Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationMon, 08 Dec 2008 14:12:41 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Dec/08/t1228770792f91z1d5ybz66g74.htm/, Retrieved Thu, 31 Oct 2024 23:54:48 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=31035, Retrieved Thu, 31 Oct 2024 23:54:48 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact203
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Data Series] [Run sequence plot...] [2008-12-02 22:19:27] [ed2ba3b6182103c15c0ab511ae4e6284]
F RMPD  [Standard Deviation-Mean Plot] [SD mean plot peri...] [2008-12-06 11:54:38] [ed2ba3b6182103c15c0ab511ae4e6284]
F           [Standard Deviation-Mean Plot] [] [2008-12-08 21:12:41] [75a00449045803b2332dacf227dc78d5] [Current]
Feedback Forum
2008-12-14 10:08:32 [Pieter Broos] [reply
p waarde is 0.11 dus boven 0.05 en dus niet significant verschillend van 0. Juiste berekening en conclusie!
2008-12-14 13:23:54 [2ae5313507f69e6db9a3a7e1ca4e6147] [reply
Goede conclusie. We zien ook dat er geen outliers in het begin of op het einde van de SMP zijn. Dit wil dus zeggen dat er geen outliers zien die een sterke invloed hebben op de regressierechte.
Er is dus maar 1 voorwaarde voldaan van de 2. We mogen de lambda dus niet toepassen.
2008-12-14 13:37:56 [Steven Hulsmans] [reply
Juiste conclusie, de p waarde ligt boven de betawaarde en is dus niet significant verschillend van 0.

Post a new message
Dataseries X:
92.66
94.2
94.37
94.45
94.62
94.37
93.43
94.79
94.88
94.79
94.62
94.71
93.77
95.73
95.99
95.82
95.47
95.82
94.71
96.33
96.5
96.16
96.33
96.33
95.05
96.84
96.92
97.44
97.78
97.69
96.67
98.29
98.2
98.71
98.54
98.2
96.92
99.06
99.65
99.82
99.99
100.33
99.31
101.1
101.1
100.93
100.85
100.93
99.6
101.88
101.81
102.38
102.74
102.82
101.72
103.47
102.98
102.68
102.9
103.03
101.29




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31035&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31035&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31035&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
194.32416666666670.6516616290590382.22
295.74666666666670.791308850556912.73000000000000
397.52751.032306552426083.66
499.99916666666671.205377785617694.17999999999999
5102.3341666666671.01658482035183.87000000000000

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 94.3241666666667 & 0.651661629059038 & 2.22 \tabularnewline
2 & 95.7466666666667 & 0.79130885055691 & 2.73000000000000 \tabularnewline
3 & 97.5275 & 1.03230655242608 & 3.66 \tabularnewline
4 & 99.9991666666667 & 1.20537778561769 & 4.17999999999999 \tabularnewline
5 & 102.334166666667 & 1.0165848203518 & 3.87000000000000 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31035&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]94.3241666666667[/C][C]0.651661629059038[/C][C]2.22[/C][/ROW]
[ROW][C]2[/C][C]95.7466666666667[/C][C]0.79130885055691[/C][C]2.73000000000000[/C][/ROW]
[ROW][C]3[/C][C]97.5275[/C][C]1.03230655242608[/C][C]3.66[/C][/ROW]
[ROW][C]4[/C][C]99.9991666666667[/C][C]1.20537778561769[/C][C]4.17999999999999[/C][/ROW]
[ROW][C]5[/C][C]102.334166666667[/C][C]1.0165848203518[/C][C]3.87000000000000[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31035&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31035&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
194.32416666666670.6516616290590382.22
295.74666666666670.791308850556912.73000000000000
397.52751.032306552426083.66
499.99916666666671.205377785617694.17999999999999
5102.3341666666671.01658482035183.87000000000000







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha-4.27574956214814
beta0.0532237232717873
S.D.0.0240601334687361
T-STAT2.21211255294766
p-value0.113877017161827

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & -4.27574956214814 \tabularnewline
beta & 0.0532237232717873 \tabularnewline
S.D. & 0.0240601334687361 \tabularnewline
T-STAT & 2.21211255294766 \tabularnewline
p-value & 0.113877017161827 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31035&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]-4.27574956214814[/C][/ROW]
[ROW][C]beta[/C][C]0.0532237232717873[/C][/ROW]
[ROW][C]S.D.[/C][C]0.0240601334687361[/C][/ROW]
[ROW][C]T-STAT[/C][C]2.21211255294766[/C][/ROW]
[ROW][C]p-value[/C][C]0.113877017161827[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31035&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31035&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha-4.27574956214814
beta0.0532237232717873
S.D.0.0240601334687361
T-STAT2.21211255294766
p-value0.113877017161827







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha-27.6689574130391
beta6.01682355593603
S.D.2.51946351274346
T-STAT2.38813680988151
p-value0.0969039503467427
Lambda-5.01682355593603

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & -27.6689574130391 \tabularnewline
beta & 6.01682355593603 \tabularnewline
S.D. & 2.51946351274346 \tabularnewline
T-STAT & 2.38813680988151 \tabularnewline
p-value & 0.0969039503467427 \tabularnewline
Lambda & -5.01682355593603 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31035&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]-27.6689574130391[/C][/ROW]
[ROW][C]beta[/C][C]6.01682355593603[/C][/ROW]
[ROW][C]S.D.[/C][C]2.51946351274346[/C][/ROW]
[ROW][C]T-STAT[/C][C]2.38813680988151[/C][/ROW]
[ROW][C]p-value[/C][C]0.0969039503467427[/C][/ROW]
[ROW][C]Lambda[/C][C]-5.01682355593603[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31035&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31035&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha-27.6689574130391
beta6.01682355593603
S.D.2.51946351274346
T-STAT2.38813680988151
p-value0.0969039503467427
Lambda-5.01682355593603



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 12 ; par2 = ; par3 = ; par4 = ; par5 = ; par6 = ; par7 = ; par8 = ; par9 = ; par10 = ; par11 = ; par12 = ; par13 = ; par14 = ; par15 = ; par16 = ; par17 = ; par18 = ; par19 = ; par20 = ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')