Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_boxcoxlin.wasp
Title produced by softwareBox-Cox Linearity Plot
Date of computationMon, 23 Nov 2009 17:31:19 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/24/t12590228154zj7z0jrxui3z7r.htm/, Retrieved Sun, 16 Jun 2024 22:17:21 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=58951, Retrieved Sun, 16 Jun 2024 22:17:21 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact170
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Box-Cox Linearity Plot] [3/11/2009] [2009-11-02 21:47:57] [b98453cac15ba1066b407e146608df68]
-    D    [Box-Cox Linearity Plot] [Ws 6.7] [2009-11-24 00:31:19] [71c065898bd1c08eef04509b4bcee039] [Current]
Feedback Forum

Post a new message
Dataseries X:
100,00
105,26
106,58
101,32
98,68
100,00
102,63
102,63
102,63
98,68
98,68
93,42
98,68
98,68
100,00
101,32
101,32
103,95
106,58
107,89
107,89
107,89
103,95
96,05
90,79
86,84
88,16
90,79
92,11
93,42
94,74
93,42
90,79
92,11
89,47
84,21
88,16
86,84
84,21
82,89
81,58
85,53
89,47
89,47
84,21
80,26
76,32
80,26
94,74
96,05
90,79
80,26
76,32
81,58
93,42
101,32
103,95
101,32
97,37
98,68
Dataseries Y:
100,00
106,73
104,81
96,15
88,46
88,46
91,35
92,31
91,35
87,50
85,58
86,54
97,12
99,04
98,08
92,31
88,46
89,42
90,38
90,38
88,46
86,54
86,54
86,54
94,23
96,15
94,23
89,42
86,54
86,54
87,50
87,50
87,50
88,46
84,62
79,81
80,77
77,88
74,04
75,96
75,96
76,92
75,96
73,08
68,27
65,38
62,50
66,35
78,85
83,65
79,81
75,96
72,12
75,00
79,81
80,77
78,85
74,04
69,23
70,19




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58951&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58951&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58951&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Box-Cox Linearity Plot
# observations x60
maximum correlation0.654149583187924
optimal lambda(x)-2
Residual SD (orginial)7.55899914532463
Residual SD (transformed)7.40889865572302

\begin{tabular}{lllllllll}
\hline
Box-Cox Linearity Plot \tabularnewline
# observations x & 60 \tabularnewline
maximum correlation & 0.654149583187924 \tabularnewline
optimal lambda(x) & -2 \tabularnewline
Residual SD (orginial) & 7.55899914532463 \tabularnewline
Residual SD (transformed) & 7.40889865572302 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58951&T=1

[TABLE]
[ROW][C]Box-Cox Linearity Plot[/C][/ROW]
[ROW][C]# observations x[/C][C]60[/C][/ROW]
[ROW][C]maximum correlation[/C][C]0.654149583187924[/C][/ROW]
[ROW][C]optimal lambda(x)[/C][C]-2[/C][/ROW]
[ROW][C]Residual SD (orginial)[/C][C]7.55899914532463[/C][/ROW]
[ROW][C]Residual SD (transformed)[/C][C]7.40889865572302[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58951&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58951&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Box-Cox Linearity Plot
# observations x60
maximum correlation0.654149583187924
optimal lambda(x)-2
Residual SD (orginial)7.55899914532463
Residual SD (transformed)7.40889865572302



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
n <- length(x)
c <- array(NA,dim=c(401))
l <- array(NA,dim=c(401))
mx <- 0
mxli <- -999
for (i in 1:401)
{
l[i] <- (i-201)/100
if (l[i] != 0)
{
x1 <- (x^l[i] - 1) / l[i]
} else {
x1 <- log(x)
}
c[i] <- cor(x1,y)
if (mx < abs(c[i]))
{
mx <- abs(c[i])
mxli <- l[i]
}
}
c
mx
mxli
if (mxli != 0)
{
x1 <- (x^mxli - 1) / mxli
} else {
x1 <- log(x)
}
r<-lm(y~x)
se <- sqrt(var(r$residuals))
r1 <- lm(y~x1)
se1 <- sqrt(var(r1$residuals))
bitmap(file='test1.png')
plot(l,c,main='Box-Cox Linearity Plot',xlab='Lambda',ylab='correlation')
grid()
dev.off()
bitmap(file='test2.png')
plot(x,y,main='Linear Fit of Original Data',xlab='x',ylab='y')
abline(r)
grid()
mtext(paste('Residual Standard Deviation = ',se))
dev.off()
bitmap(file='test3.png')
plot(x1,y,main='Linear Fit of Transformed Data',xlab='x',ylab='y')
abline(r1)
grid()
mtext(paste('Residual Standard Deviation = ',se1))
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Box-Cox Linearity Plot',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'# observations x',header=TRUE)
a<-table.element(a,n)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'maximum correlation',header=TRUE)
a<-table.element(a,mx)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'optimal lambda(x)',header=TRUE)
a<-table.element(a,mxli)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Residual SD (orginial)',header=TRUE)
a<-table.element(a,se)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Residual SD (transformed)',header=TRUE)
a<-table.element(a,se1)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')