Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationSat, 26 Dec 2015 16:34:46 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2015/Dec/26/t1451147732ig0518y525bej1p.htm/, Retrieved Fri, 01 Nov 2024 01:04:18 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=287116, Retrieved Fri, 01 Nov 2024 01:04:18 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact189
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [Decompositie fail...] [2015-12-26 16:34:46] [76c30f62b7052b57088120e90a652e05] [Current]
Feedback Forum

Post a new message
Dataseries X:
790
766
1040
949
758
1023
921
775
907
835
871
836
789
811
996
778
603
990
735
800
706
766
870
647
726
784
884
696
893
674
703
799
793
799
1022
758
1021
944
915
864
1022
891
1087
822
890
1092
967
833
1104
1063
1103
1039
1185
1047
1155
878
879
1133
920
943
938
900
781
1040
792
653
866
679
799
760
699
762




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Gertrude Mary Cox' @ cox.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=287116&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gertrude Mary Cox' @ cox.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=287116&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=287116&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
1790NANA32.0653NA
2766NANA18.1236NA
31040NANA55.2236NA
4949NANA4.34861NA
5758NANA22.0069NA
61023NANA-23.9431NA
7921903.815872.54231.273617.1847
8775797.899874.375-76.4764-22.8986
9907819.182874.417-55.234787.8181
10835901.624865.45836.1653-66.6236
11871891.999851.87540.1236-20.9986
12836760.365844.042-83.676475.6347
13789866.982834.91732.0653-77.9819
14811846.332828.20818.1236-35.3319
15996876.099820.87555.2236119.901
16778813.974809.6254.34861-35.9736
17603828.715806.70822.0069-225.715
18990774.849798.792-23.9431215.151
19735819.565788.29231.2736-84.5653
20800708.065784.542-76.476491.9347
21706723.515778.75-55.2347-17.5153
22766806.832770.66736.1653-40.8319
23870819.457779.33340.123650.5431
24647694.574778.25-83.6764-47.5736
25726795.815763.7532.0653-69.8153
26784780.499762.37518.12363.50139
27884821.182765.95855.223662.8181
28696775.307770.9584.34861-79.3069
29893800.674778.66722.006992.3264
30674765.682789.625-23.9431-91.6819
31703837.815806.54231.2736-134.815
32799749.024825.5-76.476449.9764
33793778.224833.458-55.234714.7764
34799877.915841.7536.1653-78.9153
351022894.249854.12540.1236127.751
36758784.865868.542-83.6764-26.8653
371021925.649893.58332.065395.3514
38944928.665910.54218.123615.3347
39915970.765915.54255.2236-55.7653
40864936.14931.7924.34861-72.1403
411022963.715941.70822.006958.2847
42891918.599942.542-23.9431-27.5986
431087980.399949.12531.2736106.601
44822881.065957.542-76.4764-59.0653
45890915.099970.333-55.2347-25.0986
4610921021.62985.45836.165370.3764
479671039.67999.54240.1236-72.6653
48833929.1571012.83-83.6764-96.1569
4911041054.231022.1732.065349.7681
5010631045.461027.3318.123617.5431
5111031084.431029.2155.223618.5681
5210391034.811030.464.348614.19306
5311851052.221030.2122.0069132.785
5410471008.891032.83-23.943138.1097
5511551061.771030.531.273693.2264
56878940.3151016.79-76.4764-62.3153
57879941.349996.583-55.2347-62.3486
5811331019.37983.20836.1653113.626
599201007966.87540.1236-86.9986
60943850.407934.083-83.676492.5931
61938937.69905.62532.06530.309722
62900903.415885.29218.1236-3.41528
63781928.89873.66755.2236-147.89
641040859.14854.7924.34861180.86
65792852.049830.04222.0069-60.0486
66653789.349813.292-23.9431-136.349
67866NANA31.2736NA
68679NANA-76.4764NA
69799NANA-55.2347NA
70760NANA36.1653NA
71699NANA40.1236NA
72762NANA-83.6764NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 790 & NA & NA & 32.0653 & NA \tabularnewline
2 & 766 & NA & NA & 18.1236 & NA \tabularnewline
3 & 1040 & NA & NA & 55.2236 & NA \tabularnewline
4 & 949 & NA & NA & 4.34861 & NA \tabularnewline
5 & 758 & NA & NA & 22.0069 & NA \tabularnewline
6 & 1023 & NA & NA & -23.9431 & NA \tabularnewline
7 & 921 & 903.815 & 872.542 & 31.2736 & 17.1847 \tabularnewline
8 & 775 & 797.899 & 874.375 & -76.4764 & -22.8986 \tabularnewline
9 & 907 & 819.182 & 874.417 & -55.2347 & 87.8181 \tabularnewline
10 & 835 & 901.624 & 865.458 & 36.1653 & -66.6236 \tabularnewline
11 & 871 & 891.999 & 851.875 & 40.1236 & -20.9986 \tabularnewline
12 & 836 & 760.365 & 844.042 & -83.6764 & 75.6347 \tabularnewline
13 & 789 & 866.982 & 834.917 & 32.0653 & -77.9819 \tabularnewline
14 & 811 & 846.332 & 828.208 & 18.1236 & -35.3319 \tabularnewline
15 & 996 & 876.099 & 820.875 & 55.2236 & 119.901 \tabularnewline
16 & 778 & 813.974 & 809.625 & 4.34861 & -35.9736 \tabularnewline
17 & 603 & 828.715 & 806.708 & 22.0069 & -225.715 \tabularnewline
18 & 990 & 774.849 & 798.792 & -23.9431 & 215.151 \tabularnewline
19 & 735 & 819.565 & 788.292 & 31.2736 & -84.5653 \tabularnewline
20 & 800 & 708.065 & 784.542 & -76.4764 & 91.9347 \tabularnewline
21 & 706 & 723.515 & 778.75 & -55.2347 & -17.5153 \tabularnewline
22 & 766 & 806.832 & 770.667 & 36.1653 & -40.8319 \tabularnewline
23 & 870 & 819.457 & 779.333 & 40.1236 & 50.5431 \tabularnewline
24 & 647 & 694.574 & 778.25 & -83.6764 & -47.5736 \tabularnewline
25 & 726 & 795.815 & 763.75 & 32.0653 & -69.8153 \tabularnewline
26 & 784 & 780.499 & 762.375 & 18.1236 & 3.50139 \tabularnewline
27 & 884 & 821.182 & 765.958 & 55.2236 & 62.8181 \tabularnewline
28 & 696 & 775.307 & 770.958 & 4.34861 & -79.3069 \tabularnewline
29 & 893 & 800.674 & 778.667 & 22.0069 & 92.3264 \tabularnewline
30 & 674 & 765.682 & 789.625 & -23.9431 & -91.6819 \tabularnewline
31 & 703 & 837.815 & 806.542 & 31.2736 & -134.815 \tabularnewline
32 & 799 & 749.024 & 825.5 & -76.4764 & 49.9764 \tabularnewline
33 & 793 & 778.224 & 833.458 & -55.2347 & 14.7764 \tabularnewline
34 & 799 & 877.915 & 841.75 & 36.1653 & -78.9153 \tabularnewline
35 & 1022 & 894.249 & 854.125 & 40.1236 & 127.751 \tabularnewline
36 & 758 & 784.865 & 868.542 & -83.6764 & -26.8653 \tabularnewline
37 & 1021 & 925.649 & 893.583 & 32.0653 & 95.3514 \tabularnewline
38 & 944 & 928.665 & 910.542 & 18.1236 & 15.3347 \tabularnewline
39 & 915 & 970.765 & 915.542 & 55.2236 & -55.7653 \tabularnewline
40 & 864 & 936.14 & 931.792 & 4.34861 & -72.1403 \tabularnewline
41 & 1022 & 963.715 & 941.708 & 22.0069 & 58.2847 \tabularnewline
42 & 891 & 918.599 & 942.542 & -23.9431 & -27.5986 \tabularnewline
43 & 1087 & 980.399 & 949.125 & 31.2736 & 106.601 \tabularnewline
44 & 822 & 881.065 & 957.542 & -76.4764 & -59.0653 \tabularnewline
45 & 890 & 915.099 & 970.333 & -55.2347 & -25.0986 \tabularnewline
46 & 1092 & 1021.62 & 985.458 & 36.1653 & 70.3764 \tabularnewline
47 & 967 & 1039.67 & 999.542 & 40.1236 & -72.6653 \tabularnewline
48 & 833 & 929.157 & 1012.83 & -83.6764 & -96.1569 \tabularnewline
49 & 1104 & 1054.23 & 1022.17 & 32.0653 & 49.7681 \tabularnewline
50 & 1063 & 1045.46 & 1027.33 & 18.1236 & 17.5431 \tabularnewline
51 & 1103 & 1084.43 & 1029.21 & 55.2236 & 18.5681 \tabularnewline
52 & 1039 & 1034.81 & 1030.46 & 4.34861 & 4.19306 \tabularnewline
53 & 1185 & 1052.22 & 1030.21 & 22.0069 & 132.785 \tabularnewline
54 & 1047 & 1008.89 & 1032.83 & -23.9431 & 38.1097 \tabularnewline
55 & 1155 & 1061.77 & 1030.5 & 31.2736 & 93.2264 \tabularnewline
56 & 878 & 940.315 & 1016.79 & -76.4764 & -62.3153 \tabularnewline
57 & 879 & 941.349 & 996.583 & -55.2347 & -62.3486 \tabularnewline
58 & 1133 & 1019.37 & 983.208 & 36.1653 & 113.626 \tabularnewline
59 & 920 & 1007 & 966.875 & 40.1236 & -86.9986 \tabularnewline
60 & 943 & 850.407 & 934.083 & -83.6764 & 92.5931 \tabularnewline
61 & 938 & 937.69 & 905.625 & 32.0653 & 0.309722 \tabularnewline
62 & 900 & 903.415 & 885.292 & 18.1236 & -3.41528 \tabularnewline
63 & 781 & 928.89 & 873.667 & 55.2236 & -147.89 \tabularnewline
64 & 1040 & 859.14 & 854.792 & 4.34861 & 180.86 \tabularnewline
65 & 792 & 852.049 & 830.042 & 22.0069 & -60.0486 \tabularnewline
66 & 653 & 789.349 & 813.292 & -23.9431 & -136.349 \tabularnewline
67 & 866 & NA & NA & 31.2736 & NA \tabularnewline
68 & 679 & NA & NA & -76.4764 & NA \tabularnewline
69 & 799 & NA & NA & -55.2347 & NA \tabularnewline
70 & 760 & NA & NA & 36.1653 & NA \tabularnewline
71 & 699 & NA & NA & 40.1236 & NA \tabularnewline
72 & 762 & NA & NA & -83.6764 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=287116&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]790[/C][C]NA[/C][C]NA[/C][C]32.0653[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]766[/C][C]NA[/C][C]NA[/C][C]18.1236[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]1040[/C][C]NA[/C][C]NA[/C][C]55.2236[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]949[/C][C]NA[/C][C]NA[/C][C]4.34861[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]758[/C][C]NA[/C][C]NA[/C][C]22.0069[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]1023[/C][C]NA[/C][C]NA[/C][C]-23.9431[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]921[/C][C]903.815[/C][C]872.542[/C][C]31.2736[/C][C]17.1847[/C][/ROW]
[ROW][C]8[/C][C]775[/C][C]797.899[/C][C]874.375[/C][C]-76.4764[/C][C]-22.8986[/C][/ROW]
[ROW][C]9[/C][C]907[/C][C]819.182[/C][C]874.417[/C][C]-55.2347[/C][C]87.8181[/C][/ROW]
[ROW][C]10[/C][C]835[/C][C]901.624[/C][C]865.458[/C][C]36.1653[/C][C]-66.6236[/C][/ROW]
[ROW][C]11[/C][C]871[/C][C]891.999[/C][C]851.875[/C][C]40.1236[/C][C]-20.9986[/C][/ROW]
[ROW][C]12[/C][C]836[/C][C]760.365[/C][C]844.042[/C][C]-83.6764[/C][C]75.6347[/C][/ROW]
[ROW][C]13[/C][C]789[/C][C]866.982[/C][C]834.917[/C][C]32.0653[/C][C]-77.9819[/C][/ROW]
[ROW][C]14[/C][C]811[/C][C]846.332[/C][C]828.208[/C][C]18.1236[/C][C]-35.3319[/C][/ROW]
[ROW][C]15[/C][C]996[/C][C]876.099[/C][C]820.875[/C][C]55.2236[/C][C]119.901[/C][/ROW]
[ROW][C]16[/C][C]778[/C][C]813.974[/C][C]809.625[/C][C]4.34861[/C][C]-35.9736[/C][/ROW]
[ROW][C]17[/C][C]603[/C][C]828.715[/C][C]806.708[/C][C]22.0069[/C][C]-225.715[/C][/ROW]
[ROW][C]18[/C][C]990[/C][C]774.849[/C][C]798.792[/C][C]-23.9431[/C][C]215.151[/C][/ROW]
[ROW][C]19[/C][C]735[/C][C]819.565[/C][C]788.292[/C][C]31.2736[/C][C]-84.5653[/C][/ROW]
[ROW][C]20[/C][C]800[/C][C]708.065[/C][C]784.542[/C][C]-76.4764[/C][C]91.9347[/C][/ROW]
[ROW][C]21[/C][C]706[/C][C]723.515[/C][C]778.75[/C][C]-55.2347[/C][C]-17.5153[/C][/ROW]
[ROW][C]22[/C][C]766[/C][C]806.832[/C][C]770.667[/C][C]36.1653[/C][C]-40.8319[/C][/ROW]
[ROW][C]23[/C][C]870[/C][C]819.457[/C][C]779.333[/C][C]40.1236[/C][C]50.5431[/C][/ROW]
[ROW][C]24[/C][C]647[/C][C]694.574[/C][C]778.25[/C][C]-83.6764[/C][C]-47.5736[/C][/ROW]
[ROW][C]25[/C][C]726[/C][C]795.815[/C][C]763.75[/C][C]32.0653[/C][C]-69.8153[/C][/ROW]
[ROW][C]26[/C][C]784[/C][C]780.499[/C][C]762.375[/C][C]18.1236[/C][C]3.50139[/C][/ROW]
[ROW][C]27[/C][C]884[/C][C]821.182[/C][C]765.958[/C][C]55.2236[/C][C]62.8181[/C][/ROW]
[ROW][C]28[/C][C]696[/C][C]775.307[/C][C]770.958[/C][C]4.34861[/C][C]-79.3069[/C][/ROW]
[ROW][C]29[/C][C]893[/C][C]800.674[/C][C]778.667[/C][C]22.0069[/C][C]92.3264[/C][/ROW]
[ROW][C]30[/C][C]674[/C][C]765.682[/C][C]789.625[/C][C]-23.9431[/C][C]-91.6819[/C][/ROW]
[ROW][C]31[/C][C]703[/C][C]837.815[/C][C]806.542[/C][C]31.2736[/C][C]-134.815[/C][/ROW]
[ROW][C]32[/C][C]799[/C][C]749.024[/C][C]825.5[/C][C]-76.4764[/C][C]49.9764[/C][/ROW]
[ROW][C]33[/C][C]793[/C][C]778.224[/C][C]833.458[/C][C]-55.2347[/C][C]14.7764[/C][/ROW]
[ROW][C]34[/C][C]799[/C][C]877.915[/C][C]841.75[/C][C]36.1653[/C][C]-78.9153[/C][/ROW]
[ROW][C]35[/C][C]1022[/C][C]894.249[/C][C]854.125[/C][C]40.1236[/C][C]127.751[/C][/ROW]
[ROW][C]36[/C][C]758[/C][C]784.865[/C][C]868.542[/C][C]-83.6764[/C][C]-26.8653[/C][/ROW]
[ROW][C]37[/C][C]1021[/C][C]925.649[/C][C]893.583[/C][C]32.0653[/C][C]95.3514[/C][/ROW]
[ROW][C]38[/C][C]944[/C][C]928.665[/C][C]910.542[/C][C]18.1236[/C][C]15.3347[/C][/ROW]
[ROW][C]39[/C][C]915[/C][C]970.765[/C][C]915.542[/C][C]55.2236[/C][C]-55.7653[/C][/ROW]
[ROW][C]40[/C][C]864[/C][C]936.14[/C][C]931.792[/C][C]4.34861[/C][C]-72.1403[/C][/ROW]
[ROW][C]41[/C][C]1022[/C][C]963.715[/C][C]941.708[/C][C]22.0069[/C][C]58.2847[/C][/ROW]
[ROW][C]42[/C][C]891[/C][C]918.599[/C][C]942.542[/C][C]-23.9431[/C][C]-27.5986[/C][/ROW]
[ROW][C]43[/C][C]1087[/C][C]980.399[/C][C]949.125[/C][C]31.2736[/C][C]106.601[/C][/ROW]
[ROW][C]44[/C][C]822[/C][C]881.065[/C][C]957.542[/C][C]-76.4764[/C][C]-59.0653[/C][/ROW]
[ROW][C]45[/C][C]890[/C][C]915.099[/C][C]970.333[/C][C]-55.2347[/C][C]-25.0986[/C][/ROW]
[ROW][C]46[/C][C]1092[/C][C]1021.62[/C][C]985.458[/C][C]36.1653[/C][C]70.3764[/C][/ROW]
[ROW][C]47[/C][C]967[/C][C]1039.67[/C][C]999.542[/C][C]40.1236[/C][C]-72.6653[/C][/ROW]
[ROW][C]48[/C][C]833[/C][C]929.157[/C][C]1012.83[/C][C]-83.6764[/C][C]-96.1569[/C][/ROW]
[ROW][C]49[/C][C]1104[/C][C]1054.23[/C][C]1022.17[/C][C]32.0653[/C][C]49.7681[/C][/ROW]
[ROW][C]50[/C][C]1063[/C][C]1045.46[/C][C]1027.33[/C][C]18.1236[/C][C]17.5431[/C][/ROW]
[ROW][C]51[/C][C]1103[/C][C]1084.43[/C][C]1029.21[/C][C]55.2236[/C][C]18.5681[/C][/ROW]
[ROW][C]52[/C][C]1039[/C][C]1034.81[/C][C]1030.46[/C][C]4.34861[/C][C]4.19306[/C][/ROW]
[ROW][C]53[/C][C]1185[/C][C]1052.22[/C][C]1030.21[/C][C]22.0069[/C][C]132.785[/C][/ROW]
[ROW][C]54[/C][C]1047[/C][C]1008.89[/C][C]1032.83[/C][C]-23.9431[/C][C]38.1097[/C][/ROW]
[ROW][C]55[/C][C]1155[/C][C]1061.77[/C][C]1030.5[/C][C]31.2736[/C][C]93.2264[/C][/ROW]
[ROW][C]56[/C][C]878[/C][C]940.315[/C][C]1016.79[/C][C]-76.4764[/C][C]-62.3153[/C][/ROW]
[ROW][C]57[/C][C]879[/C][C]941.349[/C][C]996.583[/C][C]-55.2347[/C][C]-62.3486[/C][/ROW]
[ROW][C]58[/C][C]1133[/C][C]1019.37[/C][C]983.208[/C][C]36.1653[/C][C]113.626[/C][/ROW]
[ROW][C]59[/C][C]920[/C][C]1007[/C][C]966.875[/C][C]40.1236[/C][C]-86.9986[/C][/ROW]
[ROW][C]60[/C][C]943[/C][C]850.407[/C][C]934.083[/C][C]-83.6764[/C][C]92.5931[/C][/ROW]
[ROW][C]61[/C][C]938[/C][C]937.69[/C][C]905.625[/C][C]32.0653[/C][C]0.309722[/C][/ROW]
[ROW][C]62[/C][C]900[/C][C]903.415[/C][C]885.292[/C][C]18.1236[/C][C]-3.41528[/C][/ROW]
[ROW][C]63[/C][C]781[/C][C]928.89[/C][C]873.667[/C][C]55.2236[/C][C]-147.89[/C][/ROW]
[ROW][C]64[/C][C]1040[/C][C]859.14[/C][C]854.792[/C][C]4.34861[/C][C]180.86[/C][/ROW]
[ROW][C]65[/C][C]792[/C][C]852.049[/C][C]830.042[/C][C]22.0069[/C][C]-60.0486[/C][/ROW]
[ROW][C]66[/C][C]653[/C][C]789.349[/C][C]813.292[/C][C]-23.9431[/C][C]-136.349[/C][/ROW]
[ROW][C]67[/C][C]866[/C][C]NA[/C][C]NA[/C][C]31.2736[/C][C]NA[/C][/ROW]
[ROW][C]68[/C][C]679[/C][C]NA[/C][C]NA[/C][C]-76.4764[/C][C]NA[/C][/ROW]
[ROW][C]69[/C][C]799[/C][C]NA[/C][C]NA[/C][C]-55.2347[/C][C]NA[/C][/ROW]
[ROW][C]70[/C][C]760[/C][C]NA[/C][C]NA[/C][C]36.1653[/C][C]NA[/C][/ROW]
[ROW][C]71[/C][C]699[/C][C]NA[/C][C]NA[/C][C]40.1236[/C][C]NA[/C][/ROW]
[ROW][C]72[/C][C]762[/C][C]NA[/C][C]NA[/C][C]-83.6764[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=287116&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=287116&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
1790NANA32.0653NA
2766NANA18.1236NA
31040NANA55.2236NA
4949NANA4.34861NA
5758NANA22.0069NA
61023NANA-23.9431NA
7921903.815872.54231.273617.1847
8775797.899874.375-76.4764-22.8986
9907819.182874.417-55.234787.8181
10835901.624865.45836.1653-66.6236
11871891.999851.87540.1236-20.9986
12836760.365844.042-83.676475.6347
13789866.982834.91732.0653-77.9819
14811846.332828.20818.1236-35.3319
15996876.099820.87555.2236119.901
16778813.974809.6254.34861-35.9736
17603828.715806.70822.0069-225.715
18990774.849798.792-23.9431215.151
19735819.565788.29231.2736-84.5653
20800708.065784.542-76.476491.9347
21706723.515778.75-55.2347-17.5153
22766806.832770.66736.1653-40.8319
23870819.457779.33340.123650.5431
24647694.574778.25-83.6764-47.5736
25726795.815763.7532.0653-69.8153
26784780.499762.37518.12363.50139
27884821.182765.95855.223662.8181
28696775.307770.9584.34861-79.3069
29893800.674778.66722.006992.3264
30674765.682789.625-23.9431-91.6819
31703837.815806.54231.2736-134.815
32799749.024825.5-76.476449.9764
33793778.224833.458-55.234714.7764
34799877.915841.7536.1653-78.9153
351022894.249854.12540.1236127.751
36758784.865868.542-83.6764-26.8653
371021925.649893.58332.065395.3514
38944928.665910.54218.123615.3347
39915970.765915.54255.2236-55.7653
40864936.14931.7924.34861-72.1403
411022963.715941.70822.006958.2847
42891918.599942.542-23.9431-27.5986
431087980.399949.12531.2736106.601
44822881.065957.542-76.4764-59.0653
45890915.099970.333-55.2347-25.0986
4610921021.62985.45836.165370.3764
479671039.67999.54240.1236-72.6653
48833929.1571012.83-83.6764-96.1569
4911041054.231022.1732.065349.7681
5010631045.461027.3318.123617.5431
5111031084.431029.2155.223618.5681
5210391034.811030.464.348614.19306
5311851052.221030.2122.0069132.785
5410471008.891032.83-23.943138.1097
5511551061.771030.531.273693.2264
56878940.3151016.79-76.4764-62.3153
57879941.349996.583-55.2347-62.3486
5811331019.37983.20836.1653113.626
599201007966.87540.1236-86.9986
60943850.407934.083-83.676492.5931
61938937.69905.62532.06530.309722
62900903.415885.29218.1236-3.41528
63781928.89873.66755.2236-147.89
641040859.14854.7924.34861180.86
65792852.049830.04222.0069-60.0486
66653789.349813.292-23.9431-136.349
67866NANA31.2736NA
68679NANA-76.4764NA
69799NANA-55.2347NA
70760NANA36.1653NA
71699NANA40.1236NA
72762NANA-83.6764NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')