Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_bootstrapplot.wasp
Title produced by softwareBlocked Bootstrap Plot - Central Tendency
Date of computationThu, 03 Dec 2015 12:59:08 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2015/Dec/03/t14491475686gxnutdiioo5nkx.htm/, Retrieved Thu, 31 Oct 2024 22:45:47 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=284932, Retrieved Thu, 31 Oct 2024 22:45:47 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact138
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Blocked Bootstrap Plot - Central Tendency] [] [2015-12-03 12:59:08] [88f551c1d3f4ff2d65b8ab6790c1e3d2] [Current]
Feedback Forum

Post a new message
Dataseries X:
94,94
95,11
95,53
95,89
95,99
95,42
95,42
95,45
95,99
95,99
95,97
95,97
95,97
96,22
95,8
96,02
96,04
96,15
96,15
95,99
96,08
96,29
96,3
96,44
96,44
96,83
96,7
97,06
97,64
97,61
97,61
97,61
97,55
97,58
97,79
97,79
97,79
97,79
98
98,37
98,68
98,89
98,89
98,89
98,88
98,97
99,05
99,05
99
99,03
99,2
100,3
100,79
100,75
100,75
100,17
99,98
99,93
100,04
100,04
100,49
100,71
100,7
101,27
101,07
101,17
100,71
100,59
100,52
100,65
100,62
100,62




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'George Udny Yule' @ yule.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'George Udny Yule' @ yule.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=284932&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ yule.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=284932&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=284932&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'George Udny Yule' @ yule.wessa.net







Estimation Results of Blocked Bootstrap
statisticP1P5Q1EstimateQ3P95P99S.D.IQR
mean96.85697.03397.69798.07998.64999.33499.5360.687280.95201
median96.16796.27197.57297.7998.95100.04100.271.19511.3775
midrange97.59997.84398.05598.10598.10598.53598.5880.222140.05
mode95.9795.97496.596.8998.89100.36100.751.34612.39
mode k.dens95.68496.00396.08696.04799.861100.66100.681.9233.7751

\begin{tabular}{lllllllll}
\hline
Estimation Results of Blocked Bootstrap \tabularnewline
statistic & P1 & P5 & Q1 & Estimate & Q3 & P95 & P99 & S.D. & IQR \tabularnewline
mean & 96.856 & 97.033 & 97.697 & 98.079 & 98.649 & 99.334 & 99.536 & 0.68728 & 0.95201 \tabularnewline
median & 96.167 & 96.271 & 97.572 & 97.79 & 98.95 & 100.04 & 100.27 & 1.1951 & 1.3775 \tabularnewline
midrange & 97.599 & 97.843 & 98.055 & 98.105 & 98.105 & 98.535 & 98.588 & 0.22214 & 0.05 \tabularnewline
mode & 95.97 & 95.974 & 96.5 & 96.89 & 98.89 & 100.36 & 100.75 & 1.3461 & 2.39 \tabularnewline
mode k.dens & 95.684 & 96.003 & 96.086 & 96.047 & 99.861 & 100.66 & 100.68 & 1.923 & 3.7751 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=284932&T=1

[TABLE]
[ROW][C]Estimation Results of Blocked Bootstrap[/C][/ROW]
[ROW][C]statistic[/C][C]P1[/C][C]P5[/C][C]Q1[/C][C]Estimate[/C][C]Q3[/C][C]P95[/C][C]P99[/C][C]S.D.[/C][C]IQR[/C][/ROW]
[ROW][C]mean[/C][C]96.856[/C][C]97.033[/C][C]97.697[/C][C]98.079[/C][C]98.649[/C][C]99.334[/C][C]99.536[/C][C]0.68728[/C][C]0.95201[/C][/ROW]
[ROW][C]median[/C][C]96.167[/C][C]96.271[/C][C]97.572[/C][C]97.79[/C][C]98.95[/C][C]100.04[/C][C]100.27[/C][C]1.1951[/C][C]1.3775[/C][/ROW]
[ROW][C]midrange[/C][C]97.599[/C][C]97.843[/C][C]98.055[/C][C]98.105[/C][C]98.105[/C][C]98.535[/C][C]98.588[/C][C]0.22214[/C][C]0.05[/C][/ROW]
[ROW][C]mode[/C][C]95.97[/C][C]95.974[/C][C]96.5[/C][C]96.89[/C][C]98.89[/C][C]100.36[/C][C]100.75[/C][C]1.3461[/C][C]2.39[/C][/ROW]
[ROW][C]mode k.dens[/C][C]95.684[/C][C]96.003[/C][C]96.086[/C][C]96.047[/C][C]99.861[/C][C]100.66[/C][C]100.68[/C][C]1.923[/C][C]3.7751[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=284932&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=284932&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimation Results of Blocked Bootstrap
statisticP1P5Q1EstimateQ3P95P99S.D.IQR
mean96.85697.03397.69798.07998.64999.33499.5360.687280.95201
median96.16796.27197.57297.7998.95100.04100.271.19511.3775
midrange97.59997.84398.05598.10598.10598.53598.5880.222140.05
mode95.9795.97496.596.8998.89100.36100.751.34612.39
mode k.dens95.68496.00396.08696.04799.861100.66100.681.9233.7751



Parameters (Session):
par1 = 50 ; par2 = 12 ; par3 = 5 ; par4 = P1 P5 Q1 Q3 P95 P99 ;
Parameters (R input):
par1 = 50 ; par2 = 12 ; par3 = 5 ; par4 = P1 P5 Q1 Q3 P95 P99 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
if (par1 < 10) par1 = 10
if (par1 > 5000) par1 = 5000
if (par2 < 3) par2 = 3
if (par2 > length(x)) par2 = length(x)
library(modeest)
library(lattice)
library(boot)
boot.stat <- function(s)
{
s.mean <- mean(s)
s.median <- median(s)
s.midrange <- (max(s) + min(s)) / 2
s.mode <- mlv(s,method='mfv')$M
s.kernelmode <- mlv(s, method='kernel')$M
c(s.mean, s.median, s.midrange, s.mode, s.kernelmode)
}
(r <- tsboot(x, boot.stat, R=par1, l=12, sim='fixed'))
bitmap(file='plot1.png')
plot(r$t[,1],type='p',ylab='simulated values',main='Simulation of Mean')
grid()
dev.off()
bitmap(file='plot2.png')
plot(r$t[,2],type='p',ylab='simulated values',main='Simulation of Median')
grid()
dev.off()
bitmap(file='plot3.png')
plot(r$t[,3],type='p',ylab='simulated values',main='Simulation of Midrange')
grid()
dev.off()
bitmap(file='plot7a.png')
plot(r$t[,4],type='p',ylab='simulated values',main='Simulation of Mode')
grid()
dev.off()
bitmap(file='plot8a.png')
plot(r$t[,5],type='p',ylab='simulated values',main='Simulation of Mode of Kernel Density')
grid()
dev.off()
bitmap(file='plot4.png')
densityplot(~r$t[,1],col='black',main='Density Plot',xlab='mean')
dev.off()
bitmap(file='plot5.png')
densityplot(~r$t[,2],col='black',main='Density Plot',xlab='median')
dev.off()
bitmap(file='plot6.png')
densityplot(~r$t[,3],col='black',main='Density Plot',xlab='midrange')
dev.off()
z <- data.frame(cbind(r$t[,1],r$t[,2],r$t[,3],r$t[,4],r$t[,5]) )
colnames(z) <- list('mean','median','midrange','mode','mode.k.dens')
bitmap(file='plot7.png')
boxplot(z,notch=TRUE,ylab='simulated values',main='Bootstrap Simulation - Central Tendency')
grid()
dev.off()
if (par4 == 'P1 P5 Q1 Q3 P95 P99') {
myq.1 <- 0.01
myq.2 <- 0.05
myq.3 <- 0.95
myq.4 <- 0.99
myl.1 <- 'P1'
myl.2 <- 'P5'
myl.3 <- 'P95'
myl.4 <- 'P99'
}
if (par4 == 'P0.5 P2.5 Q1 Q3 P97.5 P99.5') {
myq.1 <- 0.005
myq.2 <- 0.025
myq.3 <- 0.975
myq.4 <- 0.995
myl.1 <- 'P0.5'
myl.2 <- 'P2.5'
myl.3 <- 'P97.5'
myl.4 <- 'P99.5'
}
if (par4 == 'P10 P20 Q1 Q3 P80 P90') {
myq.1 <- 0.10
myq.2 <- 0.20
myq.3 <- 0.80
myq.4 <- 0.90
myl.1 <- 'P10'
myl.2 <- 'P20'
myl.3 <- 'P80'
myl.4 <- 'P90'
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimation Results of Blocked Bootstrap',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'statistic',header=TRUE)
a<-table.element(a,myl.1,header=TRUE)
a<-table.element(a,myl.2,header=TRUE)
a<-table.element(a,'Q1',header=TRUE)
a<-table.element(a,'Estimate',header=TRUE)
a<-table.element(a,'Q3',header=TRUE)
a<-table.element(a,myl.3,header=TRUE)
a<-table.element(a,myl.4,header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'IQR',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
q1 <- quantile(r$t[,1],0.25)[[1]]
q3 <- quantile(r$t[,1],0.75)[[1]]
p01 <- quantile(r$t[,1],myq.1)[[1]]
p05 <- quantile(r$t[,1],myq.2)[[1]]
p95 <- quantile(r$t[,1],myq.3)[[1]]
p99 <- quantile(r$t[,1],myq.4)[[1]]
a<-table.element(a,signif(p01,par3))
a<-table.element(a,signif(p05,par3))
a<-table.element(a,signif(q1,par3))
a<-table.element(a,signif(r$t0[1],par3))
a<-table.element(a,signif(q3,par3))
a<-table.element(a,signif(p95,par3))
a<-table.element(a,signif(p99,par3))
a<-table.element( a,signif( sqrt(var(r$t[,1])),par3 ) )
a<-table.element(a,signif(q3-q1,par3))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'median',header=TRUE)
q1 <- quantile(r$t[,2],0.25)[[1]]
q3 <- quantile(r$t[,2],0.75)[[1]]
p01 <- quantile(r$t[,2],myq.1)[[1]]
p05 <- quantile(r$t[,2],myq.2)[[1]]
p95 <- quantile(r$t[,2],myq.3)[[1]]
p99 <- quantile(r$t[,2],myq.4)[[1]]
a<-table.element(a,signif(p01,par3))
a<-table.element(a,signif(p05,par3))
a<-table.element(a,signif(q1,par3))
a<-table.element(a,signif(r$t0[2],par3))
a<-table.element(a,signif(q3,par3))
a<-table.element(a,signif(p95,par3))
a<-table.element(a,signif(p99,par3))
a<-table.element(a,signif(sqrt(var(r$t[,2])),par3))
a<-table.element(a,signif(q3-q1,par3))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'midrange',header=TRUE)
q1 <- quantile(r$t[,3],0.25)[[1]]
q3 <- quantile(r$t[,3],0.75)[[1]]
p01 <- quantile(r$t[,3],myq.1)[[1]]
p05 <- quantile(r$t[,3],myq.2)[[1]]
p95 <- quantile(r$t[,3],myq.3)[[1]]
p99 <- quantile(r$t[,3],myq.4)[[1]]
a<-table.element(a,signif(p01,par3))
a<-table.element(a,signif(p05,par3))
a<-table.element(a,signif(q1,par3))
a<-table.element(a,signif(r$t0[3],par3))
a<-table.element(a,signif(q3,par3))
a<-table.element(a,signif(p95,par3))
a<-table.element(a,signif(p99,par3))
a<-table.element(a,signif(sqrt(var(r$t[,3])),par3))
a<-table.element(a,signif(q3-q1,par3))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mode',header=TRUE)
q1 <- quantile(r$t[,4],0.25)[[1]]
q3 <- quantile(r$t[,4],0.75)[[1]]
p01 <- quantile(r$t[,4],myq.1)[[1]]
p05 <- quantile(r$t[,4],myq.2)[[1]]
p95 <- quantile(r$t[,4],myq.3)[[1]]
p99 <- quantile(r$t[,4],myq.4)[[1]]
a<-table.element(a,signif(p01,par3))
a<-table.element(a,signif(p05,par3))
a<-table.element(a,signif(q1,par3))
a<-table.element(a,signif(r$t0[4],par3))
a<-table.element(a,signif(q3,par3))
a<-table.element(a,signif(p95,par3))
a<-table.element(a,signif(p99,par3))
a<-table.element(a,signif(sqrt(var(r$t[,4])),par3))
a<-table.element(a,signif(q3-q1,par3))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mode k.dens',header=TRUE)
q1 <- quantile(r$t[,5],0.25)[[1]]
q3 <- quantile(r$t[,5],0.75)[[1]]
p01 <- quantile(r$t[,5],myq.1)[[1]]
p05 <- quantile(r$t[,5],myq.2)[[1]]
p95 <- quantile(r$t[,5],myq.3)[[1]]
p99 <- quantile(r$t[,5],myq.4)[[1]]
a<-table.element(a,signif(p01,par3))
a<-table.element(a,signif(p05,par3))
a<-table.element(a,signif(q1,par3))
a<-table.element(a,signif(r$t0[5],par3))
a<-table.element(a,signif(q3,par3))
a<-table.element(a,signif(p95,par3))
a<-table.element(a,signif(p99,par3))
a<-table.element(a,signif(sqrt(var(r$t[,5])),par3))
a<-table.element(a,signif(q3-q1,par3))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')