253.361888111888
51413406.6381118881126.36188811188799
52207239.638111888112-32.638111888112
53333359.638111888112-26.638111888112
54440372.63811188811267.361888111888
55280386.638111888112-106.638111888112
56367319.63811188811247.361888111888
57380372.6381118881127.36188811188799
58373372.6381118881120.361888111887993
59193259.638111888112-66.638111888112
60373419.638111888112-46.638111888112
61213252.638111888112-39.638111888112
62293292.6381118881120.361888111887993
63407412.638111888112-5.63811188811201
64167206.638111888112-39.638111888112
65340332.6381118881127.36188811188799
66447439.6381118881127.36188811188799
67233279.638111888112-46.638111888112
68393366.63811188811226.361888111888
69333379.638111888112-46.638111888112
70353372.638111888112-19.638111888112
71200192.6381118881127.36188811188799
72413372.63811188811240.361888111888
73187212.638111888112-25.638111888112
74300292.6381118881127.36188811188799
75413406.6381118881126.36188811188799
76213166.63811188811246.361888111888
77373339.63811188811233.361888111888
78453446.6381118881126.36188811188799
79247232.63811188811214.361888111888
80447392.63811188811254.361888111888
81340332.6381118881127.36188811188799
82320352.638111888112-32.638111888112
83187199.638111888112-12.638111888112
84380412.638111888112-32.638111888112
85160186.638111888112-26.638111888112
86307299.6381118881127.36188811188799
87400412.638111888112-12.638111888112
88213212.6381118881120.361888111887993
89380372.6381118881127.36188811188799
90453452.6381118881120.361888111887993
91260246.63811188811213.361888111888
92467446.63811188811220.361888111888
93380339.63811188811240.361888111888
94300319.638111888112-19.638111888112
95180186.638111888112-6.63811188811201
96427379.63811188811247.361888111888
97153159.638111888112-6.63811188811201
98327306.63811188811220.361888111888
99393399.638111888112-6.63811188811201
100207212.638111888112-5.63811188811201
101380379.6381118881120.361888111887993
102440452.638111888112-12.638111888112
103247259.638111888112-12.638111888112
104400466.638111888112-66.638111888112
105360379.638111888112-19.638111888112
106340299.63811188811240.361888111888
107220179.63811188811240.361888111888
108393426.638111888112-33.638111888112

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
13 & 307 & 303.895032051282 & 3.10496794871784 \tabularnewline
14 & 253 & 250.406541375292 & 2.59345862470849 \tabularnewline
15 & 380 & 379.584717365967 & 0.415282634032508 \tabularnewline
16 & 320 & 319.55456002331 & 0.445439976689897 \tabularnewline
17 & 353 & 352.774402680653 & 0.225597319347116 \tabularnewline
18 & 353 & 352.160912004662 & 0.839087995337763 \tabularnewline
19 & 387 & 342.255754662005 & 44.7442453379952 \tabularnewline
20 & 280 & 331.850597319347 & -51.8505973193475 \tabularnewline
21 & 387 & 388.07043997669 & -1.07043997669018 \tabularnewline
22 & 307 & 309.165282634033 & -2.16528263403285 \tabularnewline
23 & 347 & 354.593458624709 & -7.59345862470877 \tabularnewline
24 & 427 & 406.063301282051 & 20.9366987179485 \tabularnewline
25 & 253 & 306.638111888112 & -53.638111888112 \tabularnewline
26 & 240 & 252.638111888112 & -12.638111888112 \tabularnewline
27 & 407 & 379.638111888112 & 27.361888111888 \tabularnewline
28 & 293 & 319.638111888112 & -26.638111888112 \tabularnewline
29 & 347 & 352.638111888112 & -5.63811188811201 \tabularnewline
30 & 360 & 352.638111888112 & 7.36188811188799 \tabularnewline
31 & 387 & 386.638111888112 & 0.361888111887993 \tabularnewline
32 & 240 & 279.638111888112 & -39.638111888112 \tabularnewline
33 & 333 & 386.638111888112 & -53.638111888112 \tabularnewline
34 & 353 & 306.638111888112 & 46.361888111888 \tabularnewline
35 & 313 & 346.638111888112 & -33.638111888112 \tabularnewline
36 & 440 & 426.638111888112 & 13.361888111888 \tabularnewline
37 & 273 & 252.638111888112 & 20.361888111888 \tabularnewline
38 & 240 & 239.638111888112 & 0.361888111887993 \tabularnewline
39 & 407 & 406.638111888112 & 0.361888111887993 \tabularnewline
40 & 240 & 292.638111888112 & -52.638111888112 \tabularnewline
41 & 360 & 346.638111888112 & 13.361888111888 \tabularnewline
42 & 373 & 359.638111888112 & 13.361888111888 \tabularnewline
43 & 387 & 386.638111888112 & 0.361888111887993 \tabularnewline
44 & 320 & 239.638111888112 & 80.361888111888 \tabularnewline
45 & 373 & 332.638111888112 & 40.361888111888 \tabularnewline
46 & 373 & 352.638111888112 & 20.361888111888 \tabularnewline
47 & 260 & 312.638111888112 & -52.638111888112 \tabularnewline
48 & 420 & 439.638111888112 & -19.638111888112 \tabularnewline
49 & 253 & 272.638111888112 & -19.638111888112 \tabularnewline
50 & 293 & 239.638111888112 & 53.361888111888 \tabularnewline
51 & 413 & 406.638111888112 & 6.36188811188799 \tabularnewline
52 & 207 & 239.638111888112 & -32.638111888112 \tabularnewline
53 & 333 & 359.638111888112 & -26.638111888112 \tabularnewline
54 & 440 & 372.638111888112 & 67.361888111888 \tabularnewline
55 & 280 & 386.638111888112 & -106.638111888112 \tabularnewline
56 & 367 & 319.638111888112 & 47.361888111888 \tabularnewline
57 & 380 & 372.638111888112 & 7.36188811188799 \tabularnewline
58 & 373 & 372.638111888112 & 0.361888111887993 \tabularnewline
59 & 193 & 259.638111888112 & -66.638111888112 \tabularnewline
60 & 373 & 419.638111888112 & -46.638111888112 \tabularnewline
61 & 213 & 252.638111888112 & -39.638111888112 \tabularnewline
62 & 293 & 292.638111888112 & 0.361888111887993 \tabularnewline
63 & 407 & 412.638111888112 & -5.63811188811201 \tabularnewline
64 & 167 & 206.638111888112 & -39.638111888112 \tabularnewline
65 & 340 & 332.638111888112 & 7.36188811188799 \tabularnewline
66 & 447 & 439.638111888112 & 7.36188811188799 \tabularnewline
67 & 233 & 279.638111888112 & -46.638111888112 \tabularnewline
68 & 393 & 366.638111888112 & 26.361888111888 \tabularnewline
69 & 333 & 379.638111888112 & -46.638111888112 \tabularnewline
70 & 353 & 372.638111888112 & -19.638111888112 \tabularnewline
71 & 200 & 192.638111888112 & 7.36188811188799 \tabularnewline
72 & 413 & 372.638111888112 & 40.361888111888 \tabularnewline
73 & 187 & 212.638111888112 & -25.638111888112 \tabularnewline
74 & 300 & 292.638111888112 & 7.36188811188799 \tabularnewline
75 & 413 & 406.638111888112 & 6.36188811188799 \tabularnewline
76 & 213 & 166.638111888112 & 46.361888111888 \tabularnewline
77 & 373 & 339.638111888112 & 33.361888111888 \tabularnewline
78 & 453 & 446.638111888112 & 6.36188811188799 \tabularnewline
79 & 247 & 232.638111888112 & 14.361888111888 \tabularnewline
80 & 447 & 392.638111888112 & 54.361888111888 \tabularnewline
81 & 340 & 332.638111888112 & 7.36188811188799 \tabularnewline
82 & 320 & 352.638111888112 & -32.638111888112 \tabularnewline
83 & 187 & 199.638111888112 & -12.638111888112 \tabularnewline
84 & 380 & 412.638111888112 & -32.638111888112 \tabularnewline
85 & 160 & 186.638111888112 & -26.638111888112 \tabularnewline
86 & 307 & 299.638111888112 & 7.36188811188799 \tabularnewline
87 & 400 & 412.638111888112 & -12.638111888112 \tabularnewline
88 & 213 & 212.638111888112 & 0.361888111887993 \tabularnewline
89 & 380 & 372.638111888112 & 7.36188811188799 \tabularnewline
90 & 453 & 452.638111888112 & 0.361888111887993 \tabularnewline
91 & 260 & 246.638111888112 & 13.361888111888 \tabularnewline
92 & 467 & 446.638111888112 & 20.361888111888 \tabularnewline
93 & 380 & 339.638111888112 & 40.361888111888 \tabularnewline
94 & 300 & 319.638111888112 & -19.638111888112 \tabularnewline
95 & 180 & 186.638111888112 & -6.63811188811201 \tabularnewline
96 & 427 & 379.638111888112 & 47.361888111888 \tabularnewline
97 & 153 & 159.638111888112 & -6.63811188811201 \tabularnewline
98 & 327 & 306.638111888112 & 20.361888111888 \tabularnewline
99 & 393 & 399.638111888112 & -6.63811188811201 \tabularnewline
100 & 207 & 212.638111888112 & -5.63811188811201 \tabularnewline
101 & 380 & 379.638111888112 & 0.361888111887993 \tabularnewline
102 & 440 & 452.638111888112 & -12.638111888112 \tabularnewline
103 & 247 & 259.638111888112 & -12.638111888112 \tabularnewline
104 & 400 & 466.638111888112 & -66.638111888112 \tabularnewline
105 & 360 & 379.638111888112 & -19.638111888112 \tabularnewline
106 & 340 & 299.638111888112 & 40.361888111888 \tabularnewline
107 & 220 & 179.638111888112 & 40.361888111888 \tabularnewline
108 & 393 & 426.638111888112 & -33.638111888112 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=235413&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]13[/C][C]307[/C][C]303.895032051282[/C][C]3.10496794871784[/C][/ROW]
[ROW][C]14[/C][C]253[/C][C]250.406541375292[/C][C]2.59345862470849[/C][/ROW]
[ROW][C]15[/C][C]380[/C][C]379.584717365967[/C][C]0.415282634032508[/C][/ROW]
[ROW][C]16[/C][C]320[/C][C]319.55456002331[/C][C]0.445439976689897[/C][/ROW]
[ROW][C]17[/C][C]353[/C][C]352.774402680653[/C][C]0.225597319347116[/C][/ROW]
[ROW][C]18[/C][C]353[/C][C]352.160912004662[/C][C]0.839087995337763[/C][/ROW]
[ROW][C]19[/C][C]387[/C][C]342.255754662005[/C][C]44.7442453379952[/C][/ROW]
[ROW][C]20[/C][C]280[/C][C]331.850597319347[/C][C]-51.8505973193475[/C][/ROW]
[ROW][C]21[/C][C]387[/C][C]388.07043997669[/C][C]-1.07043997669018[/C][/ROW]
[ROW][C]22[/C][C]307[/C][C]309.165282634033[/C][C]-2.16528263403285[/C][/ROW]
[ROW][C]23[/C][C]347[/C][C]354.593458624709[/C][C]-7.59345862470877[/C][/ROW]
[ROW][C]24[/C][C]427[/C][C]406.063301282051[/C][C]20.9366987179485[/C][/ROW]
[ROW][C]25[/C][C]253[/C][C]306.638111888112[/C][C]-53.638111888112[/C][/ROW]
[ROW][C]26[/C][C]240[/C][C]252.638111888112[/C][C]-12.638111888112[/C][/ROW]
[ROW][C]27[/C][C]407[/C][C]379.638111888112[/C][C]27.361888111888[/C][/ROW]
[ROW][C]28[/C][C]293[/C][C]319.638111888112[/C][C]-26.638111888112[/C][/ROW]
[ROW][C]29[/C][C]347[/C][C]352.638111888112[/C][C]-5.63811188811201[/C][/ROW]
[ROW][C]30[/C][C]360[/C][C]352.638111888112[/C][C]7.36188811188799[/C][/ROW]
[ROW][C]31[/C][C]387[/C][C]386.638111888112[/C][C]0.361888111887993[/C][/ROW]
[ROW][C]32[/C][C]240[/C][C]279.638111888112[/C][C]-39.638111888112[/C][/ROW]
[ROW][C]33[/C][C]333[/C][C]386.638111888112[/C][C]-53.638111888112[/C][/ROW]
[ROW][C]34[/C][C]353[/C][C]306.638111888112[/C][C]46.361888111888[/C][/ROW]
[ROW][C]35[/C][C]313[/C][C]346.638111888112[/C][C]-33.638111888112[/C][/ROW]
[ROW][C]36[/C][C]440[/C][C]426.638111888112[/C][C]13.361888111888[/C][/ROW]
[ROW][C]37[/C][C]273[/C][C]252.638111888112[/C][C]20.361888111888[/C][/ROW]
[ROW][C]38[/C][C]240[/C][C]239.638111888112[/C][C]0.361888111887993[/C][/ROW]
[ROW][C]39[/C][C]407[/C][C]406.638111888112[/C][C]0.361888111887993[/C][/ROW]
[ROW][C]40[/C][C]240[/C][C]292.638111888112[/C][C]-52.638111888112[/C][/ROW]
[ROW][C]41[/C][C]360[/C][C]346.638111888112[/C][C]13.361888111888[/C][/ROW]
[ROW][C]42[/C][C]373[/C][C]359.638111888112[/C][C]13.361888111888[/C][/ROW]
[ROW][C]43[/C][C]387[/C][C]386.638111888112[/C][C]0.361888111887993[/C][/ROW]
[ROW][C]44[/C][C]320[/C][C]239.638111888112[/C][C]80.361888111888[/C][/ROW]
[ROW][C]45[/C][C]373[/C][C]332.638111888112[/C][C]40.361888111888[/C][/ROW]
[ROW][C]46[/C][C]373[/C][C]352.638111888112[/C][C]20.361888111888[/C][/ROW]
[ROW][C]47[/C][C]260[/C][C]312.638111888112[/C][C]-52.638111888112[/C][/ROW]
[ROW][C]48[/C][C]420[/C][C]439.638111888112[/C][C]-19.638111888112[/C][/ROW]
[ROW][C]49[/C][C]253[/C][C]272.638111888112[/C][C]-19.638111888112[/C][/ROW]
[ROW][C]50[/C][C]293[/C][C]239.638111888112[/C][C]53.361888111888[/C][/ROW]
[ROW][C]51[/C][C]413[/C][C]406.638111888112[/C][C]6.36188811188799[/C][/ROW]
[ROW][C]52[/C][C]207[/C][C]239.638111888112[/C][C]-32.638111888112[/C][/ROW]
[ROW][C]53[/C][C]333[/C][C]359.638111888112[/C][C]-26.638111888112[/C][/ROW]
[ROW][C]54[/C][C]440[/C][C]372.638111888112[/C][C]67.361888111888[/C][/ROW]
[ROW][C]55[/C][C]280[/C][C]386.638111888112[/C][C]-106.638111888112[/C][/ROW]
[ROW][C]56[/C][C]367[/C][C]319.638111888112[/C][C]47.361888111888[/C][/ROW]
[ROW][C]57[/C][C]380[/C][C]372.638111888112[/C][C]7.36188811188799[/C][/ROW]
[ROW][C]58[/C][C]373[/C][C]372.638111888112[/C][C]0.361888111887993[/C][/ROW]
[ROW][C]59[/C][C]193[/C][C]259.638111888112[/C][C]-66.638111888112[/C][/ROW]
[ROW][C]60[/C][C]373[/C][C]419.638111888112[/C][C]-46.638111888112[/C][/ROW]
[ROW][C]61[/C][C]213[/C][C]252.638111888112[/C][C]-39.638111888112[/C][/ROW]
[ROW][C]62[/C][C]293[/C][C]292.638111888112[/C][C]0.361888111887993[/C][/ROW]
[ROW][C]63[/C][C]407[/C][C]412.638111888112[/C][C]-5.63811188811201[/C][/ROW]
[ROW][C]64[/C][C]167[/C][C]206.638111888112[/C][C]-39.638111888112[/C][/ROW]
[ROW][C]65[/C][C]340[/C][C]332.638111888112[/C][C]7.36188811188799[/C][/ROW]
[ROW][C]66[/C][C]447[/C][C]439.638111888112[/C][C]7.36188811188799[/C][/ROW]
[ROW][C]67[/C][C]233[/C][C]279.638111888112[/C][C]-46.638111888112[/C][/ROW]
[ROW][C]68[/C][C]393[/C][C]366.638111888112[/C][C]26.361888111888[/C][/ROW]
[ROW][C]69[/C][C]333[/C][C]379.638111888112[/C][C]-46.638111888112[/C][/ROW]
[ROW][C]70[/C][C]353[/C][C]372.638111888112[/C][C]-19.638111888112[/C][/ROW]
[ROW][C]71[/C][C]200[/C][C]192.638111888112[/C][C]7.36188811188799[/C][/ROW]
[ROW][C]72[/C][C]413[/C][C]372.638111888112[/C][C]40.361888111888[/C][/ROW]
[ROW][C]73[/C][C]187[/C][C]212.638111888112[/C][C]-25.638111888112[/C][/ROW]
[ROW][C]74[/C][C]300[/C][C]292.638111888112[/C][C]7.36188811188799[/C][/ROW]
[ROW][C]75[/C][C]413[/C][C]406.638111888112[/C][C]6.36188811188799[/C][/ROW]
[ROW][C]76[/C][C]213[/C][C]166.638111888112[/C][C]46.361888111888[/C][/ROW]
[ROW][C]77[/C][C]373[/C][C]339.638111888112[/C][C]33.361888111888[/C][/ROW]
[ROW][C]78[/C][C]453[/C][C]446.638111888112[/C][C]6.36188811188799[/C][/ROW]
[ROW][C]79[/C][C]247[/C][C]232.638111888112[/C][C]14.361888111888[/C][/ROW]
[ROW][C]80[/C][C]447[/C][C]392.638111888112[/C][C]54.361888111888[/C][/ROW]
[ROW][C]81[/C][C]340[/C][C]332.638111888112[/C][C]7.36188811188799[/C][/ROW]
[ROW][C]82[/C][C]320[/C][C]352.638111888112[/C][C]-32.638111888112[/C][/ROW]
[ROW][C]83[/C][C]187[/C][C]199.638111888112[/C][C]-12.638111888112[/C][/ROW]
[ROW][C]84[/C][C]380[/C][C]412.638111888112[/C][C]-32.638111888112[/C][/ROW]
[ROW][C]85[/C][C]160[/C][C]186.638111888112[/C][C]-26.638111888112[/C][/ROW]
[ROW][C]86[/C][C]307[/C][C]299.638111888112[/C][C]7.36188811188799[/C][/ROW]
[ROW][C]87[/C][C]400[/C][C]412.638111888112[/C][C]-12.638111888112[/C][/ROW]
[ROW][C]88[/C][C]213[/C][C]212.638111888112[/C][C]0.361888111887993[/C][/ROW]
[ROW][C]89[/C][C]380[/C][C]372.638111888112[/C][C]7.36188811188799[/C][/ROW]
[ROW][C]90[/C][C]453[/C][C]452.638111888112[/C][C]0.361888111887993[/C][/ROW]
[ROW][C]91[/C][C]260[/C][C]246.638111888112[/C][C]13.361888111888[/C][/ROW]
[ROW][C]92[/C][C]467[/C][C]446.638111888112[/C][C]20.361888111888[/C][/ROW]
[ROW][C]93[/C][C]380[/C][C]339.638111888112[/C][C]40.361888111888[/C][/ROW]
[ROW][C]94[/C][C]300[/C][C]319.638111888112[/C][C]-19.638111888112[/C][/ROW]
[ROW][C]95[/C][C]180[/C][C]186.638111888112[/C][C]-6.63811188811201[/C][/ROW]
[ROW][C]96[/C][C]427[/C][C]379.638111888112[/C][C]47.361888111888[/C][/ROW]
[ROW][C]97[/C][C]153[/C][C]159.638111888112[/C][C]-6.63811188811201[/C][/ROW]
[ROW][C]98[/C][C]327[/C][C]306.638111888112[/C][C]20.361888111888[/C][/ROW]
[ROW][C]99[/C][C]393[/C][C]399.638111888112[/C][C]-6.63811188811201[/C][/ROW]
[ROW][C]100[/C][C]207[/C][C]212.638111888112[/C][C]-5.63811188811201[/C][/ROW]
[ROW][C]101[/C][C]380[/C][C]379.638111888112[/C][C]0.361888111887993[/C][/ROW]
[ROW][C]102[/C][C]440[/C][C]452.638111888112[/C][C]-12.638111888112[/C][/ROW]
[ROW][C]103[/C][C]247[/C][C]259.638111888112[/C][C]-12.638111888112[/C][/ROW]
[ROW][C]104[/C][C]400[/C][C]466.638111888112[/C][C]-66.638111888112[/C][/ROW]
[ROW][C]105[/C][C]360[/C][C]379.638111888112[/C][C]-19.638111888112[/C][/ROW]
[ROW][C]106[/C][C]340[/C][C]299.638111888112[/C][C]40.361888111888[/C][/ROW]
[ROW][C]107[/C][C]220[/C][C]179.638111888112[/C][C]40.361888111888[/C][/ROW]
[ROW][C]108[/C][C]393[/C][C]426.638111888112[/C][C]-33.638111888112[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=235413&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=235413&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
13307303.8950320512823.10496794871784
14253250.4065413752922.59345862470849
15380379.5847173659670.415282634032508
16320319.554560023310.445439976689897
17353352.7744026806530.225597319347116
18353352.1609120046620.839087995337763
19387342.25575466200544.7442453379952
20280331.850597319347-51.8505973193475
21387388.07043997669-1.07043997669018
22307309.165282634033-2.16528263403285
23347354.593458624709-7.59345862470877
24427406.06330128205120.9366987179485
25253306.638111888112-53.638111888112
26240252.638111888112-12.638111888112
27407379.63811188811227.361888111888
28293319.638111888112-26.638111888112
29347352.638111888112-5.63811188811201
30360352.6381118881127.36188811188799
31387386.6381118881120.361888111887993
32240279.638111888112-39.638111888112
33333386.638111888112-53.638111888112
34353306.63811188811246.361888111888
35313346.638111888112-33.638111888112
36440426.63811188811213.361888111888
37273252.63811188811220.361888111888
38240239.6381118881120.361888111887993
39407406.6381118881120.361888111887993
40240292.638111888112-52.638111888112
41360346.63811188811213.361888111888
42373359.63811188811213.361888111888
43387386.6381118881120.361888111887993
44320239.63811188811280.361888111888
45373332.63811188811240.361888111888
46373352.63811188811220.361888111888
47260312.638111888112-52.638111888112
48420439.638111888112-19.638111888112
49253272.638111888112-19.638111888112
50293239.63811188811253.361888111888
51413406.6381118881126.36188811188799
52207239.638111888112-32.638111888112
53333359.638111888112-26.638111888112
54440372.63811188811267.361888111888
55280386.638111888112-106.638111888112
56367319.63811188811247.361888111888
57380372.6381118881127.36188811188799
58373372.6381118881120.361888111887993
59193259.638111888112-66.638111888112
60373419.638111888112-46.638111888112
61213252.638111888112-39.638111888112
62293292.6381118881120.361888111887993
63407412.638111888112-5.63811188811201
64167206.638111888112-39.638111888112
65340332.6381118881127.36188811188799
66447439.6381118881127.36188811188799
67233279.638111888112-46.638111888112
68393366.63811188811226.361888111888
69333379.638111888112-46.638111888112
70353372.638111888112-19.638111888112
71200192.6381118881127.36188811188799
72413372.63811188811240.361888111888
73187212.638111888112-25.638111888112
74300292.6381118881127.36188811188799
75413406.6381118881126.36188811188799
76213166.63811188811246.361888111888
77373339.63811188811233.361888111888
78453446.6381118881126.36188811188799
79247232.63811188811214.361888111888
80447392.63811188811254.361888111888
81340332.6381118881127.36188811188799
82320352.638111888112-32.638111888112
83187199.638111888112-12.638111888112
84380412.638111888112-32.638111888112
85160186.638111888112-26.638111888112
86307299.6381118881127.36188811188799
87400412.638111888112-12.638111888112
88213212.6381118881120.361888111887993
89380372.6381118881127.36188811188799
90453452.6381118881120.361888111887993
91260246.63811188811213.361888111888
92467446.63811188811220.361888111888
93380339.63811188811240.361888111888
94300319.638111888112-19.638111888112
95180186.638111888112-6.63811188811201
96427379.63811188811247.361888111888
97153159.638111888112-6.63811188811201
98327306.63811188811220.361888111888
99393399.638111888112-6.63811188811201
100207212.638111888112-5.63811188811201
101380379.6381118881120.361888111887993
102440452.638111888112-12.638111888112
103247259.638111888112-12.638111888112
104400466.638111888112-66.638111888112
105360379.638111888112-19.638111888112
106340299.63811188811240.361888111888
107220179.63811188811240.361888111888
108393426.638111888112-33.638111888112







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
109152.63811188811289.6057871026835215.670436673541
110326.638111888112263.605787102683389.67043667354
111392.638111888112329.605787102683455.67043667354
112206.638111888112143.605787102683269.67043667354
113379.638111888112316.605787102683442.67043667354
114439.638111888112376.605787102683502.67043667354
115246.638111888112183.605787102683309.67043667354
116399.638111888112336.605787102683462.67043667354
117359.638111888112296.605787102683422.67043667354
118339.638111888112276.605787102683402.67043667354
119219.638111888112156.605787102683282.67043667354
120392.638111888112329.605787102683455.67043667354

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
109 & 152.638111888112 & 89.6057871026835 & 215.670436673541 \tabularnewline
110 & 326.638111888112 & 263.605787102683 & 389.67043667354 \tabularnewline
111 & 392.638111888112 & 329.605787102683 & 455.67043667354 \tabularnewline
112 & 206.638111888112 & 143.605787102683 & 269.67043667354 \tabularnewline
113 & 379.638111888112 & 316.605787102683 & 442.67043667354 \tabularnewline
114 & 439.638111888112 & 376.605787102683 & 502.67043667354 \tabularnewline
115 & 246.638111888112 & 183.605787102683 & 309.67043667354 \tabularnewline
116 & 399.638111888112 & 336.605787102683 & 462.67043667354 \tabularnewline
117 & 359.638111888112 & 296.605787102683 & 422.67043667354 \tabularnewline
118 & 339.638111888112 & 276.605787102683 & 402.67043667354 \tabularnewline
119 & 219.638111888112 & 156.605787102683 & 282.67043667354 \tabularnewline
120 & 392.638111888112 & 329.605787102683 & 455.67043667354 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=235413&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]109[/C][C]152.638111888112[/C][C]89.6057871026835[/C][C]215.670436673541[/C][/ROW]
[ROW][C]110[/C][C]326.638111888112[/C][C]263.605787102683[/C][C]389.67043667354[/C][/ROW]
[ROW][C]111[/C][C]392.638111888112[/C][C]329.605787102683[/C][C]455.67043667354[/C][/ROW]
[ROW][C]112[/C][C]206.638111888112[/C][C]143.605787102683[/C][C]269.67043667354[/C][/ROW]
[ROW][C]113[/C][C]379.638111888112[/C][C]316.605787102683[/C][C]442.67043667354[/C][/ROW]
[ROW][C]114[/C][C]439.638111888112[/C][C]376.605787102683[/C][C]502.67043667354[/C][/ROW]
[ROW][C]115[/C][C]246.638111888112[/C][C]183.605787102683[/C][C]309.67043667354[/C][/ROW]
[ROW][C]116[/C][C]399.638111888112[/C][C]336.605787102683[/C][C]462.67043667354[/C][/ROW]
[ROW][C]117[/C][C]359.638111888112[/C][C]296.605787102683[/C][C]422.67043667354[/C][/ROW]
[ROW][C]118[/C][C]339.638111888112[/C][C]276.605787102683[/C][C]402.67043667354[/C][/ROW]
[ROW][C]119[/C][C]219.638111888112[/C][C]156.605787102683[/C][C]282.67043667354[/C][/ROW]
[ROW][C]120[/C][C]392.638111888112[/C][C]329.605787102683[/C][C]455.67043667354[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=235413&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=235413&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
109152.63811188811289.6057871026835215.670436673541
110326.638111888112263.605787102683389.67043667354
111392.638111888112329.605787102683455.67043667354
112206.638111888112143.605787102683269.67043667354
113379.638111888112316.605787102683442.67043667354
114439.638111888112376.605787102683502.67043667354
115246.638111888112183.605787102683309.67043667354
116399.638111888112336.605787102683462.67043667354
117359.638111888112296.605787102683422.67043667354
118339.638111888112276.605787102683402.67043667354
119219.638111888112156.605787102683282.67043667354
120392.638111888112329.605787102683455.67043667354



Parameters (Session):
Parameters (R input):
par1 = 12 ; par2 = Triple ; par3 = additive ;
R code (references can be found in the software module):
par3 <- 'multiplicative'
par2 <- 'Triple'
par1 <- '12'
par1 <- as.numeric(par1)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par1, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')