Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_edauni.wasp
Title produced by softwareUnivariate Explorative Data Analysis
Date of computationMon, 27 Oct 2008 12:28:14 -0600
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Oct/27/t1225132166o2ppidgzqo9amu9.htm/, Retrieved Fri, 17 May 2024 07:02:34 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=19377, Retrieved Fri, 17 May 2024 07:02:34 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact149
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
F     [Univariate Explorative Data Analysis] [Investigation Dis...] [2007-10-21 17:06:37] [b9964c45117f7aac638ab9056d451faa]
F    D    [Univariate Explorative Data Analysis] [Investigation Dis...] [2008-10-27 18:28:14] [3bb0537fcae9c337e49b9ce75ff3d4da] [Current]
-   P       [Univariate Explorative Data Analysis] [Verbetering] [2008-11-02 19:48:55] [79c17183721a40a589db5f9f561947d8]
Feedback Forum
2008-10-31 15:43:25 [Bob Leysen] [reply
De lags werden niet ingesteld, deze moeten 36 worden. Ik heb dan ook een nieuwe link gemaakt:
http://www.freestatistics.org/blog/index.php?v=date/2008/Oct/30/t12253728791frueq4z3rg1624.htm

Als we naar de density plot of de QQ plot kijken is er duidelijk een normaalverdeling. De punten liggen zeer dicht bij de rechte. Enkel in het begin en einde zijn er wat outliers.

De run sequence plot kent een lichte daling, maar je kan ook zien dat er een zekere seasonaliteit is. Op lange termijn is het niveau van deze reeks niet constant. Het is moeilijk te zien. Dit is belangrijk voor assumptie 3.

In de run sequence plot kan je ook zien dat er geen gelijke spreiding is. De laatste assmptie is hier niet van toepassing. De spreiding van het eerste deel (tot 30) is kleiner dan de spreiding na 30. We hebben tijdens het college besproken dat de vraag ook betrekking heeft op de random component, dus je kan bij het berekenen de R-module veranderen nl. x = -0,86... Je trekt de voorspelling af en dan zie je nog beter dat de spreiding niet hetzelfde is.
2008-11-02 19:50:22 [Steven Hulsmans] [reply
2008-11-02 20:00:37 [Steven Hulsmans] [reply
http://www.freestatistics.org/blog/date/2008/Nov/02/t1225655382480uw0howehiuhz.htm

Het was beter de lags in te stellen op 36, zodat we de autocorrelatie konden aflezen van de laatste grafieken. Er is hier wel een normaalverdeling. De bulten aan de linkerkant in de density plot zijn verwaarloosbaar. In de run sequence plot zien we dat de reeks snel op en neer gaat. Dit betekent dat er een achteruitgang op lange termijn is: het niveau van de reeks is niet constant. Op lange termijn is er dus een dalende trend. Ook de spreiding in het eerste deel is groter als deze in het tweede deel. We kunnen hier best de R - code aanpassen.

Bij Q3 merken we inderdaad een dalende trend op. De lange termijn evolutie van de totale productie komt niet overeen met deze van de kleding. De seizoenaliteit is moeilijk af te lezen van de grafiek. Maar o.w.v. de autocorrelatie kunnen wer toch vanuit gaan dat er seizoenaliteit aanwezig is.

Bij Q6 moest wederom een aanpassing gebeuren in de R code. Er is inderdaad een robuust resultaat, zelfs als we rekening houden met de outliers.
2008-11-03 17:33:22 [Dries Van Gheluwe] [reply
De lag plots 12 en 36 zijn inderdaad niet aanwezig in de oefening. Daarom klopt ook de berekening niet bij de eerste voorwaarde. Voor de tweede voorwaarde kon je ook kijken naar het QQ- Plot,en de derde voorwaarde is beter te zien in het run sequence plot dan het QQ-Plot. De R-code kon inderdaad ook aangepast worden maar dit is materie die we pas in de les hebben behandelt.
2008-11-04 00:58:33 [Steven Symons] [reply
Assumptie 1: een beperkte seizonaliteit kunnen we aflezen van het Lagplot. Voor deze assumptie te testen moeten we de gegevens op het ‘Lagplot’ aflezen, niet van het Run Sequence Plot. In de calculator ‘hoeveel lags’ kunnen we het getal 12 of 36 invullen. Door een aantal lags in te vullen verschuift de tijdreeks één bepaalde periode. Het ‘Lagplot’ geeft dan het scatterplot tussen de oorspronkelijke en de nieuwe tijdreeks weer, zo kunnen we het verband zien tussen het verleden en het heden. Op deze grafiek kunnen we dan zien dat er geen autocorrelatie is. Wanneer we voor aantal lags ‘12’ invullen kunnen we zien dat de puntenwolk dicht bij de lijn liggen en een lichte positieve helling vertoont, dit wil zeggen dat er een positieve seizonale autocorrelatie bestaat. We kunnen ook zien dat de gegevens willekeurig verspreid zijn. Als conclusie kunnen we stellen dat de tijdreeks met lags 12 geen randomness bevat maar autocorrelatie met seizonale betekenis. Als we voor het aantal lags ‘36’ invullen kunnen we op de grafiek van ‘Autocorrelation Function’ een terugkerend patroon per jaar zien.

Assumptie 2:
Het is correct dat we voor deze assumptie het verloop van de histogram en het density plot vergelijken. We kunnen op de histogram een bijna normaalverdeling waarnemen, met uitzondering van de slag links. Op het density plot kunnen we ook een afgevlakte normaalverdeling waarnemen. Wanneer we willen checken of beide grafieken een normaalverdeling vertonen, kunnen we ook gebruik maken van het Normal QQ Plot. Op deze grafiek zien we dat de punten relatief dicht op de rechte (die het verband tussen de werkelijke en theoretische kwantielen voorstelt) liggen, dit wijst op een bijna normaalverdeling. Slechts in het begin van de rechte zien we de punten verder verwijderd liggen, dit wijst op de afwijking links die te zien was in het histogram. Zoals we eerder geconcludeerd hadden (q1) vertoont de dataset geen autocorrelatie waardor er wel een normaalverdeling is.

Assumptie 3:
Voor deze assumptie moeten we onderzoeken of de verdeling een constant niveau heeft, dit kunnen we zien aan de hand van de Run Sequence Plot. We kunnen vaststellen dat de curve zeer sterk op een neer gaat, maar dit is niet relevant (KT). Voor deze assumptie moeten we de LT-trend onderzoeken, dit kunnen we al zien als we de gehele grafiek bekijken, die een dalend verloop weergeeft, dus deze is niet constant.
We kunnen dit ook op een andere manier vinden door de te berekenen of het gemiddelde constant is, met gebruik van de Central Tendancy software.
Uit beide grafieken (zowel winsorized als trimmed mean) kunnen we afleiden dat het gemiddelde inderdaad niet constant verloopt. Meer kunnen we niet afleiden. We kunnen besluiten dat we een vermoeden hebben dat de dataset een dalende trend op het einde vertoont.

Assumptie 4:
Voor deze assumptie moeten de gegevens op de y-as (random component) ongeveer eenzelfde spreiding hebben en ongeveer even breed zijn (dus constant blijven). Als we kijken naar de spreiding over de tijd heen in het Run Sequence Plot, kunnen we vaststellen dat we de grafiek in 2 kunnen delen waarvan het 1ste deel groter is dan het 2de deel. Dus er is een verandering van schommeling doorheen de tijd.

CONCLUSIE: er werd niet aan alle voorwaarden voldaan, dus de tijdreeks voldoet niet aan het model van: Clothing Production = constant + random component.

Post a new message
Dataseries X:
109.20
88.60
94.30
98.30
86.40
80.60
104.10
108.20
93.40
71.90
94.10
94.90
96.40
91.10
84.40
86.40
88.00
75.10
109.70
103.00
82.10
68.00
96.40
94.30
90.00
88.00
76.10
82.50
81.40
66.50
97.20
94.10
80.70
70.50
87.80
89.50
99.60
84.20
75.10
92.00
80.80
73.10
99.80
90.00
83.10
72.40
78.80
87.30
91.00
80.10
73.60
86.40
74.50
71.20
92.40
81.50
85.30
69.90
84.20
90.70
100.30




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=19377&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=19377&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=19377&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Descriptive Statistics
# observations61
minimum66.5
Q180.6
median87.3
mean86.8934426229508
Q394.1
maximum109.7

\begin{tabular}{lllllllll}
\hline
Descriptive Statistics \tabularnewline
# observations & 61 \tabularnewline
minimum & 66.5 \tabularnewline
Q1 & 80.6 \tabularnewline
median & 87.3 \tabularnewline
mean & 86.8934426229508 \tabularnewline
Q3 & 94.1 \tabularnewline
maximum & 109.7 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=19377&T=1

[TABLE]
[ROW][C]Descriptive Statistics[/C][/ROW]
[ROW][C]# observations[/C][C]61[/C][/ROW]
[ROW][C]minimum[/C][C]66.5[/C][/ROW]
[ROW][C]Q1[/C][C]80.6[/C][/ROW]
[ROW][C]median[/C][C]87.3[/C][/ROW]
[ROW][C]mean[/C][C]86.8934426229508[/C][/ROW]
[ROW][C]Q3[/C][C]94.1[/C][/ROW]
[ROW][C]maximum[/C][C]109.7[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=19377&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=19377&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Descriptive Statistics
# observations61
minimum66.5
Q180.6
median87.3
mean86.8934426229508
Q394.1
maximum109.7



Parameters (Session):
par1 = 0 ; par2 = 0 ;
Parameters (R input):
par1 = 0 ; par2 = 0 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
x <- as.ts(x)
library(lattice)
bitmap(file='pic1.png')
plot(x,type='l',main='Run Sequence Plot',xlab='time or index',ylab='value')
grid()
dev.off()
bitmap(file='pic2.png')
hist(x)
grid()
dev.off()
bitmap(file='pic3.png')
if (par1 > 0)
{
densityplot(~x,col='black',main=paste('Density Plot bw = ',par1),bw=par1)
} else {
densityplot(~x,col='black',main='Density Plot')
}
dev.off()
bitmap(file='pic4.png')
qqnorm(x)
grid()
dev.off()
if (par2 > 0)
{
bitmap(file='lagplot.png')
dum <- cbind(lag(x,k=1),x)
dum
dum1 <- dum[2:length(x),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Lag plot, lowess, and regression line'))
lines(lowess(z))
abline(lm(z))
dev.off()
bitmap(file='pic5.png')
acf(x,lag.max=par2,main='Autocorrelation Function')
grid()
dev.off()
}
summary(x)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Descriptive Statistics',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'# observations',header=TRUE)
a<-table.element(a,length(x))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'minimum',header=TRUE)
a<-table.element(a,min(x))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Q1',header=TRUE)
a<-table.element(a,quantile(x,0.25))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'median',header=TRUE)
a<-table.element(a,median(x))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
a<-table.element(a,mean(x))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Q3',header=TRUE)
a<-table.element(a,quantile(x,0.75))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'maximum',header=TRUE)
a<-table.element(a,max(x))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')