Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationMon, 12 Dec 2016 19:48:02 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/12/t1481568493y4ltooywwe68co2.htm/, Retrieved Fri, 01 Nov 2024 05:23:39 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298967, Retrieved Fri, 01 Nov 2024 05:23:39 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact109
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [classical decompo...] [2016-12-12 18:48:02] [130d73899007e5ff8a4f636b9bcfb397] [Current]
Feedback Forum

Post a new message
Dataseries X:
4080
2980
2720
3400
2880
3080
2820
4440
4260
4360
4160
4980
3900
3000
2760
2920
2980
3500
3260
4040
4760
4740
4700
3480
3020
3180
3000
2600
2400
3120
2900
3460
3980
4480
4020
4340
3100
2720
3400
2940
2780
3040
2880
4980
4140
4480
4240
3400
3500
2720
3060
2920
2780
3540
2780
4380
3460
4200
3160
3000
2920
2380
2500
2440
2840
2700
2760
3260
3700
4640
4100
3120
2680
2920
2980
2660
2420
3120
3180
3380
3540
4200
3860
3100
3160
2860
2460
2360
2560
3060
2840
3800
3420
3660
3120
2800
3220
2900
2680
2400
2320
2680
2600
3440
3560
3520
4160
2980




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298967&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298967&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298967&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
14080NANA-134.887NA
22980NANA-481.033NA
32720NANA-452.179NA
43400NANA-644.158NA
52880NANA-659.783NA
63080NANA-189.366NA
728203250.323672.5-422.179-430.321
844404288.553665.83622.717151.45
942604231.683668.33563.34228.3247
1043604656.2636501006.26-296.259
1141604223.553634.17589.384-63.5503
1249803857.723655.83201.8841122.28
1339003556.783691.67-134.887343.22
1430003212.33693.33-481.033-212.3
1527603245.323697.5-452.179-485.321
1629203090.013734.17-644.158-170.009
1729803112.723772.5-659.783-132.717
1835003543.133732.5-189.366-43.1337
1932603211.153633.33-422.17948.8455
2040404226.883604.17622.717-186.884
2147604185.013621.67563.342574.991
2247404624.593618.331006.26115.408
2347004170.223580.83589.384529.783
2434803742.723540.83201.884-262.717
2530203375.113510-134.887-355.113
2631802989.83470.83-481.033190.2
2730002961.993414.17-452.17938.0122
2826002726.683370.83-644.158-126.675
2924002671.883331.67-659.783-271.884
3031203149.83339.17-189.366-29.8003
3129002956.153378.33-422.179-56.1545
3234603985.223362.5622.717-525.217
3339803923.343360563.34256.658
3444804397.093390.831006.2682.908
3540204010.223420.83589.3849.78299
3643403635.223433.33201.884704.783
3731003294.283429.17-134.887-194.28
3827203010.633491.67-481.033-290.634
3934003109.493561.67-452.179290.512
4029402924.183568.33-644.15815.8247
4127802917.723577.5-659.783-137.717
4230403358.133547.5-189.366-318.134
4328803102.823525-422.179-222.821
4449804164.383541.67622.717815.616
4541404090.843527.5563.34249.158
4644804518.763512.51006.26-38.7587
4742404101.053511.67589.384138.95
4834003734.383532.5201.884-334.384
4935003414.283549.17-134.88785.7205
5027203038.973520-481.033-318.967
5130603014.493466.67-452.17945.5122
5229202782.513426.67-644.158137.491
5327802710.223370-659.78369.783
5435403118.973308.33-189.366421.033
5527802845.323267.5-422.179-65.3212
5643803851.883229.17622.717528.116
5734603755.013191.67563.342-295.009
5842004154.593148.331006.2645.408
5931603720.223130.83589.384-560.217
6030003300.223098.33201.884-300.217
6129202927.613062.5-134.887-7.61285
6223802533.973015-481.033-153.967
6325002526.152978.33-452.179-26.1545
6424402362.513006.67-644.15877.4913
6528402404.383064.17-659.783435.616
6627002918.973108.33-189.366-218.967
6727602681.153103.33-422.17978.8455
6832603738.553115.83622.717-478.55
6937003721.683158.33563.342-21.6753
7046404193.763187.51006.26446.241
7141003768.553179.17589.384331.45
7231203381.053179.17201.884-261.05
7326803079.283214.17-134.887-399.28
7429202755.633236.67-481.033164.366
7529802782.823235-452.179197.179
7626602565.843210-644.15894.158
7724202521.883181.67-659.783-101.884
7831202981.473170.83-189.366138.533
7931802767.823190-422.179412.179
8033803830.223207.5622.717-450.217
8135403746.683183.33563.342-206.675
8242004155.433149.171006.2644.5747
8338603731.883142.5589.384128.116
8431003347.723145.83201.884-247.717
8531602994.283129.17-134.887165.72
8628602651.473132.5-481.033208.533
8724602692.823145-452.179-232.821
8823602473.343117.5-644.158-113.342
8925602404.383064.17-659.783155.616
9030602831.473020.83-189.366228.533
9128402588.653010.83-422.179251.345
9238003637.723015622.717162.283
9334203589.183025.83563.342-169.175
9436604042.933036.671006.26-382.925
9531203617.723028.33589.384-497.717
9628003204.383002.5201.884-404.384
9732202841.782976.67-134.887378.22
9829002470.632951.67-481.033429.366
9926802490.322942.5-452.179189.679
10024002298.342942.5-644.158101.658
10123202320.222980-659.783-0.217014
10226802841.473030.83-189.366-161.467
1032600NANA-422.179NA
1043440NANA622.717NA
1053560NANA563.342NA
1063520NANA1006.26NA
1074160NANA589.384NA
1082980NANA201.884NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 4080 & NA & NA & -134.887 & NA \tabularnewline
2 & 2980 & NA & NA & -481.033 & NA \tabularnewline
3 & 2720 & NA & NA & -452.179 & NA \tabularnewline
4 & 3400 & NA & NA & -644.158 & NA \tabularnewline
5 & 2880 & NA & NA & -659.783 & NA \tabularnewline
6 & 3080 & NA & NA & -189.366 & NA \tabularnewline
7 & 2820 & 3250.32 & 3672.5 & -422.179 & -430.321 \tabularnewline
8 & 4440 & 4288.55 & 3665.83 & 622.717 & 151.45 \tabularnewline
9 & 4260 & 4231.68 & 3668.33 & 563.342 & 28.3247 \tabularnewline
10 & 4360 & 4656.26 & 3650 & 1006.26 & -296.259 \tabularnewline
11 & 4160 & 4223.55 & 3634.17 & 589.384 & -63.5503 \tabularnewline
12 & 4980 & 3857.72 & 3655.83 & 201.884 & 1122.28 \tabularnewline
13 & 3900 & 3556.78 & 3691.67 & -134.887 & 343.22 \tabularnewline
14 & 3000 & 3212.3 & 3693.33 & -481.033 & -212.3 \tabularnewline
15 & 2760 & 3245.32 & 3697.5 & -452.179 & -485.321 \tabularnewline
16 & 2920 & 3090.01 & 3734.17 & -644.158 & -170.009 \tabularnewline
17 & 2980 & 3112.72 & 3772.5 & -659.783 & -132.717 \tabularnewline
18 & 3500 & 3543.13 & 3732.5 & -189.366 & -43.1337 \tabularnewline
19 & 3260 & 3211.15 & 3633.33 & -422.179 & 48.8455 \tabularnewline
20 & 4040 & 4226.88 & 3604.17 & 622.717 & -186.884 \tabularnewline
21 & 4760 & 4185.01 & 3621.67 & 563.342 & 574.991 \tabularnewline
22 & 4740 & 4624.59 & 3618.33 & 1006.26 & 115.408 \tabularnewline
23 & 4700 & 4170.22 & 3580.83 & 589.384 & 529.783 \tabularnewline
24 & 3480 & 3742.72 & 3540.83 & 201.884 & -262.717 \tabularnewline
25 & 3020 & 3375.11 & 3510 & -134.887 & -355.113 \tabularnewline
26 & 3180 & 2989.8 & 3470.83 & -481.033 & 190.2 \tabularnewline
27 & 3000 & 2961.99 & 3414.17 & -452.179 & 38.0122 \tabularnewline
28 & 2600 & 2726.68 & 3370.83 & -644.158 & -126.675 \tabularnewline
29 & 2400 & 2671.88 & 3331.67 & -659.783 & -271.884 \tabularnewline
30 & 3120 & 3149.8 & 3339.17 & -189.366 & -29.8003 \tabularnewline
31 & 2900 & 2956.15 & 3378.33 & -422.179 & -56.1545 \tabularnewline
32 & 3460 & 3985.22 & 3362.5 & 622.717 & -525.217 \tabularnewline
33 & 3980 & 3923.34 & 3360 & 563.342 & 56.658 \tabularnewline
34 & 4480 & 4397.09 & 3390.83 & 1006.26 & 82.908 \tabularnewline
35 & 4020 & 4010.22 & 3420.83 & 589.384 & 9.78299 \tabularnewline
36 & 4340 & 3635.22 & 3433.33 & 201.884 & 704.783 \tabularnewline
37 & 3100 & 3294.28 & 3429.17 & -134.887 & -194.28 \tabularnewline
38 & 2720 & 3010.63 & 3491.67 & -481.033 & -290.634 \tabularnewline
39 & 3400 & 3109.49 & 3561.67 & -452.179 & 290.512 \tabularnewline
40 & 2940 & 2924.18 & 3568.33 & -644.158 & 15.8247 \tabularnewline
41 & 2780 & 2917.72 & 3577.5 & -659.783 & -137.717 \tabularnewline
42 & 3040 & 3358.13 & 3547.5 & -189.366 & -318.134 \tabularnewline
43 & 2880 & 3102.82 & 3525 & -422.179 & -222.821 \tabularnewline
44 & 4980 & 4164.38 & 3541.67 & 622.717 & 815.616 \tabularnewline
45 & 4140 & 4090.84 & 3527.5 & 563.342 & 49.158 \tabularnewline
46 & 4480 & 4518.76 & 3512.5 & 1006.26 & -38.7587 \tabularnewline
47 & 4240 & 4101.05 & 3511.67 & 589.384 & 138.95 \tabularnewline
48 & 3400 & 3734.38 & 3532.5 & 201.884 & -334.384 \tabularnewline
49 & 3500 & 3414.28 & 3549.17 & -134.887 & 85.7205 \tabularnewline
50 & 2720 & 3038.97 & 3520 & -481.033 & -318.967 \tabularnewline
51 & 3060 & 3014.49 & 3466.67 & -452.179 & 45.5122 \tabularnewline
52 & 2920 & 2782.51 & 3426.67 & -644.158 & 137.491 \tabularnewline
53 & 2780 & 2710.22 & 3370 & -659.783 & 69.783 \tabularnewline
54 & 3540 & 3118.97 & 3308.33 & -189.366 & 421.033 \tabularnewline
55 & 2780 & 2845.32 & 3267.5 & -422.179 & -65.3212 \tabularnewline
56 & 4380 & 3851.88 & 3229.17 & 622.717 & 528.116 \tabularnewline
57 & 3460 & 3755.01 & 3191.67 & 563.342 & -295.009 \tabularnewline
58 & 4200 & 4154.59 & 3148.33 & 1006.26 & 45.408 \tabularnewline
59 & 3160 & 3720.22 & 3130.83 & 589.384 & -560.217 \tabularnewline
60 & 3000 & 3300.22 & 3098.33 & 201.884 & -300.217 \tabularnewline
61 & 2920 & 2927.61 & 3062.5 & -134.887 & -7.61285 \tabularnewline
62 & 2380 & 2533.97 & 3015 & -481.033 & -153.967 \tabularnewline
63 & 2500 & 2526.15 & 2978.33 & -452.179 & -26.1545 \tabularnewline
64 & 2440 & 2362.51 & 3006.67 & -644.158 & 77.4913 \tabularnewline
65 & 2840 & 2404.38 & 3064.17 & -659.783 & 435.616 \tabularnewline
66 & 2700 & 2918.97 & 3108.33 & -189.366 & -218.967 \tabularnewline
67 & 2760 & 2681.15 & 3103.33 & -422.179 & 78.8455 \tabularnewline
68 & 3260 & 3738.55 & 3115.83 & 622.717 & -478.55 \tabularnewline
69 & 3700 & 3721.68 & 3158.33 & 563.342 & -21.6753 \tabularnewline
70 & 4640 & 4193.76 & 3187.5 & 1006.26 & 446.241 \tabularnewline
71 & 4100 & 3768.55 & 3179.17 & 589.384 & 331.45 \tabularnewline
72 & 3120 & 3381.05 & 3179.17 & 201.884 & -261.05 \tabularnewline
73 & 2680 & 3079.28 & 3214.17 & -134.887 & -399.28 \tabularnewline
74 & 2920 & 2755.63 & 3236.67 & -481.033 & 164.366 \tabularnewline
75 & 2980 & 2782.82 & 3235 & -452.179 & 197.179 \tabularnewline
76 & 2660 & 2565.84 & 3210 & -644.158 & 94.158 \tabularnewline
77 & 2420 & 2521.88 & 3181.67 & -659.783 & -101.884 \tabularnewline
78 & 3120 & 2981.47 & 3170.83 & -189.366 & 138.533 \tabularnewline
79 & 3180 & 2767.82 & 3190 & -422.179 & 412.179 \tabularnewline
80 & 3380 & 3830.22 & 3207.5 & 622.717 & -450.217 \tabularnewline
81 & 3540 & 3746.68 & 3183.33 & 563.342 & -206.675 \tabularnewline
82 & 4200 & 4155.43 & 3149.17 & 1006.26 & 44.5747 \tabularnewline
83 & 3860 & 3731.88 & 3142.5 & 589.384 & 128.116 \tabularnewline
84 & 3100 & 3347.72 & 3145.83 & 201.884 & -247.717 \tabularnewline
85 & 3160 & 2994.28 & 3129.17 & -134.887 & 165.72 \tabularnewline
86 & 2860 & 2651.47 & 3132.5 & -481.033 & 208.533 \tabularnewline
87 & 2460 & 2692.82 & 3145 & -452.179 & -232.821 \tabularnewline
88 & 2360 & 2473.34 & 3117.5 & -644.158 & -113.342 \tabularnewline
89 & 2560 & 2404.38 & 3064.17 & -659.783 & 155.616 \tabularnewline
90 & 3060 & 2831.47 & 3020.83 & -189.366 & 228.533 \tabularnewline
91 & 2840 & 2588.65 & 3010.83 & -422.179 & 251.345 \tabularnewline
92 & 3800 & 3637.72 & 3015 & 622.717 & 162.283 \tabularnewline
93 & 3420 & 3589.18 & 3025.83 & 563.342 & -169.175 \tabularnewline
94 & 3660 & 4042.93 & 3036.67 & 1006.26 & -382.925 \tabularnewline
95 & 3120 & 3617.72 & 3028.33 & 589.384 & -497.717 \tabularnewline
96 & 2800 & 3204.38 & 3002.5 & 201.884 & -404.384 \tabularnewline
97 & 3220 & 2841.78 & 2976.67 & -134.887 & 378.22 \tabularnewline
98 & 2900 & 2470.63 & 2951.67 & -481.033 & 429.366 \tabularnewline
99 & 2680 & 2490.32 & 2942.5 & -452.179 & 189.679 \tabularnewline
100 & 2400 & 2298.34 & 2942.5 & -644.158 & 101.658 \tabularnewline
101 & 2320 & 2320.22 & 2980 & -659.783 & -0.217014 \tabularnewline
102 & 2680 & 2841.47 & 3030.83 & -189.366 & -161.467 \tabularnewline
103 & 2600 & NA & NA & -422.179 & NA \tabularnewline
104 & 3440 & NA & NA & 622.717 & NA \tabularnewline
105 & 3560 & NA & NA & 563.342 & NA \tabularnewline
106 & 3520 & NA & NA & 1006.26 & NA \tabularnewline
107 & 4160 & NA & NA & 589.384 & NA \tabularnewline
108 & 2980 & NA & NA & 201.884 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298967&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]4080[/C][C]NA[/C][C]NA[/C][C]-134.887[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]2980[/C][C]NA[/C][C]NA[/C][C]-481.033[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]2720[/C][C]NA[/C][C]NA[/C][C]-452.179[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]3400[/C][C]NA[/C][C]NA[/C][C]-644.158[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]2880[/C][C]NA[/C][C]NA[/C][C]-659.783[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]3080[/C][C]NA[/C][C]NA[/C][C]-189.366[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]2820[/C][C]3250.32[/C][C]3672.5[/C][C]-422.179[/C][C]-430.321[/C][/ROW]
[ROW][C]8[/C][C]4440[/C][C]4288.55[/C][C]3665.83[/C][C]622.717[/C][C]151.45[/C][/ROW]
[ROW][C]9[/C][C]4260[/C][C]4231.68[/C][C]3668.33[/C][C]563.342[/C][C]28.3247[/C][/ROW]
[ROW][C]10[/C][C]4360[/C][C]4656.26[/C][C]3650[/C][C]1006.26[/C][C]-296.259[/C][/ROW]
[ROW][C]11[/C][C]4160[/C][C]4223.55[/C][C]3634.17[/C][C]589.384[/C][C]-63.5503[/C][/ROW]
[ROW][C]12[/C][C]4980[/C][C]3857.72[/C][C]3655.83[/C][C]201.884[/C][C]1122.28[/C][/ROW]
[ROW][C]13[/C][C]3900[/C][C]3556.78[/C][C]3691.67[/C][C]-134.887[/C][C]343.22[/C][/ROW]
[ROW][C]14[/C][C]3000[/C][C]3212.3[/C][C]3693.33[/C][C]-481.033[/C][C]-212.3[/C][/ROW]
[ROW][C]15[/C][C]2760[/C][C]3245.32[/C][C]3697.5[/C][C]-452.179[/C][C]-485.321[/C][/ROW]
[ROW][C]16[/C][C]2920[/C][C]3090.01[/C][C]3734.17[/C][C]-644.158[/C][C]-170.009[/C][/ROW]
[ROW][C]17[/C][C]2980[/C][C]3112.72[/C][C]3772.5[/C][C]-659.783[/C][C]-132.717[/C][/ROW]
[ROW][C]18[/C][C]3500[/C][C]3543.13[/C][C]3732.5[/C][C]-189.366[/C][C]-43.1337[/C][/ROW]
[ROW][C]19[/C][C]3260[/C][C]3211.15[/C][C]3633.33[/C][C]-422.179[/C][C]48.8455[/C][/ROW]
[ROW][C]20[/C][C]4040[/C][C]4226.88[/C][C]3604.17[/C][C]622.717[/C][C]-186.884[/C][/ROW]
[ROW][C]21[/C][C]4760[/C][C]4185.01[/C][C]3621.67[/C][C]563.342[/C][C]574.991[/C][/ROW]
[ROW][C]22[/C][C]4740[/C][C]4624.59[/C][C]3618.33[/C][C]1006.26[/C][C]115.408[/C][/ROW]
[ROW][C]23[/C][C]4700[/C][C]4170.22[/C][C]3580.83[/C][C]589.384[/C][C]529.783[/C][/ROW]
[ROW][C]24[/C][C]3480[/C][C]3742.72[/C][C]3540.83[/C][C]201.884[/C][C]-262.717[/C][/ROW]
[ROW][C]25[/C][C]3020[/C][C]3375.11[/C][C]3510[/C][C]-134.887[/C][C]-355.113[/C][/ROW]
[ROW][C]26[/C][C]3180[/C][C]2989.8[/C][C]3470.83[/C][C]-481.033[/C][C]190.2[/C][/ROW]
[ROW][C]27[/C][C]3000[/C][C]2961.99[/C][C]3414.17[/C][C]-452.179[/C][C]38.0122[/C][/ROW]
[ROW][C]28[/C][C]2600[/C][C]2726.68[/C][C]3370.83[/C][C]-644.158[/C][C]-126.675[/C][/ROW]
[ROW][C]29[/C][C]2400[/C][C]2671.88[/C][C]3331.67[/C][C]-659.783[/C][C]-271.884[/C][/ROW]
[ROW][C]30[/C][C]3120[/C][C]3149.8[/C][C]3339.17[/C][C]-189.366[/C][C]-29.8003[/C][/ROW]
[ROW][C]31[/C][C]2900[/C][C]2956.15[/C][C]3378.33[/C][C]-422.179[/C][C]-56.1545[/C][/ROW]
[ROW][C]32[/C][C]3460[/C][C]3985.22[/C][C]3362.5[/C][C]622.717[/C][C]-525.217[/C][/ROW]
[ROW][C]33[/C][C]3980[/C][C]3923.34[/C][C]3360[/C][C]563.342[/C][C]56.658[/C][/ROW]
[ROW][C]34[/C][C]4480[/C][C]4397.09[/C][C]3390.83[/C][C]1006.26[/C][C]82.908[/C][/ROW]
[ROW][C]35[/C][C]4020[/C][C]4010.22[/C][C]3420.83[/C][C]589.384[/C][C]9.78299[/C][/ROW]
[ROW][C]36[/C][C]4340[/C][C]3635.22[/C][C]3433.33[/C][C]201.884[/C][C]704.783[/C][/ROW]
[ROW][C]37[/C][C]3100[/C][C]3294.28[/C][C]3429.17[/C][C]-134.887[/C][C]-194.28[/C][/ROW]
[ROW][C]38[/C][C]2720[/C][C]3010.63[/C][C]3491.67[/C][C]-481.033[/C][C]-290.634[/C][/ROW]
[ROW][C]39[/C][C]3400[/C][C]3109.49[/C][C]3561.67[/C][C]-452.179[/C][C]290.512[/C][/ROW]
[ROW][C]40[/C][C]2940[/C][C]2924.18[/C][C]3568.33[/C][C]-644.158[/C][C]15.8247[/C][/ROW]
[ROW][C]41[/C][C]2780[/C][C]2917.72[/C][C]3577.5[/C][C]-659.783[/C][C]-137.717[/C][/ROW]
[ROW][C]42[/C][C]3040[/C][C]3358.13[/C][C]3547.5[/C][C]-189.366[/C][C]-318.134[/C][/ROW]
[ROW][C]43[/C][C]2880[/C][C]3102.82[/C][C]3525[/C][C]-422.179[/C][C]-222.821[/C][/ROW]
[ROW][C]44[/C][C]4980[/C][C]4164.38[/C][C]3541.67[/C][C]622.717[/C][C]815.616[/C][/ROW]
[ROW][C]45[/C][C]4140[/C][C]4090.84[/C][C]3527.5[/C][C]563.342[/C][C]49.158[/C][/ROW]
[ROW][C]46[/C][C]4480[/C][C]4518.76[/C][C]3512.5[/C][C]1006.26[/C][C]-38.7587[/C][/ROW]
[ROW][C]47[/C][C]4240[/C][C]4101.05[/C][C]3511.67[/C][C]589.384[/C][C]138.95[/C][/ROW]
[ROW][C]48[/C][C]3400[/C][C]3734.38[/C][C]3532.5[/C][C]201.884[/C][C]-334.384[/C][/ROW]
[ROW][C]49[/C][C]3500[/C][C]3414.28[/C][C]3549.17[/C][C]-134.887[/C][C]85.7205[/C][/ROW]
[ROW][C]50[/C][C]2720[/C][C]3038.97[/C][C]3520[/C][C]-481.033[/C][C]-318.967[/C][/ROW]
[ROW][C]51[/C][C]3060[/C][C]3014.49[/C][C]3466.67[/C][C]-452.179[/C][C]45.5122[/C][/ROW]
[ROW][C]52[/C][C]2920[/C][C]2782.51[/C][C]3426.67[/C][C]-644.158[/C][C]137.491[/C][/ROW]
[ROW][C]53[/C][C]2780[/C][C]2710.22[/C][C]3370[/C][C]-659.783[/C][C]69.783[/C][/ROW]
[ROW][C]54[/C][C]3540[/C][C]3118.97[/C][C]3308.33[/C][C]-189.366[/C][C]421.033[/C][/ROW]
[ROW][C]55[/C][C]2780[/C][C]2845.32[/C][C]3267.5[/C][C]-422.179[/C][C]-65.3212[/C][/ROW]
[ROW][C]56[/C][C]4380[/C][C]3851.88[/C][C]3229.17[/C][C]622.717[/C][C]528.116[/C][/ROW]
[ROW][C]57[/C][C]3460[/C][C]3755.01[/C][C]3191.67[/C][C]563.342[/C][C]-295.009[/C][/ROW]
[ROW][C]58[/C][C]4200[/C][C]4154.59[/C][C]3148.33[/C][C]1006.26[/C][C]45.408[/C][/ROW]
[ROW][C]59[/C][C]3160[/C][C]3720.22[/C][C]3130.83[/C][C]589.384[/C][C]-560.217[/C][/ROW]
[ROW][C]60[/C][C]3000[/C][C]3300.22[/C][C]3098.33[/C][C]201.884[/C][C]-300.217[/C][/ROW]
[ROW][C]61[/C][C]2920[/C][C]2927.61[/C][C]3062.5[/C][C]-134.887[/C][C]-7.61285[/C][/ROW]
[ROW][C]62[/C][C]2380[/C][C]2533.97[/C][C]3015[/C][C]-481.033[/C][C]-153.967[/C][/ROW]
[ROW][C]63[/C][C]2500[/C][C]2526.15[/C][C]2978.33[/C][C]-452.179[/C][C]-26.1545[/C][/ROW]
[ROW][C]64[/C][C]2440[/C][C]2362.51[/C][C]3006.67[/C][C]-644.158[/C][C]77.4913[/C][/ROW]
[ROW][C]65[/C][C]2840[/C][C]2404.38[/C][C]3064.17[/C][C]-659.783[/C][C]435.616[/C][/ROW]
[ROW][C]66[/C][C]2700[/C][C]2918.97[/C][C]3108.33[/C][C]-189.366[/C][C]-218.967[/C][/ROW]
[ROW][C]67[/C][C]2760[/C][C]2681.15[/C][C]3103.33[/C][C]-422.179[/C][C]78.8455[/C][/ROW]
[ROW][C]68[/C][C]3260[/C][C]3738.55[/C][C]3115.83[/C][C]622.717[/C][C]-478.55[/C][/ROW]
[ROW][C]69[/C][C]3700[/C][C]3721.68[/C][C]3158.33[/C][C]563.342[/C][C]-21.6753[/C][/ROW]
[ROW][C]70[/C][C]4640[/C][C]4193.76[/C][C]3187.5[/C][C]1006.26[/C][C]446.241[/C][/ROW]
[ROW][C]71[/C][C]4100[/C][C]3768.55[/C][C]3179.17[/C][C]589.384[/C][C]331.45[/C][/ROW]
[ROW][C]72[/C][C]3120[/C][C]3381.05[/C][C]3179.17[/C][C]201.884[/C][C]-261.05[/C][/ROW]
[ROW][C]73[/C][C]2680[/C][C]3079.28[/C][C]3214.17[/C][C]-134.887[/C][C]-399.28[/C][/ROW]
[ROW][C]74[/C][C]2920[/C][C]2755.63[/C][C]3236.67[/C][C]-481.033[/C][C]164.366[/C][/ROW]
[ROW][C]75[/C][C]2980[/C][C]2782.82[/C][C]3235[/C][C]-452.179[/C][C]197.179[/C][/ROW]
[ROW][C]76[/C][C]2660[/C][C]2565.84[/C][C]3210[/C][C]-644.158[/C][C]94.158[/C][/ROW]
[ROW][C]77[/C][C]2420[/C][C]2521.88[/C][C]3181.67[/C][C]-659.783[/C][C]-101.884[/C][/ROW]
[ROW][C]78[/C][C]3120[/C][C]2981.47[/C][C]3170.83[/C][C]-189.366[/C][C]138.533[/C][/ROW]
[ROW][C]79[/C][C]3180[/C][C]2767.82[/C][C]3190[/C][C]-422.179[/C][C]412.179[/C][/ROW]
[ROW][C]80[/C][C]3380[/C][C]3830.22[/C][C]3207.5[/C][C]622.717[/C][C]-450.217[/C][/ROW]
[ROW][C]81[/C][C]3540[/C][C]3746.68[/C][C]3183.33[/C][C]563.342[/C][C]-206.675[/C][/ROW]
[ROW][C]82[/C][C]4200[/C][C]4155.43[/C][C]3149.17[/C][C]1006.26[/C][C]44.5747[/C][/ROW]
[ROW][C]83[/C][C]3860[/C][C]3731.88[/C][C]3142.5[/C][C]589.384[/C][C]128.116[/C][/ROW]
[ROW][C]84[/C][C]3100[/C][C]3347.72[/C][C]3145.83[/C][C]201.884[/C][C]-247.717[/C][/ROW]
[ROW][C]85[/C][C]3160[/C][C]2994.28[/C][C]3129.17[/C][C]-134.887[/C][C]165.72[/C][/ROW]
[ROW][C]86[/C][C]2860[/C][C]2651.47[/C][C]3132.5[/C][C]-481.033[/C][C]208.533[/C][/ROW]
[ROW][C]87[/C][C]2460[/C][C]2692.82[/C][C]3145[/C][C]-452.179[/C][C]-232.821[/C][/ROW]
[ROW][C]88[/C][C]2360[/C][C]2473.34[/C][C]3117.5[/C][C]-644.158[/C][C]-113.342[/C][/ROW]
[ROW][C]89[/C][C]2560[/C][C]2404.38[/C][C]3064.17[/C][C]-659.783[/C][C]155.616[/C][/ROW]
[ROW][C]90[/C][C]3060[/C][C]2831.47[/C][C]3020.83[/C][C]-189.366[/C][C]228.533[/C][/ROW]
[ROW][C]91[/C][C]2840[/C][C]2588.65[/C][C]3010.83[/C][C]-422.179[/C][C]251.345[/C][/ROW]
[ROW][C]92[/C][C]3800[/C][C]3637.72[/C][C]3015[/C][C]622.717[/C][C]162.283[/C][/ROW]
[ROW][C]93[/C][C]3420[/C][C]3589.18[/C][C]3025.83[/C][C]563.342[/C][C]-169.175[/C][/ROW]
[ROW][C]94[/C][C]3660[/C][C]4042.93[/C][C]3036.67[/C][C]1006.26[/C][C]-382.925[/C][/ROW]
[ROW][C]95[/C][C]3120[/C][C]3617.72[/C][C]3028.33[/C][C]589.384[/C][C]-497.717[/C][/ROW]
[ROW][C]96[/C][C]2800[/C][C]3204.38[/C][C]3002.5[/C][C]201.884[/C][C]-404.384[/C][/ROW]
[ROW][C]97[/C][C]3220[/C][C]2841.78[/C][C]2976.67[/C][C]-134.887[/C][C]378.22[/C][/ROW]
[ROW][C]98[/C][C]2900[/C][C]2470.63[/C][C]2951.67[/C][C]-481.033[/C][C]429.366[/C][/ROW]
[ROW][C]99[/C][C]2680[/C][C]2490.32[/C][C]2942.5[/C][C]-452.179[/C][C]189.679[/C][/ROW]
[ROW][C]100[/C][C]2400[/C][C]2298.34[/C][C]2942.5[/C][C]-644.158[/C][C]101.658[/C][/ROW]
[ROW][C]101[/C][C]2320[/C][C]2320.22[/C][C]2980[/C][C]-659.783[/C][C]-0.217014[/C][/ROW]
[ROW][C]102[/C][C]2680[/C][C]2841.47[/C][C]3030.83[/C][C]-189.366[/C][C]-161.467[/C][/ROW]
[ROW][C]103[/C][C]2600[/C][C]NA[/C][C]NA[/C][C]-422.179[/C][C]NA[/C][/ROW]
[ROW][C]104[/C][C]3440[/C][C]NA[/C][C]NA[/C][C]622.717[/C][C]NA[/C][/ROW]
[ROW][C]105[/C][C]3560[/C][C]NA[/C][C]NA[/C][C]563.342[/C][C]NA[/C][/ROW]
[ROW][C]106[/C][C]3520[/C][C]NA[/C][C]NA[/C][C]1006.26[/C][C]NA[/C][/ROW]
[ROW][C]107[/C][C]4160[/C][C]NA[/C][C]NA[/C][C]589.384[/C][C]NA[/C][/ROW]
[ROW][C]108[/C][C]2980[/C][C]NA[/C][C]NA[/C][C]201.884[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298967&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298967&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
14080NANA-134.887NA
22980NANA-481.033NA
32720NANA-452.179NA
43400NANA-644.158NA
52880NANA-659.783NA
63080NANA-189.366NA
728203250.323672.5-422.179-430.321
844404288.553665.83622.717151.45
942604231.683668.33563.34228.3247
1043604656.2636501006.26-296.259
1141604223.553634.17589.384-63.5503
1249803857.723655.83201.8841122.28
1339003556.783691.67-134.887343.22
1430003212.33693.33-481.033-212.3
1527603245.323697.5-452.179-485.321
1629203090.013734.17-644.158-170.009
1729803112.723772.5-659.783-132.717
1835003543.133732.5-189.366-43.1337
1932603211.153633.33-422.17948.8455
2040404226.883604.17622.717-186.884
2147604185.013621.67563.342574.991
2247404624.593618.331006.26115.408
2347004170.223580.83589.384529.783
2434803742.723540.83201.884-262.717
2530203375.113510-134.887-355.113
2631802989.83470.83-481.033190.2
2730002961.993414.17-452.17938.0122
2826002726.683370.83-644.158-126.675
2924002671.883331.67-659.783-271.884
3031203149.83339.17-189.366-29.8003
3129002956.153378.33-422.179-56.1545
3234603985.223362.5622.717-525.217
3339803923.343360563.34256.658
3444804397.093390.831006.2682.908
3540204010.223420.83589.3849.78299
3643403635.223433.33201.884704.783
3731003294.283429.17-134.887-194.28
3827203010.633491.67-481.033-290.634
3934003109.493561.67-452.179290.512
4029402924.183568.33-644.15815.8247
4127802917.723577.5-659.783-137.717
4230403358.133547.5-189.366-318.134
4328803102.823525-422.179-222.821
4449804164.383541.67622.717815.616
4541404090.843527.5563.34249.158
4644804518.763512.51006.26-38.7587
4742404101.053511.67589.384138.95
4834003734.383532.5201.884-334.384
4935003414.283549.17-134.88785.7205
5027203038.973520-481.033-318.967
5130603014.493466.67-452.17945.5122
5229202782.513426.67-644.158137.491
5327802710.223370-659.78369.783
5435403118.973308.33-189.366421.033
5527802845.323267.5-422.179-65.3212
5643803851.883229.17622.717528.116
5734603755.013191.67563.342-295.009
5842004154.593148.331006.2645.408
5931603720.223130.83589.384-560.217
6030003300.223098.33201.884-300.217
6129202927.613062.5-134.887-7.61285
6223802533.973015-481.033-153.967
6325002526.152978.33-452.179-26.1545
6424402362.513006.67-644.15877.4913
6528402404.383064.17-659.783435.616
6627002918.973108.33-189.366-218.967
6727602681.153103.33-422.17978.8455
6832603738.553115.83622.717-478.55
6937003721.683158.33563.342-21.6753
7046404193.763187.51006.26446.241
7141003768.553179.17589.384331.45
7231203381.053179.17201.884-261.05
7326803079.283214.17-134.887-399.28
7429202755.633236.67-481.033164.366
7529802782.823235-452.179197.179
7626602565.843210-644.15894.158
7724202521.883181.67-659.783-101.884
7831202981.473170.83-189.366138.533
7931802767.823190-422.179412.179
8033803830.223207.5622.717-450.217
8135403746.683183.33563.342-206.675
8242004155.433149.171006.2644.5747
8338603731.883142.5589.384128.116
8431003347.723145.83201.884-247.717
8531602994.283129.17-134.887165.72
8628602651.473132.5-481.033208.533
8724602692.823145-452.179-232.821
8823602473.343117.5-644.158-113.342
8925602404.383064.17-659.783155.616
9030602831.473020.83-189.366228.533
9128402588.653010.83-422.179251.345
9238003637.723015622.717162.283
9334203589.183025.83563.342-169.175
9436604042.933036.671006.26-382.925
9531203617.723028.33589.384-497.717
9628003204.383002.5201.884-404.384
9732202841.782976.67-134.887378.22
9829002470.632951.67-481.033429.366
9926802490.322942.5-452.179189.679
10024002298.342942.5-644.158101.658
10123202320.222980-659.783-0.217014
10226802841.473030.83-189.366-161.467
1032600NANA-422.179NA
1043440NANA622.717NA
1053560NANA563.342NA
1063520NANA1006.26NA
1074160NANA589.384NA
1082980NANA201.884NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')