Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_twosampletests_mean.wasp
Title produced by softwarePaired and Unpaired Two Samples Tests about the Mean
Date of computationThu, 11 Dec 2014 11:47:08 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Dec/11/t1418298442zu50t9rcrupm2ww.htm/, Retrieved Thu, 31 Oct 2024 22:51:32 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=265790, Retrieved Thu, 31 Oct 2024 22:51:32 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact121
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Paired and Unpaired Two Samples Tests about the Mean] [] [2014-12-11 11:47:08] [c4557137b9b718365486b3b7af9cd43b] [Current]
- RM      [Paired and Unpaired Two Samples Tests about the Mean] [] [2014-12-11 18:50:13] [fa1b8827d7de91b8b87087311d3d9fa1]
- RM      [Paired and Unpaired Two Samples Tests about the Mean] [] [2014-12-11 18:50:13] [fa1b8827d7de91b8b87087311d3d9fa1]
- RMPD      [Notched Boxplots] [] [2014-12-11 18:51:35] [fa1b8827d7de91b8b87087311d3d9fa1]
- RMPD      [Notched Boxplots] [] [2014-12-11 19:05:32] [fa1b8827d7de91b8b87087311d3d9fa1]
- RM          [Notched Boxplots] [] [2014-12-11 21:22:03] [bb1b6762b7e5624d262776d3f7139d34]
Feedback Forum

Post a new message
Dataseries X:
51	50
56	62
67	54
69	71
57	54
56	65
55	73
63	52
67	84
65	42
47	66
76	65
64	78
68	73
64	75
65	72
71	66
63	70
60	61
68	81
72	71
70	69
61	71
61	72
62	68
71	70
71	68
51	61
56	67
70	76
73	70
76	60
68	72
48	69
52	71
60	62
59	70
57	64
79	58
60	76
60	52
59	59
62	68
59	76
61	65
71	67
57	59
66	69
63	76
69	63
58	75
59	63
48	60
66	73
73	63
67	70
61	75
68	66
75	63
62	63
69	64
58	70
60	75
74	61
55	60
62	62
63	73
69	61
58	66
58	64
68	59
72	64
62	60
62	56
65	78
69	67
66	59
72	66
62	68
75	71
58	66
66	73
55	72
47	71
72	59
62	64
64	66
64	78
19	68
50	73
68	62
70	65
79	68
69	65
71	60
48	71
73	65
74	68
66	64
71	74
74	69
78	76
75	68
53	72
60	67
70	63
69	59
65	73
78	66
78	62
59	69
72	66
70	
63	
63	
71	
74	
67	
66	
62	
80	
73	
67	
61	
73	
74	
32	
69	
69	
84	
64	
58	
59	
78	
57	
60	
68	
68	
73	
69	
67	
60	
65	
66	
74	
81	
72	
55	
49	
74	
53	
64	
65	
57	
51	
80	
67	
70	
74	
75	
70	
69	
65	
55	
71	
65	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=265790&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=265790&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=265790&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Two Sample t-test (unpaired)
Mean of Sample 164.1385542168675
Mean of Sample 266.8734939759036
t-stat-3.08389222007692
df330
p-value0.00221558654992436
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-4.47952575192042,-0.990353766151857]
F-test to compare two variances
F-stat1.34348911384475
df165
p-value0.0587422181497974
H0 value1
Alternativetwo.sided
CI Level0.95
CI[0.989106915595464,1.82484114766573]

\begin{tabular}{lllllllll}
\hline
Two Sample t-test (unpaired) \tabularnewline
Mean of Sample 1 & 64.1385542168675 \tabularnewline
Mean of Sample 2 & 66.8734939759036 \tabularnewline
t-stat & -3.08389222007692 \tabularnewline
df & 330 \tabularnewline
p-value & 0.00221558654992436 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [-4.47952575192042,-0.990353766151857] \tabularnewline
F-test to compare two variances \tabularnewline
F-stat & 1.34348911384475 \tabularnewline
df & 165 \tabularnewline
p-value & 0.0587422181497974 \tabularnewline
H0 value & 1 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [0.989106915595464,1.82484114766573] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=265790&T=1

[TABLE]
[ROW][C]Two Sample t-test (unpaired)[/C][/ROW]
[ROW][C]Mean of Sample 1[/C][C]64.1385542168675[/C][/ROW]
[ROW][C]Mean of Sample 2[/C][C]66.8734939759036[/C][/ROW]
[ROW][C]t-stat[/C][C]-3.08389222007692[/C][/ROW]
[ROW][C]df[/C][C]330[/C][/ROW]
[ROW][C]p-value[/C][C]0.00221558654992436[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][-4.47952575192042,-0.990353766151857][/C][/ROW]
[ROW][C]F-test to compare two variances[/C][/ROW]
[ROW][C]F-stat[/C][C]1.34348911384475[/C][/ROW]
[ROW][C]df[/C][C]165[/C][/ROW]
[ROW][C]p-value[/C][C]0.0587422181497974[/C][/ROW]
[ROW][C]H0 value[/C][C]1[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][0.989106915595464,1.82484114766573][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=265790&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=265790&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Two Sample t-test (unpaired)
Mean of Sample 164.1385542168675
Mean of Sample 266.8734939759036
t-stat-3.08389222007692
df330
p-value0.00221558654992436
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-4.47952575192042,-0.990353766151857]
F-test to compare two variances
F-stat1.34348911384475
df165
p-value0.0587422181497974
H0 value1
Alternativetwo.sided
CI Level0.95
CI[0.989106915595464,1.82484114766573]







Welch Two Sample t-test (unpaired)
Mean of Sample 164.1385542168675
Mean of Sample 266.8734939759036
t-stat-3.08389222007692
df323.05962778253
p-value0.00221937610665529
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-4.47966371597248,-0.990215802099798]

\begin{tabular}{lllllllll}
\hline
Welch Two Sample t-test (unpaired) \tabularnewline
Mean of Sample 1 & 64.1385542168675 \tabularnewline
Mean of Sample 2 & 66.8734939759036 \tabularnewline
t-stat & -3.08389222007692 \tabularnewline
df & 323.05962778253 \tabularnewline
p-value & 0.00221937610665529 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [-4.47966371597248,-0.990215802099798] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=265790&T=2

[TABLE]
[ROW][C]Welch Two Sample t-test (unpaired)[/C][/ROW]
[ROW][C]Mean of Sample 1[/C][C]64.1385542168675[/C][/ROW]
[ROW][C]Mean of Sample 2[/C][C]66.8734939759036[/C][/ROW]
[ROW][C]t-stat[/C][C]-3.08389222007692[/C][/ROW]
[ROW][C]df[/C][C]323.05962778253[/C][/ROW]
[ROW][C]p-value[/C][C]0.00221937610665529[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][-4.47966371597248,-0.990215802099798][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=265790&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=265790&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Welch Two Sample t-test (unpaired)
Mean of Sample 164.1385542168675
Mean of Sample 266.8734939759036
t-stat-3.08389222007692
df323.05962778253
p-value0.00221937610665529
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-4.47966371597248,-0.990215802099798]







Wicoxon rank sum test with continuity correction (unpaired)
W11368.5
p-value0.00582719109593686
H0 value0
Alternativetwo.sided
Kolmogorov-Smirnov Test to compare Distributions of two Samples
KS Statistic0.126506024096386
p-value0.140320651797938
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples
KS Statistic0.0843373493975904
p-value0.596383043603378

\begin{tabular}{lllllllll}
\hline
Wicoxon rank sum test with continuity correction (unpaired) \tabularnewline
W & 11368.5 \tabularnewline
p-value & 0.00582719109593686 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
Kolmogorov-Smirnov Test to compare Distributions of two Samples \tabularnewline
KS Statistic & 0.126506024096386 \tabularnewline
p-value & 0.140320651797938 \tabularnewline
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples \tabularnewline
KS Statistic & 0.0843373493975904 \tabularnewline
p-value & 0.596383043603378 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=265790&T=3

[TABLE]
[ROW][C]Wicoxon rank sum test with continuity correction (unpaired)[/C][/ROW]
[ROW][C]W[/C][C]11368.5[/C][/ROW]
[ROW][C]p-value[/C][C]0.00582719109593686[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]Kolmogorov-Smirnov Test to compare Distributions of two Samples[/C][/ROW]
[ROW][C]KS Statistic[/C][C]0.126506024096386[/C][/ROW]
[ROW][C]p-value[/C][C]0.140320651797938[/C][/ROW]
[ROW][C]Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples[/C][/ROW]
[ROW][C]KS Statistic[/C][C]0.0843373493975904[/C][/ROW]
[ROW][C]p-value[/C][C]0.596383043603378[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=265790&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=265790&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Wicoxon rank sum test with continuity correction (unpaired)
W11368.5
p-value0.00582719109593686
H0 value0
Alternativetwo.sided
Kolmogorov-Smirnov Test to compare Distributions of two Samples
KS Statistic0.126506024096386
p-value0.140320651797938
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples
KS Statistic0.0843373493975904
p-value0.596383043603378



Parameters (Session):
par1 = 1 ; par2 = 2 ; par3 = 0.95 ; par4 = two.sided ; par5 = unpaired ; par6 = 0.0 ;
Parameters (R input):
par1 = 1 ; par2 = 2 ; par3 = 0.95 ; par4 = two.sided ; par5 = unpaired ; par6 = 0.0 ;
R code (references can be found in the software module):
par6 <- '0.0'
par5 <- 'unpaired'
par4 <- 'two.sided'
par3 <- '0.95'
par2 <- '2'
par1 <- '1'
par1 <- as.numeric(par1) #column number of first sample
par2 <- as.numeric(par2) #column number of second sample
par3 <- as.numeric(par3) #confidence (= 1 - alpha)
if (par5 == 'unpaired') paired <- FALSE else paired <- TRUE
par6 <- as.numeric(par6) #H0
z <- t(y)
if (par1 == par2) stop('Please, select two different column numbers')
if (par1 < 1) stop('Please, select a column number greater than zero for the first sample')
if (par2 < 1) stop('Please, select a column number greater than zero for the second sample')
if (par1 > length(z[1,])) stop('The column number for the first sample should be smaller')
if (par2 > length(z[1,])) stop('The column number for the second sample should be smaller')
if (par3 <= 0) stop('The confidence level should be larger than zero')
if (par3 >= 1) stop('The confidence level should be smaller than zero')
(r.t <- t.test(z[,par1],z[,par2],var.equal=TRUE,alternative=par4,paired=paired,mu=par6,conf.level=par3))
(v.t <- var.test(z[,par1],z[,par2],conf.level=par3))
(r.w <- t.test(z[,par1],z[,par2],var.equal=FALSE,alternative=par4,paired=paired,mu=par6,conf.level=par3))
(w.t <- wilcox.test(z[,par1],z[,par2],alternative=par4,paired=paired,mu=par6,conf.level=par3))
(ks.t <- ks.test(z[,par1],z[,par2],alternative=par4))
m1 <- mean(z[,par1],na.rm=T)
m2 <- mean(z[,par2],na.rm=T)
mdiff <- m1 - m2
newsam1 <- z[!is.na(z[,par1]),par1]
newsam2 <- z[,par2]+mdiff
newsam2 <- newsam2[!is.na(newsam2)]
(ks1.t <- ks.test(newsam1,newsam2,alternative=par4))
mydf <- data.frame(cbind(z[,par1],z[,par2]))
colnames(mydf) <- c('Variable 1','Variable 2')
bitmap(file='test1.png')
boxplot(mydf, notch=TRUE, ylab='value',main=main)
dev.off()
bitmap(file='test2.png')
qqnorm(z[,par1],main='Normal QQplot - Variable 1')
qqline(z[,par1])
dev.off()
bitmap(file='test3.png')
qqnorm(z[,par2],main='Normal QQplot - Variable 2')
qqline(z[,par2])
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Two Sample t-test (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
if(!paired){
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 1',header=TRUE)
a<-table.element(a,r.t$estimate[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 2',header=TRUE)
a<-table.element(a,r.t$estimate[[2]])
a<-table.row.end(a)
} else {
a<-table.row.start(a)
a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE)
a<-table.element(a,r.t$estimate)
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'t-stat',header=TRUE)
a<-table.element(a,r.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,r.t$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,r.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,r.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,r.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(r.t$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',r.t$conf.int[1],',',r.t$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'F-test to compare two variances',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'F-stat',header=TRUE)
a<-table.element(a,v.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,v.t$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,v.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,v.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,v.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(v.t$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',v.t$conf.int[1],',',v.t$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Welch Two Sample t-test (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
if(!paired){
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 1',header=TRUE)
a<-table.element(a,r.w$estimate[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 2',header=TRUE)
a<-table.element(a,r.w$estimate[[2]])
a<-table.row.end(a)
} else {
a<-table.row.start(a)
a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE)
a<-table.element(a,r.w$estimate)
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'t-stat',header=TRUE)
a<-table.element(a,r.w$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,r.w$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,r.w$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,r.w$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,r.w$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(r.w$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',r.w$conf.int[1],',',r.w$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Wicoxon rank sum test with continuity correction (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'W',header=TRUE)
a<-table.element(a,w.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,w.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,w.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,w.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Kolmogorov-Smirnov Test to compare Distributions of two Samples',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'KS Statistic',header=TRUE)
a<-table.element(a,ks.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,ks.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'KS Statistic',header=TRUE)
a<-table.element(a,ks1.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,ks1.t$p.value)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')