Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 24 Nov 2009 01:40:29 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/24/t1259052091ppd6k4lcrltk02z.htm/, Retrieved Wed, 11 Sep 2024 07:40:53 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=58959, Retrieved Wed, 11 Sep 2024 07:40:53 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact210
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
- RMPD  [Multiple Regression] [Seatbelt] [2009-11-12 14:03:14] [b98453cac15ba1066b407e146608df68]
- R  D      [Multiple Regression] [] [2009-11-24 08:40:29] [d41d8cd98f00b204e9800998ecf8427e] [Current]
-    D        [Multiple Regression] [] [2009-11-30 18:23:57] [74be16979710d4c4e7c6647856088456]
-   P           [Multiple Regression] [] [2009-11-30 18:43:43] [74be16979710d4c4e7c6647856088456]
Feedback Forum

Post a new message
Dataseries X:
267413	294912
267366	293488
264777	290555
258863	284736
254844	281818
254868	287854
277267	316263
285351	325412
286602	326011
283042	328282
276687	317480
277915	317539
277128	313737
277103	312276
275037	309391
270150	302950
267140	300316
264993	304035
287259	333476
291186	337698
292300	335932
288186	323931
281477	313927
282656	314485
280190	313218
280408	309664
276836	302963
275216	298989
274352	298423
271311	301631
289802	329765
290726	335083
292300	327616
278506	309119
269826	295916
265861	291413
269034	291542
264176	284678
255198	276475
253353	272566
246057	264981
235372	263290
258556	296806
260993	303598
254663	286994
250643	276427
243422	266424
247105	267153
248541	268381
245039	262522
237080	255542
237085	253158
225554	243803
226839	250741
247934	280445
248333	285257
246969	270976
245098	261076
246263	255603
255765	260376
264319	263903
268347	264291
273046	263276
273963	262572
267430	256167
271993	264221
292710	293860




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 7 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58959&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]7 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58959&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58959&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 93124.3064063537 + 0.595245145625902X[t] + 1460.64625979357M1[t] + 2625.50165379033M2[t] + 2063.61079494683M3[t] + 2144.30079128605M4[t] -474.914587784631M5[t] -4747.33433857108M6[t] -1131.23893509993M7[t] -6743.02998141279M8[t] -2789.33139941479M9[t] -2464.15797519326M10[t] -2133.01676893371M11[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Y[t] =  +  93124.3064063537 +  0.595245145625902X[t] +  1460.64625979357M1[t] +  2625.50165379033M2[t] +  2063.61079494683M3[t] +  2144.30079128605M4[t] -474.914587784631M5[t] -4747.33433857108M6[t] -1131.23893509993M7[t] -6743.02998141279M8[t] -2789.33139941479M9[t] -2464.15797519326M10[t] -2133.01676893371M11[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58959&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Y[t] =  +  93124.3064063537 +  0.595245145625902X[t] +  1460.64625979357M1[t] +  2625.50165379033M2[t] +  2063.61079494683M3[t] +  2144.30079128605M4[t] -474.914587784631M5[t] -4747.33433857108M6[t] -1131.23893509993M7[t] -6743.02998141279M8[t] -2789.33139941479M9[t] -2464.15797519326M10[t] -2133.01676893371M11[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58959&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58959&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 93124.3064063537 + 0.595245145625902X[t] + 1460.64625979357M1[t] + 2625.50165379033M2[t] + 2063.61079494683M3[t] + 2144.30079128605M4[t] -474.914587784631M5[t] -4747.33433857108M6[t] -1131.23893509993M7[t] -6743.02998141279M8[t] -2789.33139941479M9[t] -2464.15797519326M10[t] -2133.01676893371M11[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)93124.306406353716338.1647575.69981e-060
X0.5952451456259020.05433610.95500
M11460.646259793575794.1316530.25210.8019280.400964
M22625.501653790335795.4211350.4530.6523420.326171
M32063.610794946835807.0311470.35540.7237010.361851
M42144.300791286055824.9078860.36810.7142180.357109
M5-474.9145877846315858.378469-0.08110.9356890.467845
M6-4747.334338571085827.960201-0.81460.4188910.209446
M7-1131.238935099935878.16325-0.19240.8481130.424057
M8-6743.029981412796229.689339-1.08240.2838840.141942
M9-2789.331399414796141.928098-0.45410.6515440.325772
M10-2464.157975193266073.938233-0.40570.6865710.343285
M11-2133.016768933716051.646679-0.35250.7258590.362929

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 93124.3064063537 & 16338.164757 & 5.6998 & 1e-06 & 0 \tabularnewline
X & 0.595245145625902 & 0.054336 & 10.955 & 0 & 0 \tabularnewline
M1 & 1460.64625979357 & 5794.131653 & 0.2521 & 0.801928 & 0.400964 \tabularnewline
M2 & 2625.50165379033 & 5795.421135 & 0.453 & 0.652342 & 0.326171 \tabularnewline
M3 & 2063.61079494683 & 5807.031147 & 0.3554 & 0.723701 & 0.361851 \tabularnewline
M4 & 2144.30079128605 & 5824.907886 & 0.3681 & 0.714218 & 0.357109 \tabularnewline
M5 & -474.914587784631 & 5858.378469 & -0.0811 & 0.935689 & 0.467845 \tabularnewline
M6 & -4747.33433857108 & 5827.960201 & -0.8146 & 0.418891 & 0.209446 \tabularnewline
M7 & -1131.23893509993 & 5878.16325 & -0.1924 & 0.848113 & 0.424057 \tabularnewline
M8 & -6743.02998141279 & 6229.689339 & -1.0824 & 0.283884 & 0.141942 \tabularnewline
M9 & -2789.33139941479 & 6141.928098 & -0.4541 & 0.651544 & 0.325772 \tabularnewline
M10 & -2464.15797519326 & 6073.938233 & -0.4057 & 0.686571 & 0.343285 \tabularnewline
M11 & -2133.01676893371 & 6051.646679 & -0.3525 & 0.725859 & 0.362929 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58959&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]93124.3064063537[/C][C]16338.164757[/C][C]5.6998[/C][C]1e-06[/C][C]0[/C][/ROW]
[ROW][C]X[/C][C]0.595245145625902[/C][C]0.054336[/C][C]10.955[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M1[/C][C]1460.64625979357[/C][C]5794.131653[/C][C]0.2521[/C][C]0.801928[/C][C]0.400964[/C][/ROW]
[ROW][C]M2[/C][C]2625.50165379033[/C][C]5795.421135[/C][C]0.453[/C][C]0.652342[/C][C]0.326171[/C][/ROW]
[ROW][C]M3[/C][C]2063.61079494683[/C][C]5807.031147[/C][C]0.3554[/C][C]0.723701[/C][C]0.361851[/C][/ROW]
[ROW][C]M4[/C][C]2144.30079128605[/C][C]5824.907886[/C][C]0.3681[/C][C]0.714218[/C][C]0.357109[/C][/ROW]
[ROW][C]M5[/C][C]-474.914587784631[/C][C]5858.378469[/C][C]-0.0811[/C][C]0.935689[/C][C]0.467845[/C][/ROW]
[ROW][C]M6[/C][C]-4747.33433857108[/C][C]5827.960201[/C][C]-0.8146[/C][C]0.418891[/C][C]0.209446[/C][/ROW]
[ROW][C]M7[/C][C]-1131.23893509993[/C][C]5878.16325[/C][C]-0.1924[/C][C]0.848113[/C][C]0.424057[/C][/ROW]
[ROW][C]M8[/C][C]-6743.02998141279[/C][C]6229.689339[/C][C]-1.0824[/C][C]0.283884[/C][C]0.141942[/C][/ROW]
[ROW][C]M9[/C][C]-2789.33139941479[/C][C]6141.928098[/C][C]-0.4541[/C][C]0.651544[/C][C]0.325772[/C][/ROW]
[ROW][C]M10[/C][C]-2464.15797519326[/C][C]6073.938233[/C][C]-0.4057[/C][C]0.686571[/C][C]0.343285[/C][/ROW]
[ROW][C]M11[/C][C]-2133.01676893371[/C][C]6051.646679[/C][C]-0.3525[/C][C]0.725859[/C][C]0.362929[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58959&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58959&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)93124.306406353716338.1647575.69981e-060
X0.5952451456259020.05433610.95500
M11460.646259793575794.1316530.25210.8019280.400964
M22625.501653790335795.4211350.4530.6523420.326171
M32063.610794946835807.0311470.35540.7237010.361851
M42144.300791286055824.9078860.36810.7142180.357109
M5-474.9145877846315858.378469-0.08110.9356890.467845
M6-4747.334338571085827.960201-0.81460.4188910.209446
M7-1131.238935099935878.16325-0.19240.8481130.424057
M8-6743.029981412796229.689339-1.08240.2838840.141942
M9-2789.331399414796141.928098-0.45410.6515440.325772
M10-2464.157975193266073.938233-0.40570.6865710.343285
M11-2133.016768933716051.646679-0.35250.7258590.362929







Multiple Linear Regression - Regression Statistics
Multiple R0.860025172821497
R-squared0.739643297886646
Adjusted R-squared0.681786252972568
F-TEST (value)12.7839798763498
F-TEST (DF numerator)12
F-TEST (DF denominator)54
p-value7.89301957127009e-12
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation9568.45326181193
Sum Squared Residuals4943986082.46788

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.860025172821497 \tabularnewline
R-squared & 0.739643297886646 \tabularnewline
Adjusted R-squared & 0.681786252972568 \tabularnewline
F-TEST (value) & 12.7839798763498 \tabularnewline
F-TEST (DF numerator) & 12 \tabularnewline
F-TEST (DF denominator) & 54 \tabularnewline
p-value & 7.89301957127009e-12 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 9568.45326181193 \tabularnewline
Sum Squared Residuals & 4943986082.46788 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58959&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.860025172821497[/C][/ROW]
[ROW][C]R-squared[/C][C]0.739643297886646[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.681786252972568[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]12.7839798763498[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]12[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]54[/C][/ROW]
[ROW][C]p-value[/C][C]7.89301957127009e-12[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]9568.45326181193[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]4943986082.46788[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58959&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58959&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.860025172821497
R-squared0.739643297886646
Adjusted R-squared0.681786252972568
F-TEST (value)12.7839798763498
F-TEST (DF numerator)12
F-TEST (DF denominator)54
p-value7.89301957127009e-12
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation9568.45326181193
Sum Squared Residuals4943986082.46788







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1267413270129.889052973-2716.88905297294
2267366270447.115359599-3081.11535959852
3264777268139.370488634-3362.37048863429
4258863264756.328982576-5893.32898257637
5254844260400.188268569-5556.18826856933
6254868259720.668216781-4852.66821678082
7277267280247.082962338-2980.08296233820
8285351280081.1897533575269.81024664329
9286602284391.4401775852210.55982241537
10283042286068.415327523-3026.41532752258
11276687279969.718470731-3282.71847073114
12277915282137.854703257-4222.85470325678
13277128281335.378919381-4207.37891938067
14277103281630.581155618-4527.58115561799
15275037279351.408051644-4314.40805164376
16270150275598.124065007-5448.12406500655
17267140271411.032972357-4271.03297235725
18264993269352.329918154-4359.32991815353
19287259290493.037653997-3234.03765399685
20291186287394.3716125173791.62838748346
21292300290296.8672673392003.1327326608
22288186283478.5036989044707.49630109572
23281477277854.8124683223622.18753167769
24282656280319.9760285152336.02397148472
25280190281026.446688801-836.446688800826
26280408280075.800835243332.199164756861
27276836275525.1722555601310.82774443953
28275216273240.3580431821975.64195681765
29274352270284.2339116874067.76608831259
30271311267921.3605880693389.63941193114
31289802288284.0829185791517.91708142087
32290726285837.8055567054888.19444329519
33292300285346.8086363146953.1913636858
34278506274661.7326018933844.26739810657
35269826267133.8521504542692.1478495458
36265861266586.480028634-725.480028634476
37269034268123.912912214910.087087786215
38264176265203.005626634-1027.00562663437
39255198259758.318838222-4560.31883822159
40253353257512.195560309-4159.19556030916
41246057250378.045751666-4321.04575166602
42235372245099.066459626-9727.06645962618
43258556268665.398163895-10109.3981638950
44260993267096.512146673-6103.5121466733
45254663261166.760330699-6503.76033069883
46250643255201.978301091-4558.97830109146
47243422249578.882315655-6156.88231565511
48247105252145.83279575-5040.8327957501
49248541254337.440094372-5796.44009437228
50245039252014.754180147-6975.75418014688
51237080247298.052204835-10218.0522048346
52237085245959.677774002-8874.67777400166
53225554237771.944057601-12217.9440576007
54226839237629.335127167-10790.3351271667
55247934258926.592336310-10992.5923363097
56248333256179.120930749-7846.12093074864
57246969251632.123588063-4663.12358806314
58245098246064.370070588-966.370070588245
59246263243137.7345948373125.26540516277
60255765248111.8564438437653.14355615663
61264319251671.93233225912647.0676677405
62268347253067.74284275915279.2571572409
63273046251901.67816110521144.3218388947
64273963251563.31557492422399.6844250761
65267430245131.55503811922298.4449618807
66271993245653.23969020426339.7603097961
67292710266911.80596488125798.1940351189

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 267413 & 270129.889052973 & -2716.88905297294 \tabularnewline
2 & 267366 & 270447.115359599 & -3081.11535959852 \tabularnewline
3 & 264777 & 268139.370488634 & -3362.37048863429 \tabularnewline
4 & 258863 & 264756.328982576 & -5893.32898257637 \tabularnewline
5 & 254844 & 260400.188268569 & -5556.18826856933 \tabularnewline
6 & 254868 & 259720.668216781 & -4852.66821678082 \tabularnewline
7 & 277267 & 280247.082962338 & -2980.08296233820 \tabularnewline
8 & 285351 & 280081.189753357 & 5269.81024664329 \tabularnewline
9 & 286602 & 284391.440177585 & 2210.55982241537 \tabularnewline
10 & 283042 & 286068.415327523 & -3026.41532752258 \tabularnewline
11 & 276687 & 279969.718470731 & -3282.71847073114 \tabularnewline
12 & 277915 & 282137.854703257 & -4222.85470325678 \tabularnewline
13 & 277128 & 281335.378919381 & -4207.37891938067 \tabularnewline
14 & 277103 & 281630.581155618 & -4527.58115561799 \tabularnewline
15 & 275037 & 279351.408051644 & -4314.40805164376 \tabularnewline
16 & 270150 & 275598.124065007 & -5448.12406500655 \tabularnewline
17 & 267140 & 271411.032972357 & -4271.03297235725 \tabularnewline
18 & 264993 & 269352.329918154 & -4359.32991815353 \tabularnewline
19 & 287259 & 290493.037653997 & -3234.03765399685 \tabularnewline
20 & 291186 & 287394.371612517 & 3791.62838748346 \tabularnewline
21 & 292300 & 290296.867267339 & 2003.1327326608 \tabularnewline
22 & 288186 & 283478.503698904 & 4707.49630109572 \tabularnewline
23 & 281477 & 277854.812468322 & 3622.18753167769 \tabularnewline
24 & 282656 & 280319.976028515 & 2336.02397148472 \tabularnewline
25 & 280190 & 281026.446688801 & -836.446688800826 \tabularnewline
26 & 280408 & 280075.800835243 & 332.199164756861 \tabularnewline
27 & 276836 & 275525.172255560 & 1310.82774443953 \tabularnewline
28 & 275216 & 273240.358043182 & 1975.64195681765 \tabularnewline
29 & 274352 & 270284.233911687 & 4067.76608831259 \tabularnewline
30 & 271311 & 267921.360588069 & 3389.63941193114 \tabularnewline
31 & 289802 & 288284.082918579 & 1517.91708142087 \tabularnewline
32 & 290726 & 285837.805556705 & 4888.19444329519 \tabularnewline
33 & 292300 & 285346.808636314 & 6953.1913636858 \tabularnewline
34 & 278506 & 274661.732601893 & 3844.26739810657 \tabularnewline
35 & 269826 & 267133.852150454 & 2692.1478495458 \tabularnewline
36 & 265861 & 266586.480028634 & -725.480028634476 \tabularnewline
37 & 269034 & 268123.912912214 & 910.087087786215 \tabularnewline
38 & 264176 & 265203.005626634 & -1027.00562663437 \tabularnewline
39 & 255198 & 259758.318838222 & -4560.31883822159 \tabularnewline
40 & 253353 & 257512.195560309 & -4159.19556030916 \tabularnewline
41 & 246057 & 250378.045751666 & -4321.04575166602 \tabularnewline
42 & 235372 & 245099.066459626 & -9727.06645962618 \tabularnewline
43 & 258556 & 268665.398163895 & -10109.3981638950 \tabularnewline
44 & 260993 & 267096.512146673 & -6103.5121466733 \tabularnewline
45 & 254663 & 261166.760330699 & -6503.76033069883 \tabularnewline
46 & 250643 & 255201.978301091 & -4558.97830109146 \tabularnewline
47 & 243422 & 249578.882315655 & -6156.88231565511 \tabularnewline
48 & 247105 & 252145.83279575 & -5040.8327957501 \tabularnewline
49 & 248541 & 254337.440094372 & -5796.44009437228 \tabularnewline
50 & 245039 & 252014.754180147 & -6975.75418014688 \tabularnewline
51 & 237080 & 247298.052204835 & -10218.0522048346 \tabularnewline
52 & 237085 & 245959.677774002 & -8874.67777400166 \tabularnewline
53 & 225554 & 237771.944057601 & -12217.9440576007 \tabularnewline
54 & 226839 & 237629.335127167 & -10790.3351271667 \tabularnewline
55 & 247934 & 258926.592336310 & -10992.5923363097 \tabularnewline
56 & 248333 & 256179.120930749 & -7846.12093074864 \tabularnewline
57 & 246969 & 251632.123588063 & -4663.12358806314 \tabularnewline
58 & 245098 & 246064.370070588 & -966.370070588245 \tabularnewline
59 & 246263 & 243137.734594837 & 3125.26540516277 \tabularnewline
60 & 255765 & 248111.856443843 & 7653.14355615663 \tabularnewline
61 & 264319 & 251671.932332259 & 12647.0676677405 \tabularnewline
62 & 268347 & 253067.742842759 & 15279.2571572409 \tabularnewline
63 & 273046 & 251901.678161105 & 21144.3218388947 \tabularnewline
64 & 273963 & 251563.315574924 & 22399.6844250761 \tabularnewline
65 & 267430 & 245131.555038119 & 22298.4449618807 \tabularnewline
66 & 271993 & 245653.239690204 & 26339.7603097961 \tabularnewline
67 & 292710 & 266911.805964881 & 25798.1940351189 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58959&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]267413[/C][C]270129.889052973[/C][C]-2716.88905297294[/C][/ROW]
[ROW][C]2[/C][C]267366[/C][C]270447.115359599[/C][C]-3081.11535959852[/C][/ROW]
[ROW][C]3[/C][C]264777[/C][C]268139.370488634[/C][C]-3362.37048863429[/C][/ROW]
[ROW][C]4[/C][C]258863[/C][C]264756.328982576[/C][C]-5893.32898257637[/C][/ROW]
[ROW][C]5[/C][C]254844[/C][C]260400.188268569[/C][C]-5556.18826856933[/C][/ROW]
[ROW][C]6[/C][C]254868[/C][C]259720.668216781[/C][C]-4852.66821678082[/C][/ROW]
[ROW][C]7[/C][C]277267[/C][C]280247.082962338[/C][C]-2980.08296233820[/C][/ROW]
[ROW][C]8[/C][C]285351[/C][C]280081.189753357[/C][C]5269.81024664329[/C][/ROW]
[ROW][C]9[/C][C]286602[/C][C]284391.440177585[/C][C]2210.55982241537[/C][/ROW]
[ROW][C]10[/C][C]283042[/C][C]286068.415327523[/C][C]-3026.41532752258[/C][/ROW]
[ROW][C]11[/C][C]276687[/C][C]279969.718470731[/C][C]-3282.71847073114[/C][/ROW]
[ROW][C]12[/C][C]277915[/C][C]282137.854703257[/C][C]-4222.85470325678[/C][/ROW]
[ROW][C]13[/C][C]277128[/C][C]281335.378919381[/C][C]-4207.37891938067[/C][/ROW]
[ROW][C]14[/C][C]277103[/C][C]281630.581155618[/C][C]-4527.58115561799[/C][/ROW]
[ROW][C]15[/C][C]275037[/C][C]279351.408051644[/C][C]-4314.40805164376[/C][/ROW]
[ROW][C]16[/C][C]270150[/C][C]275598.124065007[/C][C]-5448.12406500655[/C][/ROW]
[ROW][C]17[/C][C]267140[/C][C]271411.032972357[/C][C]-4271.03297235725[/C][/ROW]
[ROW][C]18[/C][C]264993[/C][C]269352.329918154[/C][C]-4359.32991815353[/C][/ROW]
[ROW][C]19[/C][C]287259[/C][C]290493.037653997[/C][C]-3234.03765399685[/C][/ROW]
[ROW][C]20[/C][C]291186[/C][C]287394.371612517[/C][C]3791.62838748346[/C][/ROW]
[ROW][C]21[/C][C]292300[/C][C]290296.867267339[/C][C]2003.1327326608[/C][/ROW]
[ROW][C]22[/C][C]288186[/C][C]283478.503698904[/C][C]4707.49630109572[/C][/ROW]
[ROW][C]23[/C][C]281477[/C][C]277854.812468322[/C][C]3622.18753167769[/C][/ROW]
[ROW][C]24[/C][C]282656[/C][C]280319.976028515[/C][C]2336.02397148472[/C][/ROW]
[ROW][C]25[/C][C]280190[/C][C]281026.446688801[/C][C]-836.446688800826[/C][/ROW]
[ROW][C]26[/C][C]280408[/C][C]280075.800835243[/C][C]332.199164756861[/C][/ROW]
[ROW][C]27[/C][C]276836[/C][C]275525.172255560[/C][C]1310.82774443953[/C][/ROW]
[ROW][C]28[/C][C]275216[/C][C]273240.358043182[/C][C]1975.64195681765[/C][/ROW]
[ROW][C]29[/C][C]274352[/C][C]270284.233911687[/C][C]4067.76608831259[/C][/ROW]
[ROW][C]30[/C][C]271311[/C][C]267921.360588069[/C][C]3389.63941193114[/C][/ROW]
[ROW][C]31[/C][C]289802[/C][C]288284.082918579[/C][C]1517.91708142087[/C][/ROW]
[ROW][C]32[/C][C]290726[/C][C]285837.805556705[/C][C]4888.19444329519[/C][/ROW]
[ROW][C]33[/C][C]292300[/C][C]285346.808636314[/C][C]6953.1913636858[/C][/ROW]
[ROW][C]34[/C][C]278506[/C][C]274661.732601893[/C][C]3844.26739810657[/C][/ROW]
[ROW][C]35[/C][C]269826[/C][C]267133.852150454[/C][C]2692.1478495458[/C][/ROW]
[ROW][C]36[/C][C]265861[/C][C]266586.480028634[/C][C]-725.480028634476[/C][/ROW]
[ROW][C]37[/C][C]269034[/C][C]268123.912912214[/C][C]910.087087786215[/C][/ROW]
[ROW][C]38[/C][C]264176[/C][C]265203.005626634[/C][C]-1027.00562663437[/C][/ROW]
[ROW][C]39[/C][C]255198[/C][C]259758.318838222[/C][C]-4560.31883822159[/C][/ROW]
[ROW][C]40[/C][C]253353[/C][C]257512.195560309[/C][C]-4159.19556030916[/C][/ROW]
[ROW][C]41[/C][C]246057[/C][C]250378.045751666[/C][C]-4321.04575166602[/C][/ROW]
[ROW][C]42[/C][C]235372[/C][C]245099.066459626[/C][C]-9727.06645962618[/C][/ROW]
[ROW][C]43[/C][C]258556[/C][C]268665.398163895[/C][C]-10109.3981638950[/C][/ROW]
[ROW][C]44[/C][C]260993[/C][C]267096.512146673[/C][C]-6103.5121466733[/C][/ROW]
[ROW][C]45[/C][C]254663[/C][C]261166.760330699[/C][C]-6503.76033069883[/C][/ROW]
[ROW][C]46[/C][C]250643[/C][C]255201.978301091[/C][C]-4558.97830109146[/C][/ROW]
[ROW][C]47[/C][C]243422[/C][C]249578.882315655[/C][C]-6156.88231565511[/C][/ROW]
[ROW][C]48[/C][C]247105[/C][C]252145.83279575[/C][C]-5040.8327957501[/C][/ROW]
[ROW][C]49[/C][C]248541[/C][C]254337.440094372[/C][C]-5796.44009437228[/C][/ROW]
[ROW][C]50[/C][C]245039[/C][C]252014.754180147[/C][C]-6975.75418014688[/C][/ROW]
[ROW][C]51[/C][C]237080[/C][C]247298.052204835[/C][C]-10218.0522048346[/C][/ROW]
[ROW][C]52[/C][C]237085[/C][C]245959.677774002[/C][C]-8874.67777400166[/C][/ROW]
[ROW][C]53[/C][C]225554[/C][C]237771.944057601[/C][C]-12217.9440576007[/C][/ROW]
[ROW][C]54[/C][C]226839[/C][C]237629.335127167[/C][C]-10790.3351271667[/C][/ROW]
[ROW][C]55[/C][C]247934[/C][C]258926.592336310[/C][C]-10992.5923363097[/C][/ROW]
[ROW][C]56[/C][C]248333[/C][C]256179.120930749[/C][C]-7846.12093074864[/C][/ROW]
[ROW][C]57[/C][C]246969[/C][C]251632.123588063[/C][C]-4663.12358806314[/C][/ROW]
[ROW][C]58[/C][C]245098[/C][C]246064.370070588[/C][C]-966.370070588245[/C][/ROW]
[ROW][C]59[/C][C]246263[/C][C]243137.734594837[/C][C]3125.26540516277[/C][/ROW]
[ROW][C]60[/C][C]255765[/C][C]248111.856443843[/C][C]7653.14355615663[/C][/ROW]
[ROW][C]61[/C][C]264319[/C][C]251671.932332259[/C][C]12647.0676677405[/C][/ROW]
[ROW][C]62[/C][C]268347[/C][C]253067.742842759[/C][C]15279.2571572409[/C][/ROW]
[ROW][C]63[/C][C]273046[/C][C]251901.678161105[/C][C]21144.3218388947[/C][/ROW]
[ROW][C]64[/C][C]273963[/C][C]251563.315574924[/C][C]22399.6844250761[/C][/ROW]
[ROW][C]65[/C][C]267430[/C][C]245131.555038119[/C][C]22298.4449618807[/C][/ROW]
[ROW][C]66[/C][C]271993[/C][C]245653.239690204[/C][C]26339.7603097961[/C][/ROW]
[ROW][C]67[/C][C]292710[/C][C]266911.805964881[/C][C]25798.1940351189[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58959&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58959&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1267413270129.889052973-2716.88905297294
2267366270447.115359599-3081.11535959852
3264777268139.370488634-3362.37048863429
4258863264756.328982576-5893.32898257637
5254844260400.188268569-5556.18826856933
6254868259720.668216781-4852.66821678082
7277267280247.082962338-2980.08296233820
8285351280081.1897533575269.81024664329
9286602284391.4401775852210.55982241537
10283042286068.415327523-3026.41532752258
11276687279969.718470731-3282.71847073114
12277915282137.854703257-4222.85470325678
13277128281335.378919381-4207.37891938067
14277103281630.581155618-4527.58115561799
15275037279351.408051644-4314.40805164376
16270150275598.124065007-5448.12406500655
17267140271411.032972357-4271.03297235725
18264993269352.329918154-4359.32991815353
19287259290493.037653997-3234.03765399685
20291186287394.3716125173791.62838748346
21292300290296.8672673392003.1327326608
22288186283478.5036989044707.49630109572
23281477277854.8124683223622.18753167769
24282656280319.9760285152336.02397148472
25280190281026.446688801-836.446688800826
26280408280075.800835243332.199164756861
27276836275525.1722555601310.82774443953
28275216273240.3580431821975.64195681765
29274352270284.2339116874067.76608831259
30271311267921.3605880693389.63941193114
31289802288284.0829185791517.91708142087
32290726285837.8055567054888.19444329519
33292300285346.8086363146953.1913636858
34278506274661.7326018933844.26739810657
35269826267133.8521504542692.1478495458
36265861266586.480028634-725.480028634476
37269034268123.912912214910.087087786215
38264176265203.005626634-1027.00562663437
39255198259758.318838222-4560.31883822159
40253353257512.195560309-4159.19556030916
41246057250378.045751666-4321.04575166602
42235372245099.066459626-9727.06645962618
43258556268665.398163895-10109.3981638950
44260993267096.512146673-6103.5121466733
45254663261166.760330699-6503.76033069883
46250643255201.978301091-4558.97830109146
47243422249578.882315655-6156.88231565511
48247105252145.83279575-5040.8327957501
49248541254337.440094372-5796.44009437228
50245039252014.754180147-6975.75418014688
51237080247298.052204835-10218.0522048346
52237085245959.677774002-8874.67777400166
53225554237771.944057601-12217.9440576007
54226839237629.335127167-10790.3351271667
55247934258926.592336310-10992.5923363097
56248333256179.120930749-7846.12093074864
57246969251632.123588063-4663.12358806314
58245098246064.370070588-966.370070588245
59246263243137.7345948373125.26540516277
60255765248111.8564438437653.14355615663
61264319251671.93233225912647.0676677405
62268347253067.74284275915279.2571572409
63273046251901.67816110521144.3218388947
64273963251563.31557492422399.6844250761
65267430245131.55503811922298.4449618807
66271993245653.23969020426339.7603097961
67292710266911.80596488125798.1940351189







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
160.0002727403066822880.0005454806133645760.999727259693318
178.40239482044959e-050.0001680478964089920.999915976051795
187.49170597548235e-061.49834119509647e-050.999992508294025
194.92950080567018e-079.85900161134036e-070.99999950704992
205.98715748209359e-081.19743149641872e-070.999999940128425
213.62299972378704e-097.24599944757409e-090.999999996377
222.10110891749833e-064.20221783499666e-060.999997898891082
233.95714747858896e-067.91429495717792e-060.999996042852521
243.70853660413269e-067.41707320826538e-060.999996291463396
251.19816370468405e-062.39632740936809e-060.999998801836295
265.85719310664065e-071.17143862132813e-060.99999941428069
273.79400249429956e-077.58800498859913e-070.99999962059975
286.51165243118333e-071.30233048623667e-060.999999348834757
291.29136350023109e-062.58272700046217e-060.9999987086365
301.29952461265898e-062.59904922531795e-060.999998700475387
315.39656413898947e-071.07931282779789e-060.999999460343586
321.45978497106152e-072.91956994212303e-070.999999854021503
336.76760033735602e-081.35352006747120e-070.999999932323997
342.27338012034522e-084.54676024069044e-080.999999977266199
356.51820861675371e-091.30364172335074e-080.999999993481791
361.53816005183794e-093.07632010367588e-090.99999999846184
374.89495386889852e-109.78990773779704e-100.999999999510505
381.24912743062200e-102.49825486124401e-100.999999999875087
394.88148937542593e-119.76297875085186e-110.999999999951185
401.89791477030563e-113.79582954061126e-110.99999999998102
419.34239246869916e-121.86847849373983e-110.999999999990658
422.21511899107560e-114.43023798215119e-110.999999999977849
431.08375414951116e-102.16750829902233e-100.999999999891625
442.56484865842372e-105.12969731684744e-100.999999999743515
454.75735421326044e-109.51470842652088e-100.999999999524265
462.34334157908895e-094.68668315817789e-090.999999997656658
477.47462107226761e-081.49492421445352e-070.99999992525379
485.70879206197699e-061.14175841239540e-050.999994291207938
490.01811501335689920.03623002671379840.9818849866431
500.3826833305956540.7653666611913080.617316669404346
510.7985567728828160.4028864542343690.201443227117184

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
16 & 0.000272740306682288 & 0.000545480613364576 & 0.999727259693318 \tabularnewline
17 & 8.40239482044959e-05 & 0.000168047896408992 & 0.999915976051795 \tabularnewline
18 & 7.49170597548235e-06 & 1.49834119509647e-05 & 0.999992508294025 \tabularnewline
19 & 4.92950080567018e-07 & 9.85900161134036e-07 & 0.99999950704992 \tabularnewline
20 & 5.98715748209359e-08 & 1.19743149641872e-07 & 0.999999940128425 \tabularnewline
21 & 3.62299972378704e-09 & 7.24599944757409e-09 & 0.999999996377 \tabularnewline
22 & 2.10110891749833e-06 & 4.20221783499666e-06 & 0.999997898891082 \tabularnewline
23 & 3.95714747858896e-06 & 7.91429495717792e-06 & 0.999996042852521 \tabularnewline
24 & 3.70853660413269e-06 & 7.41707320826538e-06 & 0.999996291463396 \tabularnewline
25 & 1.19816370468405e-06 & 2.39632740936809e-06 & 0.999998801836295 \tabularnewline
26 & 5.85719310664065e-07 & 1.17143862132813e-06 & 0.99999941428069 \tabularnewline
27 & 3.79400249429956e-07 & 7.58800498859913e-07 & 0.99999962059975 \tabularnewline
28 & 6.51165243118333e-07 & 1.30233048623667e-06 & 0.999999348834757 \tabularnewline
29 & 1.29136350023109e-06 & 2.58272700046217e-06 & 0.9999987086365 \tabularnewline
30 & 1.29952461265898e-06 & 2.59904922531795e-06 & 0.999998700475387 \tabularnewline
31 & 5.39656413898947e-07 & 1.07931282779789e-06 & 0.999999460343586 \tabularnewline
32 & 1.45978497106152e-07 & 2.91956994212303e-07 & 0.999999854021503 \tabularnewline
33 & 6.76760033735602e-08 & 1.35352006747120e-07 & 0.999999932323997 \tabularnewline
34 & 2.27338012034522e-08 & 4.54676024069044e-08 & 0.999999977266199 \tabularnewline
35 & 6.51820861675371e-09 & 1.30364172335074e-08 & 0.999999993481791 \tabularnewline
36 & 1.53816005183794e-09 & 3.07632010367588e-09 & 0.99999999846184 \tabularnewline
37 & 4.89495386889852e-10 & 9.78990773779704e-10 & 0.999999999510505 \tabularnewline
38 & 1.24912743062200e-10 & 2.49825486124401e-10 & 0.999999999875087 \tabularnewline
39 & 4.88148937542593e-11 & 9.76297875085186e-11 & 0.999999999951185 \tabularnewline
40 & 1.89791477030563e-11 & 3.79582954061126e-11 & 0.99999999998102 \tabularnewline
41 & 9.34239246869916e-12 & 1.86847849373983e-11 & 0.999999999990658 \tabularnewline
42 & 2.21511899107560e-11 & 4.43023798215119e-11 & 0.999999999977849 \tabularnewline
43 & 1.08375414951116e-10 & 2.16750829902233e-10 & 0.999999999891625 \tabularnewline
44 & 2.56484865842372e-10 & 5.12969731684744e-10 & 0.999999999743515 \tabularnewline
45 & 4.75735421326044e-10 & 9.51470842652088e-10 & 0.999999999524265 \tabularnewline
46 & 2.34334157908895e-09 & 4.68668315817789e-09 & 0.999999997656658 \tabularnewline
47 & 7.47462107226761e-08 & 1.49492421445352e-07 & 0.99999992525379 \tabularnewline
48 & 5.70879206197699e-06 & 1.14175841239540e-05 & 0.999994291207938 \tabularnewline
49 & 0.0181150133568992 & 0.0362300267137984 & 0.9818849866431 \tabularnewline
50 & 0.382683330595654 & 0.765366661191308 & 0.617316669404346 \tabularnewline
51 & 0.798556772882816 & 0.402886454234369 & 0.201443227117184 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58959&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]16[/C][C]0.000272740306682288[/C][C]0.000545480613364576[/C][C]0.999727259693318[/C][/ROW]
[ROW][C]17[/C][C]8.40239482044959e-05[/C][C]0.000168047896408992[/C][C]0.999915976051795[/C][/ROW]
[ROW][C]18[/C][C]7.49170597548235e-06[/C][C]1.49834119509647e-05[/C][C]0.999992508294025[/C][/ROW]
[ROW][C]19[/C][C]4.92950080567018e-07[/C][C]9.85900161134036e-07[/C][C]0.99999950704992[/C][/ROW]
[ROW][C]20[/C][C]5.98715748209359e-08[/C][C]1.19743149641872e-07[/C][C]0.999999940128425[/C][/ROW]
[ROW][C]21[/C][C]3.62299972378704e-09[/C][C]7.24599944757409e-09[/C][C]0.999999996377[/C][/ROW]
[ROW][C]22[/C][C]2.10110891749833e-06[/C][C]4.20221783499666e-06[/C][C]0.999997898891082[/C][/ROW]
[ROW][C]23[/C][C]3.95714747858896e-06[/C][C]7.91429495717792e-06[/C][C]0.999996042852521[/C][/ROW]
[ROW][C]24[/C][C]3.70853660413269e-06[/C][C]7.41707320826538e-06[/C][C]0.999996291463396[/C][/ROW]
[ROW][C]25[/C][C]1.19816370468405e-06[/C][C]2.39632740936809e-06[/C][C]0.999998801836295[/C][/ROW]
[ROW][C]26[/C][C]5.85719310664065e-07[/C][C]1.17143862132813e-06[/C][C]0.99999941428069[/C][/ROW]
[ROW][C]27[/C][C]3.79400249429956e-07[/C][C]7.58800498859913e-07[/C][C]0.99999962059975[/C][/ROW]
[ROW][C]28[/C][C]6.51165243118333e-07[/C][C]1.30233048623667e-06[/C][C]0.999999348834757[/C][/ROW]
[ROW][C]29[/C][C]1.29136350023109e-06[/C][C]2.58272700046217e-06[/C][C]0.9999987086365[/C][/ROW]
[ROW][C]30[/C][C]1.29952461265898e-06[/C][C]2.59904922531795e-06[/C][C]0.999998700475387[/C][/ROW]
[ROW][C]31[/C][C]5.39656413898947e-07[/C][C]1.07931282779789e-06[/C][C]0.999999460343586[/C][/ROW]
[ROW][C]32[/C][C]1.45978497106152e-07[/C][C]2.91956994212303e-07[/C][C]0.999999854021503[/C][/ROW]
[ROW][C]33[/C][C]6.76760033735602e-08[/C][C]1.35352006747120e-07[/C][C]0.999999932323997[/C][/ROW]
[ROW][C]34[/C][C]2.27338012034522e-08[/C][C]4.54676024069044e-08[/C][C]0.999999977266199[/C][/ROW]
[ROW][C]35[/C][C]6.51820861675371e-09[/C][C]1.30364172335074e-08[/C][C]0.999999993481791[/C][/ROW]
[ROW][C]36[/C][C]1.53816005183794e-09[/C][C]3.07632010367588e-09[/C][C]0.99999999846184[/C][/ROW]
[ROW][C]37[/C][C]4.89495386889852e-10[/C][C]9.78990773779704e-10[/C][C]0.999999999510505[/C][/ROW]
[ROW][C]38[/C][C]1.24912743062200e-10[/C][C]2.49825486124401e-10[/C][C]0.999999999875087[/C][/ROW]
[ROW][C]39[/C][C]4.88148937542593e-11[/C][C]9.76297875085186e-11[/C][C]0.999999999951185[/C][/ROW]
[ROW][C]40[/C][C]1.89791477030563e-11[/C][C]3.79582954061126e-11[/C][C]0.99999999998102[/C][/ROW]
[ROW][C]41[/C][C]9.34239246869916e-12[/C][C]1.86847849373983e-11[/C][C]0.999999999990658[/C][/ROW]
[ROW][C]42[/C][C]2.21511899107560e-11[/C][C]4.43023798215119e-11[/C][C]0.999999999977849[/C][/ROW]
[ROW][C]43[/C][C]1.08375414951116e-10[/C][C]2.16750829902233e-10[/C][C]0.999999999891625[/C][/ROW]
[ROW][C]44[/C][C]2.56484865842372e-10[/C][C]5.12969731684744e-10[/C][C]0.999999999743515[/C][/ROW]
[ROW][C]45[/C][C]4.75735421326044e-10[/C][C]9.51470842652088e-10[/C][C]0.999999999524265[/C][/ROW]
[ROW][C]46[/C][C]2.34334157908895e-09[/C][C]4.68668315817789e-09[/C][C]0.999999997656658[/C][/ROW]
[ROW][C]47[/C][C]7.47462107226761e-08[/C][C]1.49492421445352e-07[/C][C]0.99999992525379[/C][/ROW]
[ROW][C]48[/C][C]5.70879206197699e-06[/C][C]1.14175841239540e-05[/C][C]0.999994291207938[/C][/ROW]
[ROW][C]49[/C][C]0.0181150133568992[/C][C]0.0362300267137984[/C][C]0.9818849866431[/C][/ROW]
[ROW][C]50[/C][C]0.382683330595654[/C][C]0.765366661191308[/C][C]0.617316669404346[/C][/ROW]
[ROW][C]51[/C][C]0.798556772882816[/C][C]0.402886454234369[/C][C]0.201443227117184[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58959&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58959&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
160.0002727403066822880.0005454806133645760.999727259693318
178.40239482044959e-050.0001680478964089920.999915976051795
187.49170597548235e-061.49834119509647e-050.999992508294025
194.92950080567018e-079.85900161134036e-070.99999950704992
205.98715748209359e-081.19743149641872e-070.999999940128425
213.62299972378704e-097.24599944757409e-090.999999996377
222.10110891749833e-064.20221783499666e-060.999997898891082
233.95714747858896e-067.91429495717792e-060.999996042852521
243.70853660413269e-067.41707320826538e-060.999996291463396
251.19816370468405e-062.39632740936809e-060.999998801836295
265.85719310664065e-071.17143862132813e-060.99999941428069
273.79400249429956e-077.58800498859913e-070.99999962059975
286.51165243118333e-071.30233048623667e-060.999999348834757
291.29136350023109e-062.58272700046217e-060.9999987086365
301.29952461265898e-062.59904922531795e-060.999998700475387
315.39656413898947e-071.07931282779789e-060.999999460343586
321.45978497106152e-072.91956994212303e-070.999999854021503
336.76760033735602e-081.35352006747120e-070.999999932323997
342.27338012034522e-084.54676024069044e-080.999999977266199
356.51820861675371e-091.30364172335074e-080.999999993481791
361.53816005183794e-093.07632010367588e-090.99999999846184
374.89495386889852e-109.78990773779704e-100.999999999510505
381.24912743062200e-102.49825486124401e-100.999999999875087
394.88148937542593e-119.76297875085186e-110.999999999951185
401.89791477030563e-113.79582954061126e-110.99999999998102
419.34239246869916e-121.86847849373983e-110.999999999990658
422.21511899107560e-114.43023798215119e-110.999999999977849
431.08375414951116e-102.16750829902233e-100.999999999891625
442.56484865842372e-105.12969731684744e-100.999999999743515
454.75735421326044e-109.51470842652088e-100.999999999524265
462.34334157908895e-094.68668315817789e-090.999999997656658
477.47462107226761e-081.49492421445352e-070.99999992525379
485.70879206197699e-061.14175841239540e-050.999994291207938
490.01811501335689920.03623002671379840.9818849866431
500.3826833305956540.7653666611913080.617316669404346
510.7985567728828160.4028864542343690.201443227117184







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level330.916666666666667NOK
5% type I error level340.944444444444444NOK
10% type I error level340.944444444444444NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 33 & 0.916666666666667 & NOK \tabularnewline
5% type I error level & 34 & 0.944444444444444 & NOK \tabularnewline
10% type I error level & 34 & 0.944444444444444 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58959&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]33[/C][C]0.916666666666667[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]34[/C][C]0.944444444444444[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]34[/C][C]0.944444444444444[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58959&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58959&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level330.916666666666667NOK
5% type I error level340.944444444444444NOK
10% type I error level340.944444444444444NOK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}