Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_One Factor ANOVA.wasp
Title produced by softwareOne-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)
Date of computationFri, 04 Dec 2015 12:49:40 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2015/Dec/04/t1449233486hprbsbcou0hnsak.htm/, Retrieved Fri, 01 Nov 2024 00:05:03 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=285119, Retrieved Fri, 01 Nov 2024 00:05:03 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact85
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [1-way anova] [2015-12-04 12:49:40] [e16b20b8677810c81140470949597c4a] [Current]
Feedback Forum

Post a new message
Dataseries X:
1 21
1 22
1 22
1 18
1 23
1 12
1 20
1 22
1 21
1 19
1 22
1 15
1 20
1 19
1 18
0 15
1 20
1 21
0 21
1 15
1 16
1 23
1 21
1 18
1 25
1 9
0 30
0 20
1 23
1 16
1 16
1 19
1 25
1 18
1 23
1 21
1 10
0 14
1 22
1 26
1 23
1 23
1 24
1 24
0 18
1 23
1 15
0 19
1 16
0 25
0 23
0 17
1 19
0 21
1 18
1 27
0 21
1 13
0 8
0 29
1 28
1 23
1 21
1 19
1 19
0 20
1 18
1 19
1 17
0 19
1 25
1 19
0 22
0 23
1 14
1 16
0 24
1 20
0 12
1 24
0 22
0 12
0 22
0 20
0 10
0 23
0 17
0 22
0 24
0 18
0 21
0 20
0 20
0 22
0 19
0 20
0 26
0 23
0 24
0 21
0 21
0 19
0 8
0 17
0 20
0 11
0 8
0 15
0 18
0 18
0 19
0 19
1 23
1 22
1 21
1 25
0 30
0 17
1 27
1 23
1 23
1 18
1 18
1 23
1 19
1 15
1 20
1 16
0 24
1 25
1 25
1 19
1 19
1 16
1 19
1 19
1 23
1 21
1 22
1 19
0 20
1 20
1 3
1 23
1 23
1 20
1 15
1 16
1 7
1 24
1 17
1 24
1 24
1 19
0 25
0 20
1 28
1 23
0 27
0 18
0 28
0 21
1 19
1 23
0 27
0 22
0 28
0 25
0 21
0 22
0 28
0 20
0 29
1 25
1 25
0 20
1 20
1 16
0 20
1 20
0 23
0 18
1 25
0 18
0 19
0 25
0 25
0 25
0 24
0 19
0 26
0 10
0 17
0 13
0 17
0 30
1 25
0 4
0 16
0 21
1 23
0 22
1 17
0 20
1 20
0 22
1 16
0 23
0 0
0 18
0 25
1 23
1 12
0 18
1 24
1 11
0 18
1 23
0 24
0 29
1 18
0 15
1 29
1 16
1 19
0 22
1 16
0 23
1 23
1 19
1 4
1 20
0 24
1 20
1 4
1 24
0 22
1 16
1 3
0 15
1 24
0 17
0 20
0 27
0 26
0 23
1 17
1 20
1 22
1 19
1 24
1 19
0 23
0 15
1 27
0 26
0 22
1 22
0 18
0 15
0 22
0 27
0 10
0 20
0 17
0 23
0 19
0 13
0 27
0 23
0 16
0 25
0 2
0 26
0 20
1 23
0 22
0 24




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=285119&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=285119&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=285119&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







ANOVA Model
NUMERACYTOT ~ group
means20.221-0.439

\begin{tabular}{lllllllll}
\hline
ANOVA Model \tabularnewline
NUMERACYTOT  ~  group \tabularnewline
means & 20.221 & -0.439 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=285119&T=1

[TABLE]
[ROW][C]ANOVA Model[/C][/ROW]
[ROW][C]NUMERACYTOT  ~  group[/C][/ROW]
[ROW][C]means[/C][C]20.221[/C][C]-0.439[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=285119&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=285119&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Model
NUMERACYTOT ~ group
means20.221-0.439







ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
group113.38213.3820.510.476
Residuals2767243.61526.245

\begin{tabular}{lllllllll}
\hline
ANOVA Statistics \tabularnewline
  & Df & Sum Sq & Mean Sq & F value & Pr(>F) \tabularnewline
group & 1 & 13.382 & 13.382 & 0.51 & 0.476 \tabularnewline
Residuals & 276 & 7243.615 & 26.245 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=285119&T=2

[TABLE]
[ROW][C]ANOVA Statistics[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]Sum Sq[/C][C]Mean Sq[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]group[/C][C]1[/C][C]13.382[/C][C]13.382[/C][C]0.51[/C][C]0.476[/C][/ROW]
[ROW][C]Residuals[/C][C]276[/C][C]7243.615[/C][C]26.245[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=285119&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=285119&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
group113.38213.3820.510.476
Residuals2767243.61526.245







Tukey Honest Significant Difference Comparisons
difflwruprp adj
1-0-0.439-1.6490.7710.476

\begin{tabular}{lllllllll}
\hline
Tukey Honest Significant Difference Comparisons \tabularnewline
  & diff & lwr & upr & p adj \tabularnewline
1-0 & -0.439 & -1.649 & 0.771 & 0.476 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=285119&T=3

[TABLE]
[ROW][C]Tukey Honest Significant Difference Comparisons[/C][/ROW]
[ROW][C] [/C][C]diff[/C][C]lwr[/C][C]upr[/C][C]p adj[/C][/ROW]
[ROW][C]1-0[/C][C]-0.439[/C][C]-1.649[/C][C]0.771[/C][C]0.476[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=285119&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=285119&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Tukey Honest Significant Difference Comparisons
difflwruprp adj
1-0-0.439-1.6490.7710.476







Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group11.330.25
276

\begin{tabular}{lllllllll}
\hline
Levenes Test for Homogeneity of Variance \tabularnewline
  & Df & F value & Pr(>F) \tabularnewline
Group & 1 & 1.33 & 0.25 \tabularnewline
  & 276 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=285119&T=4

[TABLE]
[ROW][C]Levenes Test for Homogeneity of Variance[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]Group[/C][C]1[/C][C]1.33[/C][C]0.25[/C][/ROW]
[ROW][C] [/C][C]276[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=285119&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=285119&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group11.330.25
276



Parameters (Session):
par1 = 2 ; par2 = 1 ; par3 = TRUE ;
Parameters (R input):
par1 = 2 ; par2 = 1 ; par3 = TRUE ;
R code (references can be found in the software module):
cat1 <- as.numeric(par1) #
cat2<- as.numeric(par2) #
intercept<-as.logical(par3)
x <- t(x)
x1<-as.numeric(x[,cat1])
f1<-as.character(x[,cat2])
xdf<-data.frame(x1,f1)
(V1<-dimnames(y)[[1]][cat1])
(V2<-dimnames(y)[[1]][cat2])
names(xdf)<-c('Response', 'Treatment')
if(intercept == FALSE) (lmxdf<-lm(Response ~ Treatment - 1, data = xdf) ) else (lmxdf<-lm(Response ~ Treatment, data = xdf) )
(aov.xdf<-aov(lmxdf) )
(anova.xdf<-anova(lmxdf) )
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Model', length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, paste(V1, ' ~ ', V2), length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'means',,TRUE)
for(i in 1:length(lmxdf$coefficients)){
a<-table.element(a, round(lmxdf$coefficients[i], digits=3),,FALSE)
}
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Statistics', 5+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',,TRUE)
a<-table.element(a, 'Df',,FALSE)
a<-table.element(a, 'Sum Sq',,FALSE)
a<-table.element(a, 'Mean Sq',,FALSE)
a<-table.element(a, 'F value',,FALSE)
a<-table.element(a, 'Pr(>F)',,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, V2,,TRUE)
a<-table.element(a, anova.xdf$Df[1],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'F value'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3),,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residuals',,TRUE)
a<-table.element(a, anova.xdf$Df[2],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3),,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
bitmap(file='anovaplot.png')
boxplot(Response ~ Treatment, data=xdf, xlab=V2, ylab=V1)
dev.off()
if(intercept==TRUE){
'Tukey Plot'
thsd<-TukeyHSD(aov.xdf)
bitmap(file='TukeyHSDPlot.png')
plot(thsd)
dev.off()
}
if(intercept==TRUE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Tukey Honest Significant Difference Comparisons', 5,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ', 1, TRUE)
for(i in 1:4){
a<-table.element(a,colnames(thsd[[1]])[i], 1, TRUE)
}
a<-table.row.end(a)
for(i in 1:length(rownames(thsd[[1]]))){
a<-table.row.start(a)
a<-table.element(a,rownames(thsd[[1]])[i], 1, TRUE)
for(j in 1:4){
a<-table.element(a,round(thsd[[1]][i,j], digits=3), 1, FALSE)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
if(intercept==FALSE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'TukeyHSD Message', 1,TRUE)
a<-table.row.end(a)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Must Include Intercept to use Tukey Test ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
library(car)
lt.lmxdf<-leveneTest(lmxdf)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Levenes Test for Homogeneity of Variance', 4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
for (i in 1:3){
a<-table.element(a,names(lt.lmxdf)[i], 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Group', 1, TRUE)
for (i in 1:3){
a<-table.element(a,round(lt.lmxdf[[i]][1], digits=3), 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
a<-table.element(a,lt.lmxdf[[1]][2], 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')