Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationWed, 14 Dec 2016 14:42:44 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t14817229891c714gwu7q2kjrr.htm/, Retrieved Fri, 01 Nov 2024 05:24:49 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299430, Retrieved Fri, 01 Nov 2024 05:24:49 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact103
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2016-12-14 13:42:44] [2802fcbee976b89d2ab84425d3d65dcf] [Current]
Feedback Forum

Post a new message
Dataseries X:
5500
3860
4880
4420
4900
4230
3970
4690
4190
4960
5590
5000
6030
4690
4090
5070
5050
4520
5070
4290
4400
5080
4180
5230
5200
3800
5010
4420
4810
4690
5390
4730
4770
4690
4450
5400
5590
4360
5370
4660
4450
4980
4590
4580
4290
4840
5100
6170
5990
4950
5310




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299430&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299430&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299430&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.0532220.38010.352731
20.1008680.72030.237302
30.110060.7860.217757
4-0.281924-2.01330.024685
5-0.002498-0.01780.492919
60.0059560.04250.483118
7-0.156209-1.11560.134921
8-0.037211-0.26570.395754
9-0.061045-0.43590.332358
10-0.147975-1.05680.147802
110.0343320.24520.403651
120.3030042.16390.017591
13-0.062692-0.44770.32813
140.0363120.25930.398217
15-0.010027-0.07160.471597
16-0.099775-0.71250.23969
170.070130.50080.309324

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.053222 & 0.3801 & 0.352731 \tabularnewline
2 & 0.100868 & 0.7203 & 0.237302 \tabularnewline
3 & 0.11006 & 0.786 & 0.217757 \tabularnewline
4 & -0.281924 & -2.0133 & 0.024685 \tabularnewline
5 & -0.002498 & -0.0178 & 0.492919 \tabularnewline
6 & 0.005956 & 0.0425 & 0.483118 \tabularnewline
7 & -0.156209 & -1.1156 & 0.134921 \tabularnewline
8 & -0.037211 & -0.2657 & 0.395754 \tabularnewline
9 & -0.061045 & -0.4359 & 0.332358 \tabularnewline
10 & -0.147975 & -1.0568 & 0.147802 \tabularnewline
11 & 0.034332 & 0.2452 & 0.403651 \tabularnewline
12 & 0.303004 & 2.1639 & 0.017591 \tabularnewline
13 & -0.062692 & -0.4477 & 0.32813 \tabularnewline
14 & 0.036312 & 0.2593 & 0.398217 \tabularnewline
15 & -0.010027 & -0.0716 & 0.471597 \tabularnewline
16 & -0.099775 & -0.7125 & 0.23969 \tabularnewline
17 & 0.07013 & 0.5008 & 0.309324 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299430&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.053222[/C][C]0.3801[/C][C]0.352731[/C][/ROW]
[ROW][C]2[/C][C]0.100868[/C][C]0.7203[/C][C]0.237302[/C][/ROW]
[ROW][C]3[/C][C]0.11006[/C][C]0.786[/C][C]0.217757[/C][/ROW]
[ROW][C]4[/C][C]-0.281924[/C][C]-2.0133[/C][C]0.024685[/C][/ROW]
[ROW][C]5[/C][C]-0.002498[/C][C]-0.0178[/C][C]0.492919[/C][/ROW]
[ROW][C]6[/C][C]0.005956[/C][C]0.0425[/C][C]0.483118[/C][/ROW]
[ROW][C]7[/C][C]-0.156209[/C][C]-1.1156[/C][C]0.134921[/C][/ROW]
[ROW][C]8[/C][C]-0.037211[/C][C]-0.2657[/C][C]0.395754[/C][/ROW]
[ROW][C]9[/C][C]-0.061045[/C][C]-0.4359[/C][C]0.332358[/C][/ROW]
[ROW][C]10[/C][C]-0.147975[/C][C]-1.0568[/C][C]0.147802[/C][/ROW]
[ROW][C]11[/C][C]0.034332[/C][C]0.2452[/C][C]0.403651[/C][/ROW]
[ROW][C]12[/C][C]0.303004[/C][C]2.1639[/C][C]0.017591[/C][/ROW]
[ROW][C]13[/C][C]-0.062692[/C][C]-0.4477[/C][C]0.32813[/C][/ROW]
[ROW][C]14[/C][C]0.036312[/C][C]0.2593[/C][C]0.398217[/C][/ROW]
[ROW][C]15[/C][C]-0.010027[/C][C]-0.0716[/C][C]0.471597[/C][/ROW]
[ROW][C]16[/C][C]-0.099775[/C][C]-0.7125[/C][C]0.23969[/C][/ROW]
[ROW][C]17[/C][C]0.07013[/C][C]0.5008[/C][C]0.309324[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299430&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299430&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.0532220.38010.352731
20.1008680.72030.237302
30.110060.7860.217757
4-0.281924-2.01330.024685
5-0.002498-0.01780.492919
60.0059560.04250.483118
7-0.156209-1.11560.134921
8-0.037211-0.26570.395754
9-0.061045-0.43590.332358
10-0.147975-1.05680.147802
110.0343320.24520.403651
120.3030042.16390.017591
13-0.062692-0.44770.32813
140.0363120.25930.398217
15-0.010027-0.07160.471597
16-0.099775-0.71250.23969
170.070130.50080.309324







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.0532220.38010.352731
20.0983140.70210.242905
30.1012490.72310.236472
4-0.307882-2.19870.01623
50.0096680.0690.472613
60.0662320.4730.319118
7-0.109029-0.77860.2199
8-0.132735-0.94790.173821
9-0.024665-0.17610.430441
10-0.085686-0.61190.271654
11-0.00472-0.03370.486622
120.3461512.4720.008406
13-0.130925-0.9350.1771
14-0.173122-1.23630.110999
15-0.026027-0.18590.426641
160.1691621.20810.116298
17-0.02507-0.1790.429309

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.053222 & 0.3801 & 0.352731 \tabularnewline
2 & 0.098314 & 0.7021 & 0.242905 \tabularnewline
3 & 0.101249 & 0.7231 & 0.236472 \tabularnewline
4 & -0.307882 & -2.1987 & 0.01623 \tabularnewline
5 & 0.009668 & 0.069 & 0.472613 \tabularnewline
6 & 0.066232 & 0.473 & 0.319118 \tabularnewline
7 & -0.109029 & -0.7786 & 0.2199 \tabularnewline
8 & -0.132735 & -0.9479 & 0.173821 \tabularnewline
9 & -0.024665 & -0.1761 & 0.430441 \tabularnewline
10 & -0.085686 & -0.6119 & 0.271654 \tabularnewline
11 & -0.00472 & -0.0337 & 0.486622 \tabularnewline
12 & 0.346151 & 2.472 & 0.008406 \tabularnewline
13 & -0.130925 & -0.935 & 0.1771 \tabularnewline
14 & -0.173122 & -1.2363 & 0.110999 \tabularnewline
15 & -0.026027 & -0.1859 & 0.426641 \tabularnewline
16 & 0.169162 & 1.2081 & 0.116298 \tabularnewline
17 & -0.02507 & -0.179 & 0.429309 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299430&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.053222[/C][C]0.3801[/C][C]0.352731[/C][/ROW]
[ROW][C]2[/C][C]0.098314[/C][C]0.7021[/C][C]0.242905[/C][/ROW]
[ROW][C]3[/C][C]0.101249[/C][C]0.7231[/C][C]0.236472[/C][/ROW]
[ROW][C]4[/C][C]-0.307882[/C][C]-2.1987[/C][C]0.01623[/C][/ROW]
[ROW][C]5[/C][C]0.009668[/C][C]0.069[/C][C]0.472613[/C][/ROW]
[ROW][C]6[/C][C]0.066232[/C][C]0.473[/C][C]0.319118[/C][/ROW]
[ROW][C]7[/C][C]-0.109029[/C][C]-0.7786[/C][C]0.2199[/C][/ROW]
[ROW][C]8[/C][C]-0.132735[/C][C]-0.9479[/C][C]0.173821[/C][/ROW]
[ROW][C]9[/C][C]-0.024665[/C][C]-0.1761[/C][C]0.430441[/C][/ROW]
[ROW][C]10[/C][C]-0.085686[/C][C]-0.6119[/C][C]0.271654[/C][/ROW]
[ROW][C]11[/C][C]-0.00472[/C][C]-0.0337[/C][C]0.486622[/C][/ROW]
[ROW][C]12[/C][C]0.346151[/C][C]2.472[/C][C]0.008406[/C][/ROW]
[ROW][C]13[/C][C]-0.130925[/C][C]-0.935[/C][C]0.1771[/C][/ROW]
[ROW][C]14[/C][C]-0.173122[/C][C]-1.2363[/C][C]0.110999[/C][/ROW]
[ROW][C]15[/C][C]-0.026027[/C][C]-0.1859[/C][C]0.426641[/C][/ROW]
[ROW][C]16[/C][C]0.169162[/C][C]1.2081[/C][C]0.116298[/C][/ROW]
[ROW][C]17[/C][C]-0.02507[/C][C]-0.179[/C][C]0.429309[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299430&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299430&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.0532220.38010.352731
20.0983140.70210.242905
30.1012490.72310.236472
4-0.307882-2.19870.01623
50.0096680.0690.472613
60.0662320.4730.319118
7-0.109029-0.77860.2199
8-0.132735-0.94790.173821
9-0.024665-0.17610.430441
10-0.085686-0.61190.271654
11-0.00472-0.03370.486622
120.3461512.4720.008406
13-0.130925-0.9350.1771
14-0.173122-1.23630.110999
15-0.026027-0.18590.426641
160.1691621.20810.116298
17-0.02507-0.1790.429309



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')