Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_babies.wasp
Title produced by softwareExercise 1.13
Date of computationMon, 13 Oct 2008 10:03:19 -0600
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Oct/13/t12239138991hke63fkhn8fp2a.htm/, Retrieved Sat, 18 May 2024 01:10:58 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=15692, Retrieved Sat, 18 May 2024 01:10:58 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords>80%
Estimated Impact149
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
F     [Exercise 1.13] [Exercise 1.13 (Wo...] [2008-10-01 13:28:34] [b98453cac15ba1066b407e146608df68]
F   P     [Exercise 1.13] [ex 1.13 simulatie 4] [2008-10-13 16:03:19] [4e6e942b02458d77e60e1b0e1044e71b] [Current]
Feedback Forum
2008-10-16 16:11:21 [Dana Molenberghs] [reply
Wanneer je de berekening meerdere malen uitvoerd, zal je zien dat je hier ook steeds een andere waarschijnlijkheid uitkomt.
2008-10-16 16:12:21 [Dana Molenberghs] [reply
Parameter is correct aangepast. Wanneer je deze berekening meerdere malen uitvoerd, zal je zien dat je ook hier steeds een ander resultaat bekomt.
2008-10-17 18:14:16 [Jan Van Riet] [reply
Deze berekening en redenering klopt. Door de juiste parameter aan te passen (Percentage of Male births per day) bekom je het juise resultaat. Dit resultaat verschilt echter wel elke keer je de berekening uitvoert. Hier zit je dus met hetzelfde probleem als bij de opgave met 60%. Ook hier zal je een gemiddelde moeten nemen.
2008-10-18 18:43:16 [Astrid Sniekers] [reply
Uitleg oplossing vraag 2:
De student zegt dat de waarschijnlijkheid dat meer dan 80% van alle geboortes in het kleine ziekenhuis jongens zijn 0 is. Bij zijn of haar berekening kan ik aflezen dat de waarschijnlijkheid echter 0,82% is. Het is wel juist dat de kans klein is dat meer dan 80% van alle geboortes in het kleine ziekenhuis jongens zijn. Door meerdere keren dezelfde berekening te doen zal u inderdaad soms 0% bekomen, maar ook vaak percentages die gelegen zijn tussen 0% en 1%.

Post a new message




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=15692&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=15692&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=15692&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'George Udny Yule' @ 72.249.76.132







Exercise 1.13 p. 14 (Introduction to Probability, 2nd ed.)
Number of simulated days365
Expected number of births in Large Hospital45
Expected number of births in Small Hospital15
Percentage of Male births per day(for which the probability is computed)0.8
#Females births in Large Hospital8174
#Males births in Large Hospital8251
#Female births in Small Hospital2709
#Male births in Small Hospital2766
Probability of more than 80 % of male births in Large Hospital0
Probability of more than 80 % of male births in Small Hospital0.00821917808219178
#Days per Year when more than 80 % of male births occur in Large Hospital0
#Days per Year when more than 80 % of male births occur in Small Hospital3

\begin{tabular}{lllllllll}
\hline
Exercise 1.13 p. 14 (Introduction to Probability, 2nd ed.) \tabularnewline
Number of simulated days & 365 \tabularnewline
Expected number of births in Large Hospital & 45 \tabularnewline
Expected number of births in Small Hospital & 15 \tabularnewline
Percentage of Male births per day(for which the probability is computed) & 0.8 \tabularnewline
#Females births in Large Hospital & 8174 \tabularnewline
#Males births in Large Hospital & 8251 \tabularnewline
#Female births in Small Hospital & 2709 \tabularnewline
#Male births in Small Hospital & 2766 \tabularnewline
Probability of more than 80 % of male births in Large Hospital & 0 \tabularnewline
Probability of more than 80 % of male births in Small Hospital & 0.00821917808219178 \tabularnewline
#Days per Year when more than 80 % of male births occur in Large Hospital & 0 \tabularnewline
#Days per Year when more than 80 % of male births occur in Small Hospital & 3 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=15692&T=1

[TABLE]
[ROW][C]Exercise 1.13 p. 14 (Introduction to Probability, 2nd ed.)[/C][/ROW]
[ROW][C]Number of simulated days[/C][C]365[/C][/ROW]
[ROW][C]Expected number of births in Large Hospital[/C][C]45[/C][/ROW]
[ROW][C]Expected number of births in Small Hospital[/C][C]15[/C][/ROW]
[ROW][C]Percentage of Male births per day(for which the probability is computed)[/C][C]0.8[/C][/ROW]
[ROW][C]#Females births in Large Hospital[/C][C]8174[/C][/ROW]
[ROW][C]#Males births in Large Hospital[/C][C]8251[/C][/ROW]
[ROW][C]#Female births in Small Hospital[/C][C]2709[/C][/ROW]
[ROW][C]#Male births in Small Hospital[/C][C]2766[/C][/ROW]
[ROW][C]Probability of more than 80 % of male births in Large Hospital[/C][C]0[/C][/ROW]
[C]Probability of more than 80 % of male births in Small Hospital[/C][C]0.00821917808219178[/C][/ROW]
[ROW][C]#Days per Year when more than 80 % of male births occur in Large Hospital[/C][C]0[/C][/ROW]
[C]#Days per Year when more than 80 % of male births occur in Small Hospital[/C][C]3[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=15692&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=15692&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Exercise 1.13 p. 14 (Introduction to Probability, 2nd ed.)
Number of simulated days365
Expected number of births in Large Hospital45
Expected number of births in Small Hospital15
Percentage of Male births per day(for which the probability is computed)0.8
#Females births in Large Hospital8174
#Males births in Large Hospital8251
#Female births in Small Hospital2709
#Male births in Small Hospital2766
Probability of more than 80 % of male births in Large Hospital0
Probability of more than 80 % of male births in Small Hospital0.00821917808219178
#Days per Year when more than 80 % of male births occur in Large Hospital0
#Days per Year when more than 80 % of male births occur in Small Hospital3



Parameters (Session):
par1 = 365 ; par2 = 45 ; par3 = 15 ; par4 = 0.8 ;
Parameters (R input):
par1 = 365 ; par2 = 45 ; par3 = 15 ; par4 = 0.8 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
numsuccessbig <- 0
numsuccesssmall <- 0
bighospital <- array(NA,dim=c(par1,par2))
smallhospital <- array(NA,dim=c(par1,par3))
bigprob <- array(NA,dim=par1)
smallprob <- array(NA,dim=par1)
for (i in 1:par1) {
bighospital[i,] <- sample(c('F','M'),par2,replace=TRUE)
if (as.matrix(table(bighospital[i,]))[2] > par4*par2) numsuccessbig = numsuccessbig + 1
bigprob[i] <- numsuccessbig/i
smallhospital[i,] <- sample(c('F','M'),par3,replace=TRUE)
if (as.matrix(table(smallhospital[i,]))[2] > par4*par3) numsuccesssmall = numsuccesssmall + 1
smallprob[i] <- numsuccesssmall/i
}
tbig <- as.matrix(table(bighospital))
tsmall <- as.matrix(table(smallhospital))
tbig
tsmall
numsuccessbig/par1
bigprob[par1]
numsuccesssmall/par1
smallprob[par1]
numsuccessbig/par1*365
bigprob[par1]*365
numsuccesssmall/par1*365
smallprob[par1]*365
bitmap(file='test1.png')
plot(bigprob,col=2,main='Probability in Large Hospital',xlab='#simulated days',ylab='probability')
dev.off()
bitmap(file='test2.png')
plot(smallprob,col=2,main='Probability in Small Hospital',xlab='#simulated days',ylab='probability')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Exercise 1.13 p. 14 (Introduction to Probability, 2nd ed.)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of simulated days',header=TRUE)
a<-table.element(a,par1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Expected number of births in Large Hospital',header=TRUE)
a<-table.element(a,par2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Expected number of births in Small Hospital',header=TRUE)
a<-table.element(a,par3)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Percentage of Male births per day
(for which the probability is computed)',header=TRUE)
a<-table.element(a,par4)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'#Females births in Large Hospital',header=TRUE)
a<-table.element(a,tbig[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'#Males births in Large Hospital',header=TRUE)
a<-table.element(a,tbig[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'#Female births in Small Hospital',header=TRUE)
a<-table.element(a,tsmall[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'#Male births in Small Hospital',header=TRUE)
a<-table.element(a,tsmall[2])
a<-table.row.end(a)
a<-table.row.start(a)
dum1 <- paste('Probability of more than', par4*100, sep=' ')
dum <- paste(dum1, '% of male births in Large Hospital', sep=' ')
a<-table.element(a, dum, header=TRUE)
a<-table.element(a, bigprob[par1])
a<-table.row.end(a)
dum <- paste(dum1, '% of male births in Small Hospital', sep=' ')
a<-table.element(a, dum, header=TRUE)
a<-table.element(a, smallprob[par1])
a<-table.row.end(a)
a<-table.row.start(a)
dum1 <- paste('#Days per Year when more than', par4*100, sep=' ')
dum <- paste(dum1, '% of male births occur in Large Hospital', sep=' ')
a<-table.element(a, dum, header=TRUE)
a<-table.element(a, bigprob[par1]*365)
a<-table.row.end(a)
dum <- paste(dum1, '% of male births occur in Small Hospital', sep=' ')
a<-table.element(a, dum, header=TRUE)
a<-table.element(a, smallprob[par1]*365)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')