Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationThu, 10 Dec 2015 19:57:32 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2015/Dec/10/t1449777861ul13gvquwki87gp.htm/, Retrieved Thu, 31 Oct 2024 23:00:36 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=285840, Retrieved Thu, 31 Oct 2024 23:00:36 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact92
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Decomposition by Loess] [Decomposition by ...] [2015-12-10 19:57:32] [6c9172abf40f1c7e1d0d83ef980264f4] [Current]
Feedback Forum

Post a new message
Dataseries X:
20.7
20.7
20.7
18
18
18
16.9
16.9
16.9
24.4
24.4
24.4
15.5
15.5
15.5
18.4
18.4
18.4
16.2
16.2
16.2
20.6
20.6
20.6
19.8
19.8
19.8
21.6
21.6
21.6
22.3
22.3
22.3
23.7
23.7
23.7
22.1
22.1
22.1
26.6
26.6
26.6
23.5
23.5
23.5
19.6
19.6
19.6
20
20
20
20.1
20.1
20.1
16
16
16
18.9
18.9
18.9




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Sir Maurice George Kendall' @ kendall.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Sir Maurice George Kendall' @ kendall.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=285840&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Maurice George Kendall' @ kendall.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=285840&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=285840&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Sir Maurice George Kendall' @ kendall.wessa.net







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal601061
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 601 & 0 & 61 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=285840&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]601[/C][C]0[/C][C]61[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=285840&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=285840&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal601061
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
120.722.2294668202628-0.88851312779307920.05904630753031.5294668202628
220.722.3087650142414-0.85910342489373219.95033841065231.60876501424143
320.722.3880632082201-0.82969372199438519.84163051377431.68806320822005
41815.70790645850810.54519465038475319.7468988911071-2.29209354149186
51815.74775182616340.60008090539670419.6521672684399-2.25224817383658
61815.79399670211280.66888558640295719.5371177114842-2.20600329788716
716.915.6002407285008-1.2223088830293819.4220681545285-1.29975927149916
816.915.6998422770038-1.1724248574750819.2725825804712-1.20015772299615
916.915.7994438255069-1.1225408319207919.1230970064139-1.10055617449314
1024.428.3782402404571.3810359551770219.04072380436593.97824024045704
1124.428.41703436812771.424615029554318.9583506023184.01703436812773
1224.428.43426127742731.4747702111769318.89096851139584.03426127742729
1315.513.0649267073195-0.88851312779307918.8235864204736-2.4350732926805
1415.513.2173603730099-0.85910342489373218.6417430518839-2.28263962699013
1515.513.3697940387002-0.82969372199438518.4598996832941-2.13020596129975
1618.418.02143814238120.54519465038475318.233367207234-0.378561857618788
1718.418.19308436342940.60008090539670418.0068347311739-0.206915636570635
1818.418.14343351088630.66888558640295717.9876809027107-0.256566489113688
1916.215.6537818087818-1.2223088830293817.9685270742475-0.546218191218159
2016.215.3407280579549-1.1724248574750818.2316967995202-0.859271942045076
2116.215.027674307128-1.1225408319207918.4948665247928-1.172325692872
2220.621.0001075533411.3810359551770218.8188564914820.400107553340963
2320.620.63253851227441.424615029554319.14284645817130.0325385122744386
2420.620.20990690090771.4747702111769319.5153228879153-0.390093099092262
2519.820.6007138101337-0.88851312779307919.88779931765940.800713810133686
2619.820.1405132508074-0.85910342489373220.31859017408640.34051325080738
2719.819.6803126914811-0.82969372199438520.7493810305133-0.119687308518927
2821.621.54299832009630.54519465038475321.111807029519-0.0570016799037099
2921.621.12568606607870.60008090539670421.4742330285246-0.474313933921309
3021.620.80066516907030.66888558640295721.7304492445268-0.799334830929716
3122.323.8356434225005-1.2223088830293821.98666546052891.53564342250046
3222.323.5624894790008-1.1724248574750822.20993537847431.26248947900082
3322.323.2893355355012-1.1225408319207922.43320529641960.98933553550118
3423.723.30283658890541.3810359551770222.7161274559176-0.397163411094571
3523.722.97633535503021.424615029554322.9990496154155-0.723664644969798
3623.722.64850943425361.4747702111769323.2767203545695-1.05149056574639
3722.121.5341220340697-0.88851312779307923.5543910937234-0.565877965930348
3822.121.3484581474894-0.85910342489373223.7106452774043-0.751541852510613
3922.121.1627942609091-0.82969372199438523.8668994610853-0.937205739090874
4026.628.87203360125130.54519465038475323.78277174836392.27203360125132
4126.628.90127505896070.60008090539670423.69864403564262.3012750589607
4226.629.11088270628680.66888558640295723.42023170731022.51088270628681
4323.525.0804895040515-1.2223088830293823.14181937897791.58048950405152
4423.525.4091019872755-1.1724248574750822.76332287019961.90910198727552
4523.525.7377144704995-1.1225408319207922.38482636142132.23771447049953
4619.615.91242083628351.3810359551770221.9065432085394-3.68757916371646
4719.616.34712491478811.424615029554321.4282600556576-3.25287508521194
4819.616.83776696667831.4747702111769320.8874628221448-2.76223303332172
492020.5418475391611-0.88851312779307920.34666558863190.541847539161139
502020.9588269600393-0.85910342489373219.90027646485450.958826960039278
512021.3758063809174-0.82969372199438519.4538873410771.37580638091742
5220.120.4834830989840.54519465038475319.17132225063120.383483098983998
5320.120.71116193441780.60008090539670418.88875716018550.611161934417769
5420.120.90437824543740.66888558640295718.62673616815960.804378245437402
551614.8575937068956-1.2223088830293818.3647151761338-1.14240629310438
561615.0829976754751-1.1724248574750818.089427182-0.917002324524944
571615.3084016440545-1.1225408319207917.8141391878663-0.691598355945505
5818.918.89223534319241.3810359551770217.5267287016306-0.0077646568075771
5918.919.13606675505091.424615029554317.23931821539480.236066755050871
6018.919.3767539036811.4747702111769316.94847588514210.476753903680983

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 20.7 & 22.2294668202628 & -0.888513127793079 & 20.0590463075303 & 1.5294668202628 \tabularnewline
2 & 20.7 & 22.3087650142414 & -0.859103424893732 & 19.9503384106523 & 1.60876501424143 \tabularnewline
3 & 20.7 & 22.3880632082201 & -0.829693721994385 & 19.8416305137743 & 1.68806320822005 \tabularnewline
4 & 18 & 15.7079064585081 & 0.545194650384753 & 19.7468988911071 & -2.29209354149186 \tabularnewline
5 & 18 & 15.7477518261634 & 0.600080905396704 & 19.6521672684399 & -2.25224817383658 \tabularnewline
6 & 18 & 15.7939967021128 & 0.668885586402957 & 19.5371177114842 & -2.20600329788716 \tabularnewline
7 & 16.9 & 15.6002407285008 & -1.22230888302938 & 19.4220681545285 & -1.29975927149916 \tabularnewline
8 & 16.9 & 15.6998422770038 & -1.17242485747508 & 19.2725825804712 & -1.20015772299615 \tabularnewline
9 & 16.9 & 15.7994438255069 & -1.12254083192079 & 19.1230970064139 & -1.10055617449314 \tabularnewline
10 & 24.4 & 28.378240240457 & 1.38103595517702 & 19.0407238043659 & 3.97824024045704 \tabularnewline
11 & 24.4 & 28.4170343681277 & 1.4246150295543 & 18.958350602318 & 4.01703436812773 \tabularnewline
12 & 24.4 & 28.4342612774273 & 1.47477021117693 & 18.8909685113958 & 4.03426127742729 \tabularnewline
13 & 15.5 & 13.0649267073195 & -0.888513127793079 & 18.8235864204736 & -2.4350732926805 \tabularnewline
14 & 15.5 & 13.2173603730099 & -0.859103424893732 & 18.6417430518839 & -2.28263962699013 \tabularnewline
15 & 15.5 & 13.3697940387002 & -0.829693721994385 & 18.4598996832941 & -2.13020596129975 \tabularnewline
16 & 18.4 & 18.0214381423812 & 0.545194650384753 & 18.233367207234 & -0.378561857618788 \tabularnewline
17 & 18.4 & 18.1930843634294 & 0.600080905396704 & 18.0068347311739 & -0.206915636570635 \tabularnewline
18 & 18.4 & 18.1434335108863 & 0.668885586402957 & 17.9876809027107 & -0.256566489113688 \tabularnewline
19 & 16.2 & 15.6537818087818 & -1.22230888302938 & 17.9685270742475 & -0.546218191218159 \tabularnewline
20 & 16.2 & 15.3407280579549 & -1.17242485747508 & 18.2316967995202 & -0.859271942045076 \tabularnewline
21 & 16.2 & 15.027674307128 & -1.12254083192079 & 18.4948665247928 & -1.172325692872 \tabularnewline
22 & 20.6 & 21.000107553341 & 1.38103595517702 & 18.818856491482 & 0.400107553340963 \tabularnewline
23 & 20.6 & 20.6325385122744 & 1.4246150295543 & 19.1428464581713 & 0.0325385122744386 \tabularnewline
24 & 20.6 & 20.2099069009077 & 1.47477021117693 & 19.5153228879153 & -0.390093099092262 \tabularnewline
25 & 19.8 & 20.6007138101337 & -0.888513127793079 & 19.8877993176594 & 0.800713810133686 \tabularnewline
26 & 19.8 & 20.1405132508074 & -0.859103424893732 & 20.3185901740864 & 0.34051325080738 \tabularnewline
27 & 19.8 & 19.6803126914811 & -0.829693721994385 & 20.7493810305133 & -0.119687308518927 \tabularnewline
28 & 21.6 & 21.5429983200963 & 0.545194650384753 & 21.111807029519 & -0.0570016799037099 \tabularnewline
29 & 21.6 & 21.1256860660787 & 0.600080905396704 & 21.4742330285246 & -0.474313933921309 \tabularnewline
30 & 21.6 & 20.8006651690703 & 0.668885586402957 & 21.7304492445268 & -0.799334830929716 \tabularnewline
31 & 22.3 & 23.8356434225005 & -1.22230888302938 & 21.9866654605289 & 1.53564342250046 \tabularnewline
32 & 22.3 & 23.5624894790008 & -1.17242485747508 & 22.2099353784743 & 1.26248947900082 \tabularnewline
33 & 22.3 & 23.2893355355012 & -1.12254083192079 & 22.4332052964196 & 0.98933553550118 \tabularnewline
34 & 23.7 & 23.3028365889054 & 1.38103595517702 & 22.7161274559176 & -0.397163411094571 \tabularnewline
35 & 23.7 & 22.9763353550302 & 1.4246150295543 & 22.9990496154155 & -0.723664644969798 \tabularnewline
36 & 23.7 & 22.6485094342536 & 1.47477021117693 & 23.2767203545695 & -1.05149056574639 \tabularnewline
37 & 22.1 & 21.5341220340697 & -0.888513127793079 & 23.5543910937234 & -0.565877965930348 \tabularnewline
38 & 22.1 & 21.3484581474894 & -0.859103424893732 & 23.7106452774043 & -0.751541852510613 \tabularnewline
39 & 22.1 & 21.1627942609091 & -0.829693721994385 & 23.8668994610853 & -0.937205739090874 \tabularnewline
40 & 26.6 & 28.8720336012513 & 0.545194650384753 & 23.7827717483639 & 2.27203360125132 \tabularnewline
41 & 26.6 & 28.9012750589607 & 0.600080905396704 & 23.6986440356426 & 2.3012750589607 \tabularnewline
42 & 26.6 & 29.1108827062868 & 0.668885586402957 & 23.4202317073102 & 2.51088270628681 \tabularnewline
43 & 23.5 & 25.0804895040515 & -1.22230888302938 & 23.1418193789779 & 1.58048950405152 \tabularnewline
44 & 23.5 & 25.4091019872755 & -1.17242485747508 & 22.7633228701996 & 1.90910198727552 \tabularnewline
45 & 23.5 & 25.7377144704995 & -1.12254083192079 & 22.3848263614213 & 2.23771447049953 \tabularnewline
46 & 19.6 & 15.9124208362835 & 1.38103595517702 & 21.9065432085394 & -3.68757916371646 \tabularnewline
47 & 19.6 & 16.3471249147881 & 1.4246150295543 & 21.4282600556576 & -3.25287508521194 \tabularnewline
48 & 19.6 & 16.8377669666783 & 1.47477021117693 & 20.8874628221448 & -2.76223303332172 \tabularnewline
49 & 20 & 20.5418475391611 & -0.888513127793079 & 20.3466655886319 & 0.541847539161139 \tabularnewline
50 & 20 & 20.9588269600393 & -0.859103424893732 & 19.9002764648545 & 0.958826960039278 \tabularnewline
51 & 20 & 21.3758063809174 & -0.829693721994385 & 19.453887341077 & 1.37580638091742 \tabularnewline
52 & 20.1 & 20.483483098984 & 0.545194650384753 & 19.1713222506312 & 0.383483098983998 \tabularnewline
53 & 20.1 & 20.7111619344178 & 0.600080905396704 & 18.8887571601855 & 0.611161934417769 \tabularnewline
54 & 20.1 & 20.9043782454374 & 0.668885586402957 & 18.6267361681596 & 0.804378245437402 \tabularnewline
55 & 16 & 14.8575937068956 & -1.22230888302938 & 18.3647151761338 & -1.14240629310438 \tabularnewline
56 & 16 & 15.0829976754751 & -1.17242485747508 & 18.089427182 & -0.917002324524944 \tabularnewline
57 & 16 & 15.3084016440545 & -1.12254083192079 & 17.8141391878663 & -0.691598355945505 \tabularnewline
58 & 18.9 & 18.8922353431924 & 1.38103595517702 & 17.5267287016306 & -0.0077646568075771 \tabularnewline
59 & 18.9 & 19.1360667550509 & 1.4246150295543 & 17.2393182153948 & 0.236066755050871 \tabularnewline
60 & 18.9 & 19.376753903681 & 1.47477021117693 & 16.9484758851421 & 0.476753903680983 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=285840&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]20.7[/C][C]22.2294668202628[/C][C]-0.888513127793079[/C][C]20.0590463075303[/C][C]1.5294668202628[/C][/ROW]
[ROW][C]2[/C][C]20.7[/C][C]22.3087650142414[/C][C]-0.859103424893732[/C][C]19.9503384106523[/C][C]1.60876501424143[/C][/ROW]
[ROW][C]3[/C][C]20.7[/C][C]22.3880632082201[/C][C]-0.829693721994385[/C][C]19.8416305137743[/C][C]1.68806320822005[/C][/ROW]
[ROW][C]4[/C][C]18[/C][C]15.7079064585081[/C][C]0.545194650384753[/C][C]19.7468988911071[/C][C]-2.29209354149186[/C][/ROW]
[ROW][C]5[/C][C]18[/C][C]15.7477518261634[/C][C]0.600080905396704[/C][C]19.6521672684399[/C][C]-2.25224817383658[/C][/ROW]
[ROW][C]6[/C][C]18[/C][C]15.7939967021128[/C][C]0.668885586402957[/C][C]19.5371177114842[/C][C]-2.20600329788716[/C][/ROW]
[ROW][C]7[/C][C]16.9[/C][C]15.6002407285008[/C][C]-1.22230888302938[/C][C]19.4220681545285[/C][C]-1.29975927149916[/C][/ROW]
[ROW][C]8[/C][C]16.9[/C][C]15.6998422770038[/C][C]-1.17242485747508[/C][C]19.2725825804712[/C][C]-1.20015772299615[/C][/ROW]
[ROW][C]9[/C][C]16.9[/C][C]15.7994438255069[/C][C]-1.12254083192079[/C][C]19.1230970064139[/C][C]-1.10055617449314[/C][/ROW]
[ROW][C]10[/C][C]24.4[/C][C]28.378240240457[/C][C]1.38103595517702[/C][C]19.0407238043659[/C][C]3.97824024045704[/C][/ROW]
[ROW][C]11[/C][C]24.4[/C][C]28.4170343681277[/C][C]1.4246150295543[/C][C]18.958350602318[/C][C]4.01703436812773[/C][/ROW]
[ROW][C]12[/C][C]24.4[/C][C]28.4342612774273[/C][C]1.47477021117693[/C][C]18.8909685113958[/C][C]4.03426127742729[/C][/ROW]
[ROW][C]13[/C][C]15.5[/C][C]13.0649267073195[/C][C]-0.888513127793079[/C][C]18.8235864204736[/C][C]-2.4350732926805[/C][/ROW]
[ROW][C]14[/C][C]15.5[/C][C]13.2173603730099[/C][C]-0.859103424893732[/C][C]18.6417430518839[/C][C]-2.28263962699013[/C][/ROW]
[ROW][C]15[/C][C]15.5[/C][C]13.3697940387002[/C][C]-0.829693721994385[/C][C]18.4598996832941[/C][C]-2.13020596129975[/C][/ROW]
[ROW][C]16[/C][C]18.4[/C][C]18.0214381423812[/C][C]0.545194650384753[/C][C]18.233367207234[/C][C]-0.378561857618788[/C][/ROW]
[ROW][C]17[/C][C]18.4[/C][C]18.1930843634294[/C][C]0.600080905396704[/C][C]18.0068347311739[/C][C]-0.206915636570635[/C][/ROW]
[ROW][C]18[/C][C]18.4[/C][C]18.1434335108863[/C][C]0.668885586402957[/C][C]17.9876809027107[/C][C]-0.256566489113688[/C][/ROW]
[ROW][C]19[/C][C]16.2[/C][C]15.6537818087818[/C][C]-1.22230888302938[/C][C]17.9685270742475[/C][C]-0.546218191218159[/C][/ROW]
[ROW][C]20[/C][C]16.2[/C][C]15.3407280579549[/C][C]-1.17242485747508[/C][C]18.2316967995202[/C][C]-0.859271942045076[/C][/ROW]
[ROW][C]21[/C][C]16.2[/C][C]15.027674307128[/C][C]-1.12254083192079[/C][C]18.4948665247928[/C][C]-1.172325692872[/C][/ROW]
[ROW][C]22[/C][C]20.6[/C][C]21.000107553341[/C][C]1.38103595517702[/C][C]18.818856491482[/C][C]0.400107553340963[/C][/ROW]
[ROW][C]23[/C][C]20.6[/C][C]20.6325385122744[/C][C]1.4246150295543[/C][C]19.1428464581713[/C][C]0.0325385122744386[/C][/ROW]
[ROW][C]24[/C][C]20.6[/C][C]20.2099069009077[/C][C]1.47477021117693[/C][C]19.5153228879153[/C][C]-0.390093099092262[/C][/ROW]
[ROW][C]25[/C][C]19.8[/C][C]20.6007138101337[/C][C]-0.888513127793079[/C][C]19.8877993176594[/C][C]0.800713810133686[/C][/ROW]
[ROW][C]26[/C][C]19.8[/C][C]20.1405132508074[/C][C]-0.859103424893732[/C][C]20.3185901740864[/C][C]0.34051325080738[/C][/ROW]
[ROW][C]27[/C][C]19.8[/C][C]19.6803126914811[/C][C]-0.829693721994385[/C][C]20.7493810305133[/C][C]-0.119687308518927[/C][/ROW]
[ROW][C]28[/C][C]21.6[/C][C]21.5429983200963[/C][C]0.545194650384753[/C][C]21.111807029519[/C][C]-0.0570016799037099[/C][/ROW]
[ROW][C]29[/C][C]21.6[/C][C]21.1256860660787[/C][C]0.600080905396704[/C][C]21.4742330285246[/C][C]-0.474313933921309[/C][/ROW]
[ROW][C]30[/C][C]21.6[/C][C]20.8006651690703[/C][C]0.668885586402957[/C][C]21.7304492445268[/C][C]-0.799334830929716[/C][/ROW]
[ROW][C]31[/C][C]22.3[/C][C]23.8356434225005[/C][C]-1.22230888302938[/C][C]21.9866654605289[/C][C]1.53564342250046[/C][/ROW]
[ROW][C]32[/C][C]22.3[/C][C]23.5624894790008[/C][C]-1.17242485747508[/C][C]22.2099353784743[/C][C]1.26248947900082[/C][/ROW]
[ROW][C]33[/C][C]22.3[/C][C]23.2893355355012[/C][C]-1.12254083192079[/C][C]22.4332052964196[/C][C]0.98933553550118[/C][/ROW]
[ROW][C]34[/C][C]23.7[/C][C]23.3028365889054[/C][C]1.38103595517702[/C][C]22.7161274559176[/C][C]-0.397163411094571[/C][/ROW]
[ROW][C]35[/C][C]23.7[/C][C]22.9763353550302[/C][C]1.4246150295543[/C][C]22.9990496154155[/C][C]-0.723664644969798[/C][/ROW]
[ROW][C]36[/C][C]23.7[/C][C]22.6485094342536[/C][C]1.47477021117693[/C][C]23.2767203545695[/C][C]-1.05149056574639[/C][/ROW]
[ROW][C]37[/C][C]22.1[/C][C]21.5341220340697[/C][C]-0.888513127793079[/C][C]23.5543910937234[/C][C]-0.565877965930348[/C][/ROW]
[ROW][C]38[/C][C]22.1[/C][C]21.3484581474894[/C][C]-0.859103424893732[/C][C]23.7106452774043[/C][C]-0.751541852510613[/C][/ROW]
[ROW][C]39[/C][C]22.1[/C][C]21.1627942609091[/C][C]-0.829693721994385[/C][C]23.8668994610853[/C][C]-0.937205739090874[/C][/ROW]
[ROW][C]40[/C][C]26.6[/C][C]28.8720336012513[/C][C]0.545194650384753[/C][C]23.7827717483639[/C][C]2.27203360125132[/C][/ROW]
[ROW][C]41[/C][C]26.6[/C][C]28.9012750589607[/C][C]0.600080905396704[/C][C]23.6986440356426[/C][C]2.3012750589607[/C][/ROW]
[ROW][C]42[/C][C]26.6[/C][C]29.1108827062868[/C][C]0.668885586402957[/C][C]23.4202317073102[/C][C]2.51088270628681[/C][/ROW]
[ROW][C]43[/C][C]23.5[/C][C]25.0804895040515[/C][C]-1.22230888302938[/C][C]23.1418193789779[/C][C]1.58048950405152[/C][/ROW]
[ROW][C]44[/C][C]23.5[/C][C]25.4091019872755[/C][C]-1.17242485747508[/C][C]22.7633228701996[/C][C]1.90910198727552[/C][/ROW]
[ROW][C]45[/C][C]23.5[/C][C]25.7377144704995[/C][C]-1.12254083192079[/C][C]22.3848263614213[/C][C]2.23771447049953[/C][/ROW]
[ROW][C]46[/C][C]19.6[/C][C]15.9124208362835[/C][C]1.38103595517702[/C][C]21.9065432085394[/C][C]-3.68757916371646[/C][/ROW]
[ROW][C]47[/C][C]19.6[/C][C]16.3471249147881[/C][C]1.4246150295543[/C][C]21.4282600556576[/C][C]-3.25287508521194[/C][/ROW]
[ROW][C]48[/C][C]19.6[/C][C]16.8377669666783[/C][C]1.47477021117693[/C][C]20.8874628221448[/C][C]-2.76223303332172[/C][/ROW]
[ROW][C]49[/C][C]20[/C][C]20.5418475391611[/C][C]-0.888513127793079[/C][C]20.3466655886319[/C][C]0.541847539161139[/C][/ROW]
[ROW][C]50[/C][C]20[/C][C]20.9588269600393[/C][C]-0.859103424893732[/C][C]19.9002764648545[/C][C]0.958826960039278[/C][/ROW]
[ROW][C]51[/C][C]20[/C][C]21.3758063809174[/C][C]-0.829693721994385[/C][C]19.453887341077[/C][C]1.37580638091742[/C][/ROW]
[ROW][C]52[/C][C]20.1[/C][C]20.483483098984[/C][C]0.545194650384753[/C][C]19.1713222506312[/C][C]0.383483098983998[/C][/ROW]
[ROW][C]53[/C][C]20.1[/C][C]20.7111619344178[/C][C]0.600080905396704[/C][C]18.8887571601855[/C][C]0.611161934417769[/C][/ROW]
[ROW][C]54[/C][C]20.1[/C][C]20.9043782454374[/C][C]0.668885586402957[/C][C]18.6267361681596[/C][C]0.804378245437402[/C][/ROW]
[ROW][C]55[/C][C]16[/C][C]14.8575937068956[/C][C]-1.22230888302938[/C][C]18.3647151761338[/C][C]-1.14240629310438[/C][/ROW]
[ROW][C]56[/C][C]16[/C][C]15.0829976754751[/C][C]-1.17242485747508[/C][C]18.089427182[/C][C]-0.917002324524944[/C][/ROW]
[ROW][C]57[/C][C]16[/C][C]15.3084016440545[/C][C]-1.12254083192079[/C][C]17.8141391878663[/C][C]-0.691598355945505[/C][/ROW]
[ROW][C]58[/C][C]18.9[/C][C]18.8922353431924[/C][C]1.38103595517702[/C][C]17.5267287016306[/C][C]-0.0077646568075771[/C][/ROW]
[ROW][C]59[/C][C]18.9[/C][C]19.1360667550509[/C][C]1.4246150295543[/C][C]17.2393182153948[/C][C]0.236066755050871[/C][/ROW]
[ROW][C]60[/C][C]18.9[/C][C]19.376753903681[/C][C]1.47477021117693[/C][C]16.9484758851421[/C][C]0.476753903680983[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=285840&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=285840&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
120.722.2294668202628-0.88851312779307920.05904630753031.5294668202628
220.722.3087650142414-0.85910342489373219.95033841065231.60876501424143
320.722.3880632082201-0.82969372199438519.84163051377431.68806320822005
41815.70790645850810.54519465038475319.7468988911071-2.29209354149186
51815.74775182616340.60008090539670419.6521672684399-2.25224817383658
61815.79399670211280.66888558640295719.5371177114842-2.20600329788716
716.915.6002407285008-1.2223088830293819.4220681545285-1.29975927149916
816.915.6998422770038-1.1724248574750819.2725825804712-1.20015772299615
916.915.7994438255069-1.1225408319207919.1230970064139-1.10055617449314
1024.428.3782402404571.3810359551770219.04072380436593.97824024045704
1124.428.41703436812771.424615029554318.9583506023184.01703436812773
1224.428.43426127742731.4747702111769318.89096851139584.03426127742729
1315.513.0649267073195-0.88851312779307918.8235864204736-2.4350732926805
1415.513.2173603730099-0.85910342489373218.6417430518839-2.28263962699013
1515.513.3697940387002-0.82969372199438518.4598996832941-2.13020596129975
1618.418.02143814238120.54519465038475318.233367207234-0.378561857618788
1718.418.19308436342940.60008090539670418.0068347311739-0.206915636570635
1818.418.14343351088630.66888558640295717.9876809027107-0.256566489113688
1916.215.6537818087818-1.2223088830293817.9685270742475-0.546218191218159
2016.215.3407280579549-1.1724248574750818.2316967995202-0.859271942045076
2116.215.027674307128-1.1225408319207918.4948665247928-1.172325692872
2220.621.0001075533411.3810359551770218.8188564914820.400107553340963
2320.620.63253851227441.424615029554319.14284645817130.0325385122744386
2420.620.20990690090771.4747702111769319.5153228879153-0.390093099092262
2519.820.6007138101337-0.88851312779307919.88779931765940.800713810133686
2619.820.1405132508074-0.85910342489373220.31859017408640.34051325080738
2719.819.6803126914811-0.82969372199438520.7493810305133-0.119687308518927
2821.621.54299832009630.54519465038475321.111807029519-0.0570016799037099
2921.621.12568606607870.60008090539670421.4742330285246-0.474313933921309
3021.620.80066516907030.66888558640295721.7304492445268-0.799334830929716
3122.323.8356434225005-1.2223088830293821.98666546052891.53564342250046
3222.323.5624894790008-1.1724248574750822.20993537847431.26248947900082
3322.323.2893355355012-1.1225408319207922.43320529641960.98933553550118
3423.723.30283658890541.3810359551770222.7161274559176-0.397163411094571
3523.722.97633535503021.424615029554322.9990496154155-0.723664644969798
3623.722.64850943425361.4747702111769323.2767203545695-1.05149056574639
3722.121.5341220340697-0.88851312779307923.5543910937234-0.565877965930348
3822.121.3484581474894-0.85910342489373223.7106452774043-0.751541852510613
3922.121.1627942609091-0.82969372199438523.8668994610853-0.937205739090874
4026.628.87203360125130.54519465038475323.78277174836392.27203360125132
4126.628.90127505896070.60008090539670423.69864403564262.3012750589607
4226.629.11088270628680.66888558640295723.42023170731022.51088270628681
4323.525.0804895040515-1.2223088830293823.14181937897791.58048950405152
4423.525.4091019872755-1.1724248574750822.76332287019961.90910198727552
4523.525.7377144704995-1.1225408319207922.38482636142132.23771447049953
4619.615.91242083628351.3810359551770221.9065432085394-3.68757916371646
4719.616.34712491478811.424615029554321.4282600556576-3.25287508521194
4819.616.83776696667831.4747702111769320.8874628221448-2.76223303332172
492020.5418475391611-0.88851312779307920.34666558863190.541847539161139
502020.9588269600393-0.85910342489373219.90027646485450.958826960039278
512021.3758063809174-0.82969372199438519.4538873410771.37580638091742
5220.120.4834830989840.54519465038475319.17132225063120.383483098983998
5320.120.71116193441780.60008090539670418.88875716018550.611161934417769
5420.120.90437824543740.66888558640295718.62673616815960.804378245437402
551614.8575937068956-1.2223088830293818.3647151761338-1.14240629310438
561615.0829976754751-1.1724248574750818.089427182-0.917002324524944
571615.3084016440545-1.1225408319207917.8141391878663-0.691598355945505
5818.918.89223534319241.3810359551770217.5267287016306-0.0077646568075771
5918.919.13606675505091.424615029554317.23931821539480.236066755050871
6018.919.3767539036811.4747702111769316.94847588514210.476753903680983



Parameters (Session):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par5 = 1 ; par7 = 1 ; par8 = FALSE ;
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')