Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationFri, 18 Dec 2009 09:54:32 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Dec/18/t1261155349ivoo5bzugpi5i4t.htm/, Retrieved Sat, 27 Apr 2024 05:31:51 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=69429, Retrieved Sat, 27 Apr 2024 05:31:51 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsSHW Paper: ARIMA backward selection
Estimated Impact97
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Data Series] [data set] [2008-12-01 19:54:57] [b98453cac15ba1066b407e146608df68]
- RMP   [ARIMA Backward Selection] [] [2009-11-27 14:53:14] [b98453cac15ba1066b407e146608df68]
-    D    [ARIMA Backward Selection] [WS 9 ARIMA Backwa...] [2009-12-04 10:15:08] [b103a1dc147def8132c7f643ad8c8f84]
-   PD        [ARIMA Backward Selection] [Paper: ARIMA back...] [2009-12-18 16:54:32] [a45cc820faa25ce30779915639528ec2] [Current]
-   P           [ARIMA Backward Selection] [Paper: ARIMA back...] [2009-12-20 11:04:25] [b103a1dc147def8132c7f643ad8c8f84]
Feedback Forum

Post a new message
Dataseries X:
15.5
15.1
11.7
16.3
16.7
15
14.9
14.6
15.3
17.9
16.4
15.4
17.9
15.9
13.9
17.8
17.9
17.4
16.7
16
16.6
19.1
17.8
17.2
18.6
16.3
15.1
19.2
17.7
19.1
18
17.5
17.8
21.1
17.2
19.4
19.8
17.6
16.2
19.5
19.9
20
17.3
18.9
18.6
21.4
18.6
19.8
20.8
19.6
17.7
19.8
22.2
20.7
17.9
20.9
21.2
21.4
23
21.3
23.9
22.4
18.3
22.8
22.3
17.8
16.4
16
16.4
17.7
16.6
16.2
18.3




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=69429&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=69429&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=69429&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3sma1
Estimates ( 1 )-0.6061-0.05040.3939-0.1967
(p-val)(0 )(0.721 )(0.0014 )(0.4011 )
Estimates ( 2 )-0.580600.4209-0.1915
(p-val)(0 )(NA )(0 )(0.4107 )
Estimates ( 3 )-0.585300.43460
(p-val)(0 )(NA )(0 )(NA )
Estimates ( 4 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 5 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANA
(p-val)(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & sma1 \tabularnewline
Estimates ( 1 ) & -0.6061 & -0.0504 & 0.3939 & -0.1967 \tabularnewline
(p-val) & (0 ) & (0.721 ) & (0.0014 ) & (0.4011 ) \tabularnewline
Estimates ( 2 ) & -0.5806 & 0 & 0.4209 & -0.1915 \tabularnewline
(p-val) & (0 ) & (NA ) & (0 ) & (0.4107 ) \tabularnewline
Estimates ( 3 ) & -0.5853 & 0 & 0.4346 & 0 \tabularnewline
(p-val) & (0 ) & (NA ) & (0 ) & (NA ) \tabularnewline
Estimates ( 4 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 5 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=69429&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]-0.6061[/C][C]-0.0504[/C][C]0.3939[/C][C]-0.1967[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](0.721 )[/C][C](0.0014 )[/C][C](0.4011 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]-0.5806[/C][C]0[/C][C]0.4209[/C][C]-0.1915[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](NA )[/C][C](0 )[/C][C](0.4107 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]-0.5853[/C][C]0[/C][C]0.4346[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](NA )[/C][C](0 )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=69429&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=69429&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3sma1
Estimates ( 1 )-0.6061-0.05040.3939-0.1967
(p-val)(0 )(0.721 )(0.0014 )(0.4011 )
Estimates ( 2 )-0.580600.4209-0.1915
(p-val)(0 )(NA )(0 )(0.4107 )
Estimates ( 3 )-0.585300.43460
(p-val)(0 )(NA )(0 )(NA )
Estimates ( 4 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 5 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANA
(p-val)(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
-0.0442988582261511
-1.11923735757002
0.434746349278176
-0.169366889411285
-0.0112338384062337
0.394964391962801
0.409710046462883
-0.608296494766009
-0.867895166335467
0.159485338929753
0.24865179542585
0.530472310175345
-0.735355849995766
-1.16624500772679
0.525042346224461
1.08201799250647
-1.35840574346341
0.707430693039183
0.696155103870903
0.526689061373532
-1.14696766165059
0.825038817892898
-2.17249335220308
1.51598807517368
0.153617624868843
0.393210300809215
-1.21844624511439
-0.289242931913636
1.13347910828329
0.0226405018128170
-1.88472076400021
0.472047995609513
0.94693936248094
-0.0169665976288002
-0.489973925339304
0.18125543718451
0.259239891789177
0.960547831840875
0.26824495143173
-1.79820990408776
1.09939273254283
-0.224039698891162
-0.884658019122002
0.590428206605493
2.26763875305562
-2.21280851077299
2.20735646132122
-0.563330430340979
1.06043081123016
-1.03933201213029
-1.10206104714275
0.104898412636320
-1.16982420304593
-3.80047891760308
-1.52139548313453
-1.25338892406961
-0.176901439190923
0.145021148690706
-0.207477964455039
-0.417513540085684
-0.00524499099737869

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
-0.0442988582261511 \tabularnewline
-1.11923735757002 \tabularnewline
0.434746349278176 \tabularnewline
-0.169366889411285 \tabularnewline
-0.0112338384062337 \tabularnewline
0.394964391962801 \tabularnewline
0.409710046462883 \tabularnewline
-0.608296494766009 \tabularnewline
-0.867895166335467 \tabularnewline
0.159485338929753 \tabularnewline
0.24865179542585 \tabularnewline
0.530472310175345 \tabularnewline
-0.735355849995766 \tabularnewline
-1.16624500772679 \tabularnewline
0.525042346224461 \tabularnewline
1.08201799250647 \tabularnewline
-1.35840574346341 \tabularnewline
0.707430693039183 \tabularnewline
0.696155103870903 \tabularnewline
0.526689061373532 \tabularnewline
-1.14696766165059 \tabularnewline
0.825038817892898 \tabularnewline
-2.17249335220308 \tabularnewline
1.51598807517368 \tabularnewline
0.153617624868843 \tabularnewline
0.393210300809215 \tabularnewline
-1.21844624511439 \tabularnewline
-0.289242931913636 \tabularnewline
1.13347910828329 \tabularnewline
0.0226405018128170 \tabularnewline
-1.88472076400021 \tabularnewline
0.472047995609513 \tabularnewline
0.94693936248094 \tabularnewline
-0.0169665976288002 \tabularnewline
-0.489973925339304 \tabularnewline
0.18125543718451 \tabularnewline
0.259239891789177 \tabularnewline
0.960547831840875 \tabularnewline
0.26824495143173 \tabularnewline
-1.79820990408776 \tabularnewline
1.09939273254283 \tabularnewline
-0.224039698891162 \tabularnewline
-0.884658019122002 \tabularnewline
0.590428206605493 \tabularnewline
2.26763875305562 \tabularnewline
-2.21280851077299 \tabularnewline
2.20735646132122 \tabularnewline
-0.563330430340979 \tabularnewline
1.06043081123016 \tabularnewline
-1.03933201213029 \tabularnewline
-1.10206104714275 \tabularnewline
0.104898412636320 \tabularnewline
-1.16982420304593 \tabularnewline
-3.80047891760308 \tabularnewline
-1.52139548313453 \tabularnewline
-1.25338892406961 \tabularnewline
-0.176901439190923 \tabularnewline
0.145021148690706 \tabularnewline
-0.207477964455039 \tabularnewline
-0.417513540085684 \tabularnewline
-0.00524499099737869 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=69429&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]-0.0442988582261511[/C][/ROW]
[ROW][C]-1.11923735757002[/C][/ROW]
[ROW][C]0.434746349278176[/C][/ROW]
[ROW][C]-0.169366889411285[/C][/ROW]
[ROW][C]-0.0112338384062337[/C][/ROW]
[ROW][C]0.394964391962801[/C][/ROW]
[ROW][C]0.409710046462883[/C][/ROW]
[ROW][C]-0.608296494766009[/C][/ROW]
[ROW][C]-0.867895166335467[/C][/ROW]
[ROW][C]0.159485338929753[/C][/ROW]
[ROW][C]0.24865179542585[/C][/ROW]
[ROW][C]0.530472310175345[/C][/ROW]
[ROW][C]-0.735355849995766[/C][/ROW]
[ROW][C]-1.16624500772679[/C][/ROW]
[ROW][C]0.525042346224461[/C][/ROW]
[ROW][C]1.08201799250647[/C][/ROW]
[ROW][C]-1.35840574346341[/C][/ROW]
[ROW][C]0.707430693039183[/C][/ROW]
[ROW][C]0.696155103870903[/C][/ROW]
[ROW][C]0.526689061373532[/C][/ROW]
[ROW][C]-1.14696766165059[/C][/ROW]
[ROW][C]0.825038817892898[/C][/ROW]
[ROW][C]-2.17249335220308[/C][/ROW]
[ROW][C]1.51598807517368[/C][/ROW]
[ROW][C]0.153617624868843[/C][/ROW]
[ROW][C]0.393210300809215[/C][/ROW]
[ROW][C]-1.21844624511439[/C][/ROW]
[ROW][C]-0.289242931913636[/C][/ROW]
[ROW][C]1.13347910828329[/C][/ROW]
[ROW][C]0.0226405018128170[/C][/ROW]
[ROW][C]-1.88472076400021[/C][/ROW]
[ROW][C]0.472047995609513[/C][/ROW]
[ROW][C]0.94693936248094[/C][/ROW]
[ROW][C]-0.0169665976288002[/C][/ROW]
[ROW][C]-0.489973925339304[/C][/ROW]
[ROW][C]0.18125543718451[/C][/ROW]
[ROW][C]0.259239891789177[/C][/ROW]
[ROW][C]0.960547831840875[/C][/ROW]
[ROW][C]0.26824495143173[/C][/ROW]
[ROW][C]-1.79820990408776[/C][/ROW]
[ROW][C]1.09939273254283[/C][/ROW]
[ROW][C]-0.224039698891162[/C][/ROW]
[ROW][C]-0.884658019122002[/C][/ROW]
[ROW][C]0.590428206605493[/C][/ROW]
[ROW][C]2.26763875305562[/C][/ROW]
[ROW][C]-2.21280851077299[/C][/ROW]
[ROW][C]2.20735646132122[/C][/ROW]
[ROW][C]-0.563330430340979[/C][/ROW]
[ROW][C]1.06043081123016[/C][/ROW]
[ROW][C]-1.03933201213029[/C][/ROW]
[ROW][C]-1.10206104714275[/C][/ROW]
[ROW][C]0.104898412636320[/C][/ROW]
[ROW][C]-1.16982420304593[/C][/ROW]
[ROW][C]-3.80047891760308[/C][/ROW]
[ROW][C]-1.52139548313453[/C][/ROW]
[ROW][C]-1.25338892406961[/C][/ROW]
[ROW][C]-0.176901439190923[/C][/ROW]
[ROW][C]0.145021148690706[/C][/ROW]
[ROW][C]-0.207477964455039[/C][/ROW]
[ROW][C]-0.417513540085684[/C][/ROW]
[ROW][C]-0.00524499099737869[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=69429&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=69429&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
-0.0442988582261511
-1.11923735757002
0.434746349278176
-0.169366889411285
-0.0112338384062337
0.394964391962801
0.409710046462883
-0.608296494766009
-0.867895166335467
0.159485338929753
0.24865179542585
0.530472310175345
-0.735355849995766
-1.16624500772679
0.525042346224461
1.08201799250647
-1.35840574346341
0.707430693039183
0.696155103870903
0.526689061373532
-1.14696766165059
0.825038817892898
-2.17249335220308
1.51598807517368
0.153617624868843
0.393210300809215
-1.21844624511439
-0.289242931913636
1.13347910828329
0.0226405018128170
-1.88472076400021
0.472047995609513
0.94693936248094
-0.0169665976288002
-0.489973925339304
0.18125543718451
0.259239891789177
0.960547831840875
0.26824495143173
-1.79820990408776
1.09939273254283
-0.224039698891162
-0.884658019122002
0.590428206605493
2.26763875305562
-2.21280851077299
2.20735646132122
-0.563330430340979
1.06043081123016
-1.03933201213029
-1.10206104714275
0.104898412636320
-1.16982420304593
-3.80047891760308
-1.52139548313453
-1.25338892406961
-0.176901439190923
0.145021148690706
-0.207477964455039
-0.417513540085684
-0.00524499099737869



Parameters (Session):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 0 ; par8 = 0 ; par9 = 1 ;
Parameters (R input):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 0 ; par8 = 0 ; par9 = 1 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')