Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationTue, 02 Dec 2014 17:09:18 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Dec/02/t14175401721x4wtyb7gi57u0w.htm/, Retrieved Thu, 31 Oct 2024 23:05:25 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=262793, Retrieved Thu, 31 Oct 2024 23:05:25 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact102
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [] [2014-12-02 17:09:18] [003c997d057e54927bd887526d955d96] [Current]
Feedback Forum

Post a new message
Dataseries X:
46
62
66
59
58
61
41
27
58
70
49
59
44
36
72
45
56
54
53
35
61
52
47
51
52
63
74
45
51
64
36
30
55
64
39
40
63
45
59
55
40
64
27
28
45
57
45
69
60
56
58
50
51
53
37
22
55
70
62
58
39
49
58
47
42
62
39
40
72
70
54
65




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 6 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ fisher.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=262793&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]6 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ fisher.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=262793&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=262793&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )0.18980.1185-0.128-0.0544-0.1729-0.1778-0.9999
(p-val)(0.8066 )(0.4621 )(0.3973 )(0.9437 )(0.2644 )(0.336 )(6e-04 )
Estimates ( 2 )0.13560.1251-0.12180-0.1722-0.1792-1
(p-val)(0.3204 )(0.3329 )(0.3448 )(NA )(0.265 )(0.3294 )(6e-04 )
Estimates ( 3 )0.11790.111700-0.1699-0.1993-1
(p-val)(0.3883 )(0.3878 )(NA )(NA )(0.2631 )(0.273 )(6e-04 )
Estimates ( 4 )00.124800-0.1357-0.2226-1
(p-val)(NA )(0.3346 )(NA )(NA )(0.3516 )(0.213 )(5e-04 )
Estimates ( 5 )00.1157000-0.1743-1
(p-val)(NA )(0.3692 )(NA )(NA )(NA )(0.3368 )(0 )
Estimates ( 6 )00000-0.1736-1.0001
(p-val)(NA )(NA )(NA )(NA )(NA )(0.3345 )(0 )
Estimates ( 7 )000000-1
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(0 )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sar1 & sar2 & sma1 \tabularnewline
Estimates ( 1 ) & 0.1898 & 0.1185 & -0.128 & -0.0544 & -0.1729 & -0.1778 & -0.9999 \tabularnewline
(p-val) & (0.8066 ) & (0.4621 ) & (0.3973 ) & (0.9437 ) & (0.2644 ) & (0.336 ) & (6e-04 ) \tabularnewline
Estimates ( 2 ) & 0.1356 & 0.1251 & -0.1218 & 0 & -0.1722 & -0.1792 & -1 \tabularnewline
(p-val) & (0.3204 ) & (0.3329 ) & (0.3448 ) & (NA ) & (0.265 ) & (0.3294 ) & (6e-04 ) \tabularnewline
Estimates ( 3 ) & 0.1179 & 0.1117 & 0 & 0 & -0.1699 & -0.1993 & -1 \tabularnewline
(p-val) & (0.3883 ) & (0.3878 ) & (NA ) & (NA ) & (0.2631 ) & (0.273 ) & (6e-04 ) \tabularnewline
Estimates ( 4 ) & 0 & 0.1248 & 0 & 0 & -0.1357 & -0.2226 & -1 \tabularnewline
(p-val) & (NA ) & (0.3346 ) & (NA ) & (NA ) & (0.3516 ) & (0.213 ) & (5e-04 ) \tabularnewline
Estimates ( 5 ) & 0 & 0.1157 & 0 & 0 & 0 & -0.1743 & -1 \tabularnewline
(p-val) & (NA ) & (0.3692 ) & (NA ) & (NA ) & (NA ) & (0.3368 ) & (0 ) \tabularnewline
Estimates ( 6 ) & 0 & 0 & 0 & 0 & 0 & -0.1736 & -1.0001 \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (0.3345 ) & (0 ) \tabularnewline
Estimates ( 7 ) & 0 & 0 & 0 & 0 & 0 & 0 & -1 \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 12 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 13 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=262793&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sar1[/C][C]sar2[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]0.1898[/C][C]0.1185[/C][C]-0.128[/C][C]-0.0544[/C][C]-0.1729[/C][C]-0.1778[/C][C]-0.9999[/C][/ROW]
[ROW][C](p-val)[/C][C](0.8066 )[/C][C](0.4621 )[/C][C](0.3973 )[/C][C](0.9437 )[/C][C](0.2644 )[/C][C](0.336 )[/C][C](6e-04 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0.1356[/C][C]0.1251[/C][C]-0.1218[/C][C]0[/C][C]-0.1722[/C][C]-0.1792[/C][C]-1[/C][/ROW]
[ROW][C](p-val)[/C][C](0.3204 )[/C][C](0.3329 )[/C][C](0.3448 )[/C][C](NA )[/C][C](0.265 )[/C][C](0.3294 )[/C][C](6e-04 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]0.1179[/C][C]0.1117[/C][C]0[/C][C]0[/C][C]-0.1699[/C][C]-0.1993[/C][C]-1[/C][/ROW]
[ROW][C](p-val)[/C][C](0.3883 )[/C][C](0.3878 )[/C][C](NA )[/C][C](NA )[/C][C](0.2631 )[/C][C](0.273 )[/C][C](6e-04 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]0[/C][C]0.1248[/C][C]0[/C][C]0[/C][C]-0.1357[/C][C]-0.2226[/C][C]-1[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.3346 )[/C][C](NA )[/C][C](NA )[/C][C](0.3516 )[/C][C](0.213 )[/C][C](5e-04 )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]0[/C][C]0.1157[/C][C]0[/C][C]0[/C][C]0[/C][C]-0.1743[/C][C]-1[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.3692 )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0.3368 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]0[/C][C]0[/C][C]0[/C][C]0[/C][C]0[/C][C]-0.1736[/C][C]-1.0001[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0.3345 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]0[/C][C]0[/C][C]0[/C][C]0[/C][C]0[/C][C]0[/C][C]-1[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 12 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 13 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=262793&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=262793&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )0.18980.1185-0.128-0.0544-0.1729-0.1778-0.9999
(p-val)(0.8066 )(0.4621 )(0.3973 )(0.9437 )(0.2644 )(0.336 )(6e-04 )
Estimates ( 2 )0.13560.1251-0.12180-0.1722-0.1792-1
(p-val)(0.3204 )(0.3329 )(0.3448 )(NA )(0.265 )(0.3294 )(6e-04 )
Estimates ( 3 )0.11790.111700-0.1699-0.1993-1
(p-val)(0.3883 )(0.3878 )(NA )(NA )(0.2631 )(0.273 )(6e-04 )
Estimates ( 4 )00.124800-0.1357-0.2226-1
(p-val)(NA )(0.3346 )(NA )(NA )(0.3516 )(0.213 )(5e-04 )
Estimates ( 5 )00.1157000-0.1743-1
(p-val)(NA )(0.3692 )(NA )(NA )(NA )(0.3368 )(0 )
Estimates ( 6 )00000-0.1736-1.0001
(p-val)(NA )(NA )(NA )(NA )(NA )(0.3345 )(0 )
Estimates ( 7 )000000-1
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(0 )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
2.87273475669555e-07
3.05963742794748e-05
0.000356144077647669
-2.55322830911588e-05
0.000143829289245276
1.50495111096736e-05
5.16612043946046e-05
-0.000166342498646523
-0.000386751174116661
-1.98592661756183e-05
0.000115410286633192
2.52076352693564e-05
6.76789926644799e-05
-9.8297440940095e-05
-0.000235753157774269
-1.94511226435549e-05
6.52650465279599e-05
5.69833593347615e-05
-5.21027277775054e-05
0.000242318834009846
4.9916774823656e-05
3.82705192998054e-05
-4.37350220942169e-05
0.000168017814908021
0.000214637193218616
-0.000155851881275423
0.000126378545425733
7.01173466526762e-05
-6.51295285981408e-05
0.000241961449066901
-2.26686692676241e-05
0.000625357520698042
8.92408210426808e-05
0.000157657930462773
4.9564481109573e-05
-2.42563275023175e-05
-0.000196640068718843
-0.000114877954899559
-0.000139715397609615
5.90412573907486e-05
1.28985087973838e-05
-2.26335235746873e-05
6.65175786985038e-05
-3.8190489158728e-05
0.0008060787679902
-1.75675698460066e-05
-7.37271344934395e-05
-0.000192140856004178
-3.19443161891303e-05
0.000233102504991181
1.51111794253291e-05
6.32695735866365e-05
3.22296820163746e-05
0.000184411258460598
-3.37280077030937e-05
-2.18030869612181e-06
-0.000635328975684145
-0.000112657175909197
-4.85556163230119e-05
-0.00010343219834438
-0.000145069726340133

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
2.87273475669555e-07 \tabularnewline
3.05963742794748e-05 \tabularnewline
0.000356144077647669 \tabularnewline
-2.55322830911588e-05 \tabularnewline
0.000143829289245276 \tabularnewline
1.50495111096736e-05 \tabularnewline
5.16612043946046e-05 \tabularnewline
-0.000166342498646523 \tabularnewline
-0.000386751174116661 \tabularnewline
-1.98592661756183e-05 \tabularnewline
0.000115410286633192 \tabularnewline
2.52076352693564e-05 \tabularnewline
6.76789926644799e-05 \tabularnewline
-9.8297440940095e-05 \tabularnewline
-0.000235753157774269 \tabularnewline
-1.94511226435549e-05 \tabularnewline
6.52650465279599e-05 \tabularnewline
5.69833593347615e-05 \tabularnewline
-5.21027277775054e-05 \tabularnewline
0.000242318834009846 \tabularnewline
4.9916774823656e-05 \tabularnewline
3.82705192998054e-05 \tabularnewline
-4.37350220942169e-05 \tabularnewline
0.000168017814908021 \tabularnewline
0.000214637193218616 \tabularnewline
-0.000155851881275423 \tabularnewline
0.000126378545425733 \tabularnewline
7.01173466526762e-05 \tabularnewline
-6.51295285981408e-05 \tabularnewline
0.000241961449066901 \tabularnewline
-2.26686692676241e-05 \tabularnewline
0.000625357520698042 \tabularnewline
8.92408210426808e-05 \tabularnewline
0.000157657930462773 \tabularnewline
4.9564481109573e-05 \tabularnewline
-2.42563275023175e-05 \tabularnewline
-0.000196640068718843 \tabularnewline
-0.000114877954899559 \tabularnewline
-0.000139715397609615 \tabularnewline
5.90412573907486e-05 \tabularnewline
1.28985087973838e-05 \tabularnewline
-2.26335235746873e-05 \tabularnewline
6.65175786985038e-05 \tabularnewline
-3.8190489158728e-05 \tabularnewline
0.0008060787679902 \tabularnewline
-1.75675698460066e-05 \tabularnewline
-7.37271344934395e-05 \tabularnewline
-0.000192140856004178 \tabularnewline
-3.19443161891303e-05 \tabularnewline
0.000233102504991181 \tabularnewline
1.51111794253291e-05 \tabularnewline
6.32695735866365e-05 \tabularnewline
3.22296820163746e-05 \tabularnewline
0.000184411258460598 \tabularnewline
-3.37280077030937e-05 \tabularnewline
-2.18030869612181e-06 \tabularnewline
-0.000635328975684145 \tabularnewline
-0.000112657175909197 \tabularnewline
-4.85556163230119e-05 \tabularnewline
-0.00010343219834438 \tabularnewline
-0.000145069726340133 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=262793&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]2.87273475669555e-07[/C][/ROW]
[ROW][C]3.05963742794748e-05[/C][/ROW]
[ROW][C]0.000356144077647669[/C][/ROW]
[ROW][C]-2.55322830911588e-05[/C][/ROW]
[ROW][C]0.000143829289245276[/C][/ROW]
[ROW][C]1.50495111096736e-05[/C][/ROW]
[ROW][C]5.16612043946046e-05[/C][/ROW]
[ROW][C]-0.000166342498646523[/C][/ROW]
[ROW][C]-0.000386751174116661[/C][/ROW]
[ROW][C]-1.98592661756183e-05[/C][/ROW]
[ROW][C]0.000115410286633192[/C][/ROW]
[ROW][C]2.52076352693564e-05[/C][/ROW]
[ROW][C]6.76789926644799e-05[/C][/ROW]
[ROW][C]-9.8297440940095e-05[/C][/ROW]
[ROW][C]-0.000235753157774269[/C][/ROW]
[ROW][C]-1.94511226435549e-05[/C][/ROW]
[ROW][C]6.52650465279599e-05[/C][/ROW]
[ROW][C]5.69833593347615e-05[/C][/ROW]
[ROW][C]-5.21027277775054e-05[/C][/ROW]
[ROW][C]0.000242318834009846[/C][/ROW]
[ROW][C]4.9916774823656e-05[/C][/ROW]
[ROW][C]3.82705192998054e-05[/C][/ROW]
[ROW][C]-4.37350220942169e-05[/C][/ROW]
[ROW][C]0.000168017814908021[/C][/ROW]
[ROW][C]0.000214637193218616[/C][/ROW]
[ROW][C]-0.000155851881275423[/C][/ROW]
[ROW][C]0.000126378545425733[/C][/ROW]
[ROW][C]7.01173466526762e-05[/C][/ROW]
[ROW][C]-6.51295285981408e-05[/C][/ROW]
[ROW][C]0.000241961449066901[/C][/ROW]
[ROW][C]-2.26686692676241e-05[/C][/ROW]
[ROW][C]0.000625357520698042[/C][/ROW]
[ROW][C]8.92408210426808e-05[/C][/ROW]
[ROW][C]0.000157657930462773[/C][/ROW]
[ROW][C]4.9564481109573e-05[/C][/ROW]
[ROW][C]-2.42563275023175e-05[/C][/ROW]
[ROW][C]-0.000196640068718843[/C][/ROW]
[ROW][C]-0.000114877954899559[/C][/ROW]
[ROW][C]-0.000139715397609615[/C][/ROW]
[ROW][C]5.90412573907486e-05[/C][/ROW]
[ROW][C]1.28985087973838e-05[/C][/ROW]
[ROW][C]-2.26335235746873e-05[/C][/ROW]
[ROW][C]6.65175786985038e-05[/C][/ROW]
[ROW][C]-3.8190489158728e-05[/C][/ROW]
[ROW][C]0.0008060787679902[/C][/ROW]
[ROW][C]-1.75675698460066e-05[/C][/ROW]
[ROW][C]-7.37271344934395e-05[/C][/ROW]
[ROW][C]-0.000192140856004178[/C][/ROW]
[ROW][C]-3.19443161891303e-05[/C][/ROW]
[ROW][C]0.000233102504991181[/C][/ROW]
[ROW][C]1.51111794253291e-05[/C][/ROW]
[ROW][C]6.32695735866365e-05[/C][/ROW]
[ROW][C]3.22296820163746e-05[/C][/ROW]
[ROW][C]0.000184411258460598[/C][/ROW]
[ROW][C]-3.37280077030937e-05[/C][/ROW]
[ROW][C]-2.18030869612181e-06[/C][/ROW]
[ROW][C]-0.000635328975684145[/C][/ROW]
[ROW][C]-0.000112657175909197[/C][/ROW]
[ROW][C]-4.85556163230119e-05[/C][/ROW]
[ROW][C]-0.00010343219834438[/C][/ROW]
[ROW][C]-0.000145069726340133[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=262793&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=262793&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
2.87273475669555e-07
3.05963742794748e-05
0.000356144077647669
-2.55322830911588e-05
0.000143829289245276
1.50495111096736e-05
5.16612043946046e-05
-0.000166342498646523
-0.000386751174116661
-1.98592661756183e-05
0.000115410286633192
2.52076352693564e-05
6.76789926644799e-05
-9.8297440940095e-05
-0.000235753157774269
-1.94511226435549e-05
6.52650465279599e-05
5.69833593347615e-05
-5.21027277775054e-05
0.000242318834009846
4.9916774823656e-05
3.82705192998054e-05
-4.37350220942169e-05
0.000168017814908021
0.000214637193218616
-0.000155851881275423
0.000126378545425733
7.01173466526762e-05
-6.51295285981408e-05
0.000241961449066901
-2.26686692676241e-05
0.000625357520698042
8.92408210426808e-05
0.000157657930462773
4.9564481109573e-05
-2.42563275023175e-05
-0.000196640068718843
-0.000114877954899559
-0.000139715397609615
5.90412573907486e-05
1.28985087973838e-05
-2.26335235746873e-05
6.65175786985038e-05
-3.8190489158728e-05
0.0008060787679902
-1.75675698460066e-05
-7.37271344934395e-05
-0.000192140856004178
-3.19443161891303e-05
0.000233102504991181
1.51111794253291e-05
6.32695735866365e-05
3.22296820163746e-05
0.000184411258460598
-3.37280077030937e-05
-2.18030869612181e-06
-0.000635328975684145
-0.000112657175909197
-4.85556163230119e-05
-0.00010343219834438
-0.000145069726340133



Parameters (Session):
par1 = TRUE ; par2 = -2.0 ; par3 = 0 ; par4 = 1 ; par5 = 12 ; par6 = 1 ; par7 = 1 ; par8 = 0 ; par9 = 0 ;
Parameters (R input):
par1 = FALSE ; par2 = -2.0 ; par3 = 0 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
R code (references can be found in the software module):
par9 <- '0'
par8 <- '0'
par7 <- '1'
par6 <- '1'
par5 <- '12'
par4 <- '1'
par3 <- '0'
par2 <- '-2.0'
par1 <- 'FALSE'
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')