Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationWed, 14 Dec 2016 14:38:38 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t14817237226l0se0wfe742kut.htm/, Retrieved Fri, 01 Nov 2024 05:20:51 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299453, Retrieved Fri, 01 Nov 2024 05:20:51 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact106
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [Classical Decompo...] [2016-12-14 13:38:38] [064355853487111be0140b49d1988237] [Current]
Feedback Forum

Post a new message
Dataseries X:
4150
4300
4300
4450
4500
4400
3950
2150
4350
4550
4600
4250
4350
4400
4300
4350
4350
4400
3850
2300
4300
4350
4350
4200
4150
4450
4300
4350
4300
4350
3900
2250
4300
4450
4400
4250
4250
4300
4450
3900
4350
4500
3800
2450
4400
4500
4500
4400
4450
4600
4700
4700
2950
3750
4050
2550
4600
5000
5100
4900
4950
5000
4950
5100
5250
5200
4300
2650
4950
5200
5350
5150
5350
5550
5400
5450
5450
5200
4400
2650
5100
5200
5300
4900
5200
5300
5250
5150
5050
4900
4150
2800
5100
5250
5200
5000
5150
5250
5250
5350
5450
5300
4300
3000
5300
5400
5550
5350
5500
5750
5750
5700
5800
5800
4600
3150
5500
5750
5950
5600
6100
6250
6150
6050
6300
5950




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299453&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299453&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299453&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
14150NANA232.473NA
24300NANA363.723NA
34300NANA325.992NA
44450NANA281.779NA
54500NANA147.751NA
64400NANA185.251NA
739503698.014170.83-472.828251.995
821502159.264183.33-2024.08-9.2554
943504342.594187.5155.0897.41127
1045504499.054183.33315.71450.9529
1146004539.464172.92366.54760.5363
1242504289.264166.67122.589-39.2554
1343504394.974162.5232.473-44.973
1444004528.314164.58363.723-128.306
1543004494.744168.75325.992-194.742
1643504440.114158.33281.779-90.1119
1743504287.334139.58147.75162.6659
1844004312.334127.08185.25187.6659
1938503643.844116.67-472.828206.161
2023002086.344110.42-2024.08213.661
2143004267.594112.5155.08932.4113
2243504428.214112.5315.714-78.2137
2343504476.964110.42366.547-126.964
2442004228.844106.25122.589-28.8387
2541504338.724106.25232.473-188.723
2644504469.974106.25363.723-19.973
2743004430.164104.17325.992-130.158
2843504390.114108.33281.779-40.1119
2943004262.334114.58147.75137.6659
30435043044118.75185.25145.9992
3139003652.174125-472.828247.828
3222502098.844122.92-2024.08151.161
3343004278.014122.92155.08921.9946
3444504426.134110.42315.71423.8696
3544004460.34093.75366.547-60.2971
3642504224.674102.08122.58925.3279
3742504336.644104.17232.473-86.6397
3843004472.064108.33363.723-172.056
3944504446.824120.83325.9923.17515
4039004408.864127.08281.779-508.862
4143504281.084133.33147.75168.9159
42450043294143.75185.251170.999
4338003685.514158.33-472.828114.495
4424502155.094179.17-2024.08294.911
4544004357.174202.08155.08942.8279
4645004561.554245.83315.714-61.5471
4745004587.384220.83366.547-87.3804
4844004253.844131.25122.589146.161
4944504342.894110.42232.473107.11
5046004488.724125363.723111.277
5147004463.494137.5325.992236.508
5247004448.454166.67281.779251.555
5329504360.254212.5147.751-1410.25
5437504443.584258.33185.251-693.584
5540503827.174300-472.828222.828
5625502313.424337.5-2024.08236.578
5746004519.674364.58155.08980.3279
5850004707.384391.67315.714292.62
5951004870.714504.17366.547229.286
6049004783.014660.42122.589116.995
6149504963.724731.25232.473-13.723
6250005109.564745.83363.723-109.556
6349505090.574764.58325.992-140.575
6451005069.284787.5281.77930.7215
65525049544806.25147.751295.999
6652005012.334827.08185.251187.666
6743004381.344854.17-472.828-81.3387
6826502869.674893.75-2024.08-219.672
6949505090.514935.42155.089-140.505
7052005284.464968.75315.714-84.4637
7153505358.214991.67366.547-8.21373
7251505122.595000122.58927.4113
7353505236.645004.17232.473113.36
7455505372.065008.33363.723177.944
7554005340.575014.58325.99259.4252
7654505302.615020.83281.779147.388
7754505166.55018.75147.751283.499
7852005191.55006.25185.2518.49923
7944004516.764989.58-472.828-116.755
8026502948.844972.92-2024.08-298.839
8151005111.344956.25155.089-11.3387
8252005253.214937.5315.714-53.2137
8353005274.884908.33366.54725.1196
8449005001.764879.17122.589-101.755
8552005088.724856.25232.473111.277
8653005215.814852.08363.72384.1937
8752505184.324858.33325.99265.6752
8851505142.24860.42281.7797.80478
8950505006.084858.33147.75143.9159
9049005043.584858.33185.251-143.584
9141504387.594860.42-472.828-237.589
9228002832.174856.25-2024.08-32.1721
9351005009.264854.17155.08990.7446
9452505178.214862.5315.71471.7863
9552005254.054887.5366.547-54.0471
9650005043.424920.83122.589-43.4221
9751505176.224943.75232.473-26.223
9852505322.064958.33363.723-72.0563
9952505300.994975325.992-50.9915
10053505271.364989.58281.77978.6381
10154505158.175010.42147.751291.833
10253005224.835039.58185.25175.1659
10343004595.925068.75-472.828-295.922
10430003080.095104.17-2024.08-80.0887
10553005300.925145.83155.089-0.922068
10654005496.965181.25315.714-96.9637
10755505576.965210.42366.547-26.9637
10853505368.425245.83122.589-18.4221
10955005511.645279.17232.473-11.6397
11057505661.645297.92363.72388.3603
11157505638.495312.5325.992111.508
11257005617.25335.42281.77982.8048
11358005514.425366.67147.751285.583
114580055795393.75185.251220.999
11546004956.345429.17-472.828-356.339
11631503450.925475-2024.08-300.922
11755005667.595512.5155.089-167.589
11857505859.465543.75315.714-109.464
11959505945.715579.17366.5474.28627
12056005728.845606.25122.589-128.839
1216100NANA232.473NA
1226250NANA363.723NA
1236150NANA325.992NA
1246050NANA281.779NA
1256300NANA147.751NA
1265950NANA185.251NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 4150 & NA & NA & 232.473 & NA \tabularnewline
2 & 4300 & NA & NA & 363.723 & NA \tabularnewline
3 & 4300 & NA & NA & 325.992 & NA \tabularnewline
4 & 4450 & NA & NA & 281.779 & NA \tabularnewline
5 & 4500 & NA & NA & 147.751 & NA \tabularnewline
6 & 4400 & NA & NA & 185.251 & NA \tabularnewline
7 & 3950 & 3698.01 & 4170.83 & -472.828 & 251.995 \tabularnewline
8 & 2150 & 2159.26 & 4183.33 & -2024.08 & -9.2554 \tabularnewline
9 & 4350 & 4342.59 & 4187.5 & 155.089 & 7.41127 \tabularnewline
10 & 4550 & 4499.05 & 4183.33 & 315.714 & 50.9529 \tabularnewline
11 & 4600 & 4539.46 & 4172.92 & 366.547 & 60.5363 \tabularnewline
12 & 4250 & 4289.26 & 4166.67 & 122.589 & -39.2554 \tabularnewline
13 & 4350 & 4394.97 & 4162.5 & 232.473 & -44.973 \tabularnewline
14 & 4400 & 4528.31 & 4164.58 & 363.723 & -128.306 \tabularnewline
15 & 4300 & 4494.74 & 4168.75 & 325.992 & -194.742 \tabularnewline
16 & 4350 & 4440.11 & 4158.33 & 281.779 & -90.1119 \tabularnewline
17 & 4350 & 4287.33 & 4139.58 & 147.751 & 62.6659 \tabularnewline
18 & 4400 & 4312.33 & 4127.08 & 185.251 & 87.6659 \tabularnewline
19 & 3850 & 3643.84 & 4116.67 & -472.828 & 206.161 \tabularnewline
20 & 2300 & 2086.34 & 4110.42 & -2024.08 & 213.661 \tabularnewline
21 & 4300 & 4267.59 & 4112.5 & 155.089 & 32.4113 \tabularnewline
22 & 4350 & 4428.21 & 4112.5 & 315.714 & -78.2137 \tabularnewline
23 & 4350 & 4476.96 & 4110.42 & 366.547 & -126.964 \tabularnewline
24 & 4200 & 4228.84 & 4106.25 & 122.589 & -28.8387 \tabularnewline
25 & 4150 & 4338.72 & 4106.25 & 232.473 & -188.723 \tabularnewline
26 & 4450 & 4469.97 & 4106.25 & 363.723 & -19.973 \tabularnewline
27 & 4300 & 4430.16 & 4104.17 & 325.992 & -130.158 \tabularnewline
28 & 4350 & 4390.11 & 4108.33 & 281.779 & -40.1119 \tabularnewline
29 & 4300 & 4262.33 & 4114.58 & 147.751 & 37.6659 \tabularnewline
30 & 4350 & 4304 & 4118.75 & 185.251 & 45.9992 \tabularnewline
31 & 3900 & 3652.17 & 4125 & -472.828 & 247.828 \tabularnewline
32 & 2250 & 2098.84 & 4122.92 & -2024.08 & 151.161 \tabularnewline
33 & 4300 & 4278.01 & 4122.92 & 155.089 & 21.9946 \tabularnewline
34 & 4450 & 4426.13 & 4110.42 & 315.714 & 23.8696 \tabularnewline
35 & 4400 & 4460.3 & 4093.75 & 366.547 & -60.2971 \tabularnewline
36 & 4250 & 4224.67 & 4102.08 & 122.589 & 25.3279 \tabularnewline
37 & 4250 & 4336.64 & 4104.17 & 232.473 & -86.6397 \tabularnewline
38 & 4300 & 4472.06 & 4108.33 & 363.723 & -172.056 \tabularnewline
39 & 4450 & 4446.82 & 4120.83 & 325.992 & 3.17515 \tabularnewline
40 & 3900 & 4408.86 & 4127.08 & 281.779 & -508.862 \tabularnewline
41 & 4350 & 4281.08 & 4133.33 & 147.751 & 68.9159 \tabularnewline
42 & 4500 & 4329 & 4143.75 & 185.251 & 170.999 \tabularnewline
43 & 3800 & 3685.51 & 4158.33 & -472.828 & 114.495 \tabularnewline
44 & 2450 & 2155.09 & 4179.17 & -2024.08 & 294.911 \tabularnewline
45 & 4400 & 4357.17 & 4202.08 & 155.089 & 42.8279 \tabularnewline
46 & 4500 & 4561.55 & 4245.83 & 315.714 & -61.5471 \tabularnewline
47 & 4500 & 4587.38 & 4220.83 & 366.547 & -87.3804 \tabularnewline
48 & 4400 & 4253.84 & 4131.25 & 122.589 & 146.161 \tabularnewline
49 & 4450 & 4342.89 & 4110.42 & 232.473 & 107.11 \tabularnewline
50 & 4600 & 4488.72 & 4125 & 363.723 & 111.277 \tabularnewline
51 & 4700 & 4463.49 & 4137.5 & 325.992 & 236.508 \tabularnewline
52 & 4700 & 4448.45 & 4166.67 & 281.779 & 251.555 \tabularnewline
53 & 2950 & 4360.25 & 4212.5 & 147.751 & -1410.25 \tabularnewline
54 & 3750 & 4443.58 & 4258.33 & 185.251 & -693.584 \tabularnewline
55 & 4050 & 3827.17 & 4300 & -472.828 & 222.828 \tabularnewline
56 & 2550 & 2313.42 & 4337.5 & -2024.08 & 236.578 \tabularnewline
57 & 4600 & 4519.67 & 4364.58 & 155.089 & 80.3279 \tabularnewline
58 & 5000 & 4707.38 & 4391.67 & 315.714 & 292.62 \tabularnewline
59 & 5100 & 4870.71 & 4504.17 & 366.547 & 229.286 \tabularnewline
60 & 4900 & 4783.01 & 4660.42 & 122.589 & 116.995 \tabularnewline
61 & 4950 & 4963.72 & 4731.25 & 232.473 & -13.723 \tabularnewline
62 & 5000 & 5109.56 & 4745.83 & 363.723 & -109.556 \tabularnewline
63 & 4950 & 5090.57 & 4764.58 & 325.992 & -140.575 \tabularnewline
64 & 5100 & 5069.28 & 4787.5 & 281.779 & 30.7215 \tabularnewline
65 & 5250 & 4954 & 4806.25 & 147.751 & 295.999 \tabularnewline
66 & 5200 & 5012.33 & 4827.08 & 185.251 & 187.666 \tabularnewline
67 & 4300 & 4381.34 & 4854.17 & -472.828 & -81.3387 \tabularnewline
68 & 2650 & 2869.67 & 4893.75 & -2024.08 & -219.672 \tabularnewline
69 & 4950 & 5090.51 & 4935.42 & 155.089 & -140.505 \tabularnewline
70 & 5200 & 5284.46 & 4968.75 & 315.714 & -84.4637 \tabularnewline
71 & 5350 & 5358.21 & 4991.67 & 366.547 & -8.21373 \tabularnewline
72 & 5150 & 5122.59 & 5000 & 122.589 & 27.4113 \tabularnewline
73 & 5350 & 5236.64 & 5004.17 & 232.473 & 113.36 \tabularnewline
74 & 5550 & 5372.06 & 5008.33 & 363.723 & 177.944 \tabularnewline
75 & 5400 & 5340.57 & 5014.58 & 325.992 & 59.4252 \tabularnewline
76 & 5450 & 5302.61 & 5020.83 & 281.779 & 147.388 \tabularnewline
77 & 5450 & 5166.5 & 5018.75 & 147.751 & 283.499 \tabularnewline
78 & 5200 & 5191.5 & 5006.25 & 185.251 & 8.49923 \tabularnewline
79 & 4400 & 4516.76 & 4989.58 & -472.828 & -116.755 \tabularnewline
80 & 2650 & 2948.84 & 4972.92 & -2024.08 & -298.839 \tabularnewline
81 & 5100 & 5111.34 & 4956.25 & 155.089 & -11.3387 \tabularnewline
82 & 5200 & 5253.21 & 4937.5 & 315.714 & -53.2137 \tabularnewline
83 & 5300 & 5274.88 & 4908.33 & 366.547 & 25.1196 \tabularnewline
84 & 4900 & 5001.76 & 4879.17 & 122.589 & -101.755 \tabularnewline
85 & 5200 & 5088.72 & 4856.25 & 232.473 & 111.277 \tabularnewline
86 & 5300 & 5215.81 & 4852.08 & 363.723 & 84.1937 \tabularnewline
87 & 5250 & 5184.32 & 4858.33 & 325.992 & 65.6752 \tabularnewline
88 & 5150 & 5142.2 & 4860.42 & 281.779 & 7.80478 \tabularnewline
89 & 5050 & 5006.08 & 4858.33 & 147.751 & 43.9159 \tabularnewline
90 & 4900 & 5043.58 & 4858.33 & 185.251 & -143.584 \tabularnewline
91 & 4150 & 4387.59 & 4860.42 & -472.828 & -237.589 \tabularnewline
92 & 2800 & 2832.17 & 4856.25 & -2024.08 & -32.1721 \tabularnewline
93 & 5100 & 5009.26 & 4854.17 & 155.089 & 90.7446 \tabularnewline
94 & 5250 & 5178.21 & 4862.5 & 315.714 & 71.7863 \tabularnewline
95 & 5200 & 5254.05 & 4887.5 & 366.547 & -54.0471 \tabularnewline
96 & 5000 & 5043.42 & 4920.83 & 122.589 & -43.4221 \tabularnewline
97 & 5150 & 5176.22 & 4943.75 & 232.473 & -26.223 \tabularnewline
98 & 5250 & 5322.06 & 4958.33 & 363.723 & -72.0563 \tabularnewline
99 & 5250 & 5300.99 & 4975 & 325.992 & -50.9915 \tabularnewline
100 & 5350 & 5271.36 & 4989.58 & 281.779 & 78.6381 \tabularnewline
101 & 5450 & 5158.17 & 5010.42 & 147.751 & 291.833 \tabularnewline
102 & 5300 & 5224.83 & 5039.58 & 185.251 & 75.1659 \tabularnewline
103 & 4300 & 4595.92 & 5068.75 & -472.828 & -295.922 \tabularnewline
104 & 3000 & 3080.09 & 5104.17 & -2024.08 & -80.0887 \tabularnewline
105 & 5300 & 5300.92 & 5145.83 & 155.089 & -0.922068 \tabularnewline
106 & 5400 & 5496.96 & 5181.25 & 315.714 & -96.9637 \tabularnewline
107 & 5550 & 5576.96 & 5210.42 & 366.547 & -26.9637 \tabularnewline
108 & 5350 & 5368.42 & 5245.83 & 122.589 & -18.4221 \tabularnewline
109 & 5500 & 5511.64 & 5279.17 & 232.473 & -11.6397 \tabularnewline
110 & 5750 & 5661.64 & 5297.92 & 363.723 & 88.3603 \tabularnewline
111 & 5750 & 5638.49 & 5312.5 & 325.992 & 111.508 \tabularnewline
112 & 5700 & 5617.2 & 5335.42 & 281.779 & 82.8048 \tabularnewline
113 & 5800 & 5514.42 & 5366.67 & 147.751 & 285.583 \tabularnewline
114 & 5800 & 5579 & 5393.75 & 185.251 & 220.999 \tabularnewline
115 & 4600 & 4956.34 & 5429.17 & -472.828 & -356.339 \tabularnewline
116 & 3150 & 3450.92 & 5475 & -2024.08 & -300.922 \tabularnewline
117 & 5500 & 5667.59 & 5512.5 & 155.089 & -167.589 \tabularnewline
118 & 5750 & 5859.46 & 5543.75 & 315.714 & -109.464 \tabularnewline
119 & 5950 & 5945.71 & 5579.17 & 366.547 & 4.28627 \tabularnewline
120 & 5600 & 5728.84 & 5606.25 & 122.589 & -128.839 \tabularnewline
121 & 6100 & NA & NA & 232.473 & NA \tabularnewline
122 & 6250 & NA & NA & 363.723 & NA \tabularnewline
123 & 6150 & NA & NA & 325.992 & NA \tabularnewline
124 & 6050 & NA & NA & 281.779 & NA \tabularnewline
125 & 6300 & NA & NA & 147.751 & NA \tabularnewline
126 & 5950 & NA & NA & 185.251 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299453&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]4150[/C][C]NA[/C][C]NA[/C][C]232.473[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]4300[/C][C]NA[/C][C]NA[/C][C]363.723[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]4300[/C][C]NA[/C][C]NA[/C][C]325.992[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]4450[/C][C]NA[/C][C]NA[/C][C]281.779[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]4500[/C][C]NA[/C][C]NA[/C][C]147.751[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]4400[/C][C]NA[/C][C]NA[/C][C]185.251[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]3950[/C][C]3698.01[/C][C]4170.83[/C][C]-472.828[/C][C]251.995[/C][/ROW]
[ROW][C]8[/C][C]2150[/C][C]2159.26[/C][C]4183.33[/C][C]-2024.08[/C][C]-9.2554[/C][/ROW]
[ROW][C]9[/C][C]4350[/C][C]4342.59[/C][C]4187.5[/C][C]155.089[/C][C]7.41127[/C][/ROW]
[ROW][C]10[/C][C]4550[/C][C]4499.05[/C][C]4183.33[/C][C]315.714[/C][C]50.9529[/C][/ROW]
[ROW][C]11[/C][C]4600[/C][C]4539.46[/C][C]4172.92[/C][C]366.547[/C][C]60.5363[/C][/ROW]
[ROW][C]12[/C][C]4250[/C][C]4289.26[/C][C]4166.67[/C][C]122.589[/C][C]-39.2554[/C][/ROW]
[ROW][C]13[/C][C]4350[/C][C]4394.97[/C][C]4162.5[/C][C]232.473[/C][C]-44.973[/C][/ROW]
[ROW][C]14[/C][C]4400[/C][C]4528.31[/C][C]4164.58[/C][C]363.723[/C][C]-128.306[/C][/ROW]
[ROW][C]15[/C][C]4300[/C][C]4494.74[/C][C]4168.75[/C][C]325.992[/C][C]-194.742[/C][/ROW]
[ROW][C]16[/C][C]4350[/C][C]4440.11[/C][C]4158.33[/C][C]281.779[/C][C]-90.1119[/C][/ROW]
[ROW][C]17[/C][C]4350[/C][C]4287.33[/C][C]4139.58[/C][C]147.751[/C][C]62.6659[/C][/ROW]
[ROW][C]18[/C][C]4400[/C][C]4312.33[/C][C]4127.08[/C][C]185.251[/C][C]87.6659[/C][/ROW]
[ROW][C]19[/C][C]3850[/C][C]3643.84[/C][C]4116.67[/C][C]-472.828[/C][C]206.161[/C][/ROW]
[ROW][C]20[/C][C]2300[/C][C]2086.34[/C][C]4110.42[/C][C]-2024.08[/C][C]213.661[/C][/ROW]
[ROW][C]21[/C][C]4300[/C][C]4267.59[/C][C]4112.5[/C][C]155.089[/C][C]32.4113[/C][/ROW]
[ROW][C]22[/C][C]4350[/C][C]4428.21[/C][C]4112.5[/C][C]315.714[/C][C]-78.2137[/C][/ROW]
[ROW][C]23[/C][C]4350[/C][C]4476.96[/C][C]4110.42[/C][C]366.547[/C][C]-126.964[/C][/ROW]
[ROW][C]24[/C][C]4200[/C][C]4228.84[/C][C]4106.25[/C][C]122.589[/C][C]-28.8387[/C][/ROW]
[ROW][C]25[/C][C]4150[/C][C]4338.72[/C][C]4106.25[/C][C]232.473[/C][C]-188.723[/C][/ROW]
[ROW][C]26[/C][C]4450[/C][C]4469.97[/C][C]4106.25[/C][C]363.723[/C][C]-19.973[/C][/ROW]
[ROW][C]27[/C][C]4300[/C][C]4430.16[/C][C]4104.17[/C][C]325.992[/C][C]-130.158[/C][/ROW]
[ROW][C]28[/C][C]4350[/C][C]4390.11[/C][C]4108.33[/C][C]281.779[/C][C]-40.1119[/C][/ROW]
[ROW][C]29[/C][C]4300[/C][C]4262.33[/C][C]4114.58[/C][C]147.751[/C][C]37.6659[/C][/ROW]
[ROW][C]30[/C][C]4350[/C][C]4304[/C][C]4118.75[/C][C]185.251[/C][C]45.9992[/C][/ROW]
[ROW][C]31[/C][C]3900[/C][C]3652.17[/C][C]4125[/C][C]-472.828[/C][C]247.828[/C][/ROW]
[ROW][C]32[/C][C]2250[/C][C]2098.84[/C][C]4122.92[/C][C]-2024.08[/C][C]151.161[/C][/ROW]
[ROW][C]33[/C][C]4300[/C][C]4278.01[/C][C]4122.92[/C][C]155.089[/C][C]21.9946[/C][/ROW]
[ROW][C]34[/C][C]4450[/C][C]4426.13[/C][C]4110.42[/C][C]315.714[/C][C]23.8696[/C][/ROW]
[ROW][C]35[/C][C]4400[/C][C]4460.3[/C][C]4093.75[/C][C]366.547[/C][C]-60.2971[/C][/ROW]
[ROW][C]36[/C][C]4250[/C][C]4224.67[/C][C]4102.08[/C][C]122.589[/C][C]25.3279[/C][/ROW]
[ROW][C]37[/C][C]4250[/C][C]4336.64[/C][C]4104.17[/C][C]232.473[/C][C]-86.6397[/C][/ROW]
[ROW][C]38[/C][C]4300[/C][C]4472.06[/C][C]4108.33[/C][C]363.723[/C][C]-172.056[/C][/ROW]
[ROW][C]39[/C][C]4450[/C][C]4446.82[/C][C]4120.83[/C][C]325.992[/C][C]3.17515[/C][/ROW]
[ROW][C]40[/C][C]3900[/C][C]4408.86[/C][C]4127.08[/C][C]281.779[/C][C]-508.862[/C][/ROW]
[ROW][C]41[/C][C]4350[/C][C]4281.08[/C][C]4133.33[/C][C]147.751[/C][C]68.9159[/C][/ROW]
[ROW][C]42[/C][C]4500[/C][C]4329[/C][C]4143.75[/C][C]185.251[/C][C]170.999[/C][/ROW]
[ROW][C]43[/C][C]3800[/C][C]3685.51[/C][C]4158.33[/C][C]-472.828[/C][C]114.495[/C][/ROW]
[ROW][C]44[/C][C]2450[/C][C]2155.09[/C][C]4179.17[/C][C]-2024.08[/C][C]294.911[/C][/ROW]
[ROW][C]45[/C][C]4400[/C][C]4357.17[/C][C]4202.08[/C][C]155.089[/C][C]42.8279[/C][/ROW]
[ROW][C]46[/C][C]4500[/C][C]4561.55[/C][C]4245.83[/C][C]315.714[/C][C]-61.5471[/C][/ROW]
[ROW][C]47[/C][C]4500[/C][C]4587.38[/C][C]4220.83[/C][C]366.547[/C][C]-87.3804[/C][/ROW]
[ROW][C]48[/C][C]4400[/C][C]4253.84[/C][C]4131.25[/C][C]122.589[/C][C]146.161[/C][/ROW]
[ROW][C]49[/C][C]4450[/C][C]4342.89[/C][C]4110.42[/C][C]232.473[/C][C]107.11[/C][/ROW]
[ROW][C]50[/C][C]4600[/C][C]4488.72[/C][C]4125[/C][C]363.723[/C][C]111.277[/C][/ROW]
[ROW][C]51[/C][C]4700[/C][C]4463.49[/C][C]4137.5[/C][C]325.992[/C][C]236.508[/C][/ROW]
[ROW][C]52[/C][C]4700[/C][C]4448.45[/C][C]4166.67[/C][C]281.779[/C][C]251.555[/C][/ROW]
[ROW][C]53[/C][C]2950[/C][C]4360.25[/C][C]4212.5[/C][C]147.751[/C][C]-1410.25[/C][/ROW]
[ROW][C]54[/C][C]3750[/C][C]4443.58[/C][C]4258.33[/C][C]185.251[/C][C]-693.584[/C][/ROW]
[ROW][C]55[/C][C]4050[/C][C]3827.17[/C][C]4300[/C][C]-472.828[/C][C]222.828[/C][/ROW]
[ROW][C]56[/C][C]2550[/C][C]2313.42[/C][C]4337.5[/C][C]-2024.08[/C][C]236.578[/C][/ROW]
[ROW][C]57[/C][C]4600[/C][C]4519.67[/C][C]4364.58[/C][C]155.089[/C][C]80.3279[/C][/ROW]
[ROW][C]58[/C][C]5000[/C][C]4707.38[/C][C]4391.67[/C][C]315.714[/C][C]292.62[/C][/ROW]
[ROW][C]59[/C][C]5100[/C][C]4870.71[/C][C]4504.17[/C][C]366.547[/C][C]229.286[/C][/ROW]
[ROW][C]60[/C][C]4900[/C][C]4783.01[/C][C]4660.42[/C][C]122.589[/C][C]116.995[/C][/ROW]
[ROW][C]61[/C][C]4950[/C][C]4963.72[/C][C]4731.25[/C][C]232.473[/C][C]-13.723[/C][/ROW]
[ROW][C]62[/C][C]5000[/C][C]5109.56[/C][C]4745.83[/C][C]363.723[/C][C]-109.556[/C][/ROW]
[ROW][C]63[/C][C]4950[/C][C]5090.57[/C][C]4764.58[/C][C]325.992[/C][C]-140.575[/C][/ROW]
[ROW][C]64[/C][C]5100[/C][C]5069.28[/C][C]4787.5[/C][C]281.779[/C][C]30.7215[/C][/ROW]
[ROW][C]65[/C][C]5250[/C][C]4954[/C][C]4806.25[/C][C]147.751[/C][C]295.999[/C][/ROW]
[ROW][C]66[/C][C]5200[/C][C]5012.33[/C][C]4827.08[/C][C]185.251[/C][C]187.666[/C][/ROW]
[ROW][C]67[/C][C]4300[/C][C]4381.34[/C][C]4854.17[/C][C]-472.828[/C][C]-81.3387[/C][/ROW]
[ROW][C]68[/C][C]2650[/C][C]2869.67[/C][C]4893.75[/C][C]-2024.08[/C][C]-219.672[/C][/ROW]
[ROW][C]69[/C][C]4950[/C][C]5090.51[/C][C]4935.42[/C][C]155.089[/C][C]-140.505[/C][/ROW]
[ROW][C]70[/C][C]5200[/C][C]5284.46[/C][C]4968.75[/C][C]315.714[/C][C]-84.4637[/C][/ROW]
[ROW][C]71[/C][C]5350[/C][C]5358.21[/C][C]4991.67[/C][C]366.547[/C][C]-8.21373[/C][/ROW]
[ROW][C]72[/C][C]5150[/C][C]5122.59[/C][C]5000[/C][C]122.589[/C][C]27.4113[/C][/ROW]
[ROW][C]73[/C][C]5350[/C][C]5236.64[/C][C]5004.17[/C][C]232.473[/C][C]113.36[/C][/ROW]
[ROW][C]74[/C][C]5550[/C][C]5372.06[/C][C]5008.33[/C][C]363.723[/C][C]177.944[/C][/ROW]
[ROW][C]75[/C][C]5400[/C][C]5340.57[/C][C]5014.58[/C][C]325.992[/C][C]59.4252[/C][/ROW]
[ROW][C]76[/C][C]5450[/C][C]5302.61[/C][C]5020.83[/C][C]281.779[/C][C]147.388[/C][/ROW]
[ROW][C]77[/C][C]5450[/C][C]5166.5[/C][C]5018.75[/C][C]147.751[/C][C]283.499[/C][/ROW]
[ROW][C]78[/C][C]5200[/C][C]5191.5[/C][C]5006.25[/C][C]185.251[/C][C]8.49923[/C][/ROW]
[ROW][C]79[/C][C]4400[/C][C]4516.76[/C][C]4989.58[/C][C]-472.828[/C][C]-116.755[/C][/ROW]
[ROW][C]80[/C][C]2650[/C][C]2948.84[/C][C]4972.92[/C][C]-2024.08[/C][C]-298.839[/C][/ROW]
[ROW][C]81[/C][C]5100[/C][C]5111.34[/C][C]4956.25[/C][C]155.089[/C][C]-11.3387[/C][/ROW]
[ROW][C]82[/C][C]5200[/C][C]5253.21[/C][C]4937.5[/C][C]315.714[/C][C]-53.2137[/C][/ROW]
[ROW][C]83[/C][C]5300[/C][C]5274.88[/C][C]4908.33[/C][C]366.547[/C][C]25.1196[/C][/ROW]
[ROW][C]84[/C][C]4900[/C][C]5001.76[/C][C]4879.17[/C][C]122.589[/C][C]-101.755[/C][/ROW]
[ROW][C]85[/C][C]5200[/C][C]5088.72[/C][C]4856.25[/C][C]232.473[/C][C]111.277[/C][/ROW]
[ROW][C]86[/C][C]5300[/C][C]5215.81[/C][C]4852.08[/C][C]363.723[/C][C]84.1937[/C][/ROW]
[ROW][C]87[/C][C]5250[/C][C]5184.32[/C][C]4858.33[/C][C]325.992[/C][C]65.6752[/C][/ROW]
[ROW][C]88[/C][C]5150[/C][C]5142.2[/C][C]4860.42[/C][C]281.779[/C][C]7.80478[/C][/ROW]
[ROW][C]89[/C][C]5050[/C][C]5006.08[/C][C]4858.33[/C][C]147.751[/C][C]43.9159[/C][/ROW]
[ROW][C]90[/C][C]4900[/C][C]5043.58[/C][C]4858.33[/C][C]185.251[/C][C]-143.584[/C][/ROW]
[ROW][C]91[/C][C]4150[/C][C]4387.59[/C][C]4860.42[/C][C]-472.828[/C][C]-237.589[/C][/ROW]
[ROW][C]92[/C][C]2800[/C][C]2832.17[/C][C]4856.25[/C][C]-2024.08[/C][C]-32.1721[/C][/ROW]
[ROW][C]93[/C][C]5100[/C][C]5009.26[/C][C]4854.17[/C][C]155.089[/C][C]90.7446[/C][/ROW]
[ROW][C]94[/C][C]5250[/C][C]5178.21[/C][C]4862.5[/C][C]315.714[/C][C]71.7863[/C][/ROW]
[ROW][C]95[/C][C]5200[/C][C]5254.05[/C][C]4887.5[/C][C]366.547[/C][C]-54.0471[/C][/ROW]
[ROW][C]96[/C][C]5000[/C][C]5043.42[/C][C]4920.83[/C][C]122.589[/C][C]-43.4221[/C][/ROW]
[ROW][C]97[/C][C]5150[/C][C]5176.22[/C][C]4943.75[/C][C]232.473[/C][C]-26.223[/C][/ROW]
[ROW][C]98[/C][C]5250[/C][C]5322.06[/C][C]4958.33[/C][C]363.723[/C][C]-72.0563[/C][/ROW]
[ROW][C]99[/C][C]5250[/C][C]5300.99[/C][C]4975[/C][C]325.992[/C][C]-50.9915[/C][/ROW]
[ROW][C]100[/C][C]5350[/C][C]5271.36[/C][C]4989.58[/C][C]281.779[/C][C]78.6381[/C][/ROW]
[ROW][C]101[/C][C]5450[/C][C]5158.17[/C][C]5010.42[/C][C]147.751[/C][C]291.833[/C][/ROW]
[ROW][C]102[/C][C]5300[/C][C]5224.83[/C][C]5039.58[/C][C]185.251[/C][C]75.1659[/C][/ROW]
[ROW][C]103[/C][C]4300[/C][C]4595.92[/C][C]5068.75[/C][C]-472.828[/C][C]-295.922[/C][/ROW]
[ROW][C]104[/C][C]3000[/C][C]3080.09[/C][C]5104.17[/C][C]-2024.08[/C][C]-80.0887[/C][/ROW]
[ROW][C]105[/C][C]5300[/C][C]5300.92[/C][C]5145.83[/C][C]155.089[/C][C]-0.922068[/C][/ROW]
[ROW][C]106[/C][C]5400[/C][C]5496.96[/C][C]5181.25[/C][C]315.714[/C][C]-96.9637[/C][/ROW]
[ROW][C]107[/C][C]5550[/C][C]5576.96[/C][C]5210.42[/C][C]366.547[/C][C]-26.9637[/C][/ROW]
[ROW][C]108[/C][C]5350[/C][C]5368.42[/C][C]5245.83[/C][C]122.589[/C][C]-18.4221[/C][/ROW]
[ROW][C]109[/C][C]5500[/C][C]5511.64[/C][C]5279.17[/C][C]232.473[/C][C]-11.6397[/C][/ROW]
[ROW][C]110[/C][C]5750[/C][C]5661.64[/C][C]5297.92[/C][C]363.723[/C][C]88.3603[/C][/ROW]
[ROW][C]111[/C][C]5750[/C][C]5638.49[/C][C]5312.5[/C][C]325.992[/C][C]111.508[/C][/ROW]
[ROW][C]112[/C][C]5700[/C][C]5617.2[/C][C]5335.42[/C][C]281.779[/C][C]82.8048[/C][/ROW]
[ROW][C]113[/C][C]5800[/C][C]5514.42[/C][C]5366.67[/C][C]147.751[/C][C]285.583[/C][/ROW]
[ROW][C]114[/C][C]5800[/C][C]5579[/C][C]5393.75[/C][C]185.251[/C][C]220.999[/C][/ROW]
[ROW][C]115[/C][C]4600[/C][C]4956.34[/C][C]5429.17[/C][C]-472.828[/C][C]-356.339[/C][/ROW]
[ROW][C]116[/C][C]3150[/C][C]3450.92[/C][C]5475[/C][C]-2024.08[/C][C]-300.922[/C][/ROW]
[ROW][C]117[/C][C]5500[/C][C]5667.59[/C][C]5512.5[/C][C]155.089[/C][C]-167.589[/C][/ROW]
[ROW][C]118[/C][C]5750[/C][C]5859.46[/C][C]5543.75[/C][C]315.714[/C][C]-109.464[/C][/ROW]
[ROW][C]119[/C][C]5950[/C][C]5945.71[/C][C]5579.17[/C][C]366.547[/C][C]4.28627[/C][/ROW]
[ROW][C]120[/C][C]5600[/C][C]5728.84[/C][C]5606.25[/C][C]122.589[/C][C]-128.839[/C][/ROW]
[ROW][C]121[/C][C]6100[/C][C]NA[/C][C]NA[/C][C]232.473[/C][C]NA[/C][/ROW]
[ROW][C]122[/C][C]6250[/C][C]NA[/C][C]NA[/C][C]363.723[/C][C]NA[/C][/ROW]
[ROW][C]123[/C][C]6150[/C][C]NA[/C][C]NA[/C][C]325.992[/C][C]NA[/C][/ROW]
[ROW][C]124[/C][C]6050[/C][C]NA[/C][C]NA[/C][C]281.779[/C][C]NA[/C][/ROW]
[ROW][C]125[/C][C]6300[/C][C]NA[/C][C]NA[/C][C]147.751[/C][C]NA[/C][/ROW]
[ROW][C]126[/C][C]5950[/C][C]NA[/C][C]NA[/C][C]185.251[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299453&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299453&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
14150NANA232.473NA
24300NANA363.723NA
34300NANA325.992NA
44450NANA281.779NA
54500NANA147.751NA
64400NANA185.251NA
739503698.014170.83-472.828251.995
821502159.264183.33-2024.08-9.2554
943504342.594187.5155.0897.41127
1045504499.054183.33315.71450.9529
1146004539.464172.92366.54760.5363
1242504289.264166.67122.589-39.2554
1343504394.974162.5232.473-44.973
1444004528.314164.58363.723-128.306
1543004494.744168.75325.992-194.742
1643504440.114158.33281.779-90.1119
1743504287.334139.58147.75162.6659
1844004312.334127.08185.25187.6659
1938503643.844116.67-472.828206.161
2023002086.344110.42-2024.08213.661
2143004267.594112.5155.08932.4113
2243504428.214112.5315.714-78.2137
2343504476.964110.42366.547-126.964
2442004228.844106.25122.589-28.8387
2541504338.724106.25232.473-188.723
2644504469.974106.25363.723-19.973
2743004430.164104.17325.992-130.158
2843504390.114108.33281.779-40.1119
2943004262.334114.58147.75137.6659
30435043044118.75185.25145.9992
3139003652.174125-472.828247.828
3222502098.844122.92-2024.08151.161
3343004278.014122.92155.08921.9946
3444504426.134110.42315.71423.8696
3544004460.34093.75366.547-60.2971
3642504224.674102.08122.58925.3279
3742504336.644104.17232.473-86.6397
3843004472.064108.33363.723-172.056
3944504446.824120.83325.9923.17515
4039004408.864127.08281.779-508.862
4143504281.084133.33147.75168.9159
42450043294143.75185.251170.999
4338003685.514158.33-472.828114.495
4424502155.094179.17-2024.08294.911
4544004357.174202.08155.08942.8279
4645004561.554245.83315.714-61.5471
4745004587.384220.83366.547-87.3804
4844004253.844131.25122.589146.161
4944504342.894110.42232.473107.11
5046004488.724125363.723111.277
5147004463.494137.5325.992236.508
5247004448.454166.67281.779251.555
5329504360.254212.5147.751-1410.25
5437504443.584258.33185.251-693.584
5540503827.174300-472.828222.828
5625502313.424337.5-2024.08236.578
5746004519.674364.58155.08980.3279
5850004707.384391.67315.714292.62
5951004870.714504.17366.547229.286
6049004783.014660.42122.589116.995
6149504963.724731.25232.473-13.723
6250005109.564745.83363.723-109.556
6349505090.574764.58325.992-140.575
6451005069.284787.5281.77930.7215
65525049544806.25147.751295.999
6652005012.334827.08185.251187.666
6743004381.344854.17-472.828-81.3387
6826502869.674893.75-2024.08-219.672
6949505090.514935.42155.089-140.505
7052005284.464968.75315.714-84.4637
7153505358.214991.67366.547-8.21373
7251505122.595000122.58927.4113
7353505236.645004.17232.473113.36
7455505372.065008.33363.723177.944
7554005340.575014.58325.99259.4252
7654505302.615020.83281.779147.388
7754505166.55018.75147.751283.499
7852005191.55006.25185.2518.49923
7944004516.764989.58-472.828-116.755
8026502948.844972.92-2024.08-298.839
8151005111.344956.25155.089-11.3387
8252005253.214937.5315.714-53.2137
8353005274.884908.33366.54725.1196
8449005001.764879.17122.589-101.755
8552005088.724856.25232.473111.277
8653005215.814852.08363.72384.1937
8752505184.324858.33325.99265.6752
8851505142.24860.42281.7797.80478
8950505006.084858.33147.75143.9159
9049005043.584858.33185.251-143.584
9141504387.594860.42-472.828-237.589
9228002832.174856.25-2024.08-32.1721
9351005009.264854.17155.08990.7446
9452505178.214862.5315.71471.7863
9552005254.054887.5366.547-54.0471
9650005043.424920.83122.589-43.4221
9751505176.224943.75232.473-26.223
9852505322.064958.33363.723-72.0563
9952505300.994975325.992-50.9915
10053505271.364989.58281.77978.6381
10154505158.175010.42147.751291.833
10253005224.835039.58185.25175.1659
10343004595.925068.75-472.828-295.922
10430003080.095104.17-2024.08-80.0887
10553005300.925145.83155.089-0.922068
10654005496.965181.25315.714-96.9637
10755505576.965210.42366.547-26.9637
10853505368.425245.83122.589-18.4221
10955005511.645279.17232.473-11.6397
11057505661.645297.92363.72388.3603
11157505638.495312.5325.992111.508
11257005617.25335.42281.77982.8048
11358005514.425366.67147.751285.583
114580055795393.75185.251220.999
11546004956.345429.17-472.828-356.339
11631503450.925475-2024.08-300.922
11755005667.595512.5155.089-167.589
11857505859.465543.75315.714-109.464
11959505945.715579.17366.5474.28627
12056005728.845606.25122.589-128.839
1216100NANA232.473NA
1226250NANA363.723NA
1236150NANA325.992NA
1246050NANA281.779NA
1256300NANA147.751NA
1265950NANA185.251NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')