Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 24 Nov 2009 02:36:47 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/24/t1259055660pl9rnsyu5l5hegi.htm/, Retrieved Wed, 11 Sep 2024 06:12:01 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=58966, Retrieved Wed, 11 Sep 2024 06:12:01 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact192
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
- RMPD  [Multiple Regression] [Seatbelt] [2009-11-12 13:54:52] [b98453cac15ba1066b407e146608df68]
-    D      [Multiple Regression] [] [2009-11-24 09:36:47] [4672b66a35a4d755714bdcf00037725e] [Current]
Feedback Forum

Post a new message
Dataseries X:
103,52	0
103,5	0
103,52	0
103,53	0
103,53	0
103,53	0
103,52	0
103,54	0
103,59	0
103,59	0
103,59	0
103,59	0
103,63	0
103,74	0
103,7	0
103,72	0
103,81	0
103,8	0
104,22	0
106,91	1
107,06	1
107,17	1
107,25	1
107,28	1
107,24	1
107,23	1
107,34	1
107,34	1
107,3	1
107,24	1
107,3	1
107,32	1
107,28	1
107,33	1
107,33	1
107,33	1
107,28	1
107,28	1
107,29	1
107,29	1
107,23	1
107,24	1
107,24	1
107,2	1
107,23	1
107,2	1
107,21	1
107,24	1
107,21	1
113,89	1
114,05	1
114,05	1
114,05	1
114,05	1
115,12	1
115,68	1
116,05	1
116,18	1
116,35	1
116,44	1
117	1
117,61	1
118,17	1
118,33	1
118,33	1
118,42	1
118,5	1
118,67	1
119,09	1
119,14	1
119,23	1
119,33	1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58966&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58966&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58966&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 103.640526315790 + 7.77683217477653X[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Y[t] =  +  103.640526315790 +  7.77683217477653X[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58966&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Y[t] =  +  103.640526315790 +  7.77683217477653X[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58966&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58966&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 103.640526315790 + 7.77683217477653X[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)103.6405263157900.983599105.368700
X7.776832174776531.1464276.783500

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 103.640526315790 & 0.983599 & 105.3687 & 0 & 0 \tabularnewline
X & 7.77683217477653 & 1.146427 & 6.7835 & 0 & 0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58966&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]103.640526315790[/C][C]0.983599[/C][C]105.3687[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]X[/C][C]7.77683217477653[/C][C]1.146427[/C][C]6.7835[/C][C]0[/C][C]0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58966&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58966&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)103.6405263157900.983599105.368700
X7.776832174776531.1464276.783500







Multiple Linear Regression - Regression Statistics
Multiple R0.629791177928378
R-squared0.396636927796414
Adjusted R-squared0.388017455336363
F-TEST (value)46.0163808904445
F-TEST (DF numerator)1
F-TEST (DF denominator)70
p-value3.09137426768302e-09
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation4.28740968238986
Sum Squared Residuals1286.73172492552

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.629791177928378 \tabularnewline
R-squared & 0.396636927796414 \tabularnewline
Adjusted R-squared & 0.388017455336363 \tabularnewline
F-TEST (value) & 46.0163808904445 \tabularnewline
F-TEST (DF numerator) & 1 \tabularnewline
F-TEST (DF denominator) & 70 \tabularnewline
p-value & 3.09137426768302e-09 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 4.28740968238986 \tabularnewline
Sum Squared Residuals & 1286.73172492552 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58966&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.629791177928378[/C][/ROW]
[ROW][C]R-squared[/C][C]0.396636927796414[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.388017455336363[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]46.0163808904445[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]1[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]70[/C][/ROW]
[ROW][C]p-value[/C][C]3.09137426768302e-09[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]4.28740968238986[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]1286.73172492552[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58966&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58966&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.629791177928378
R-squared0.396636927796414
Adjusted R-squared0.388017455336363
F-TEST (value)46.0163808904445
F-TEST (DF numerator)1
F-TEST (DF denominator)70
p-value3.09137426768302e-09
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation4.28740968238986
Sum Squared Residuals1286.73172492552







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1103.52103.640526315789-0.120526315788941
2103.5103.640526315789-0.140526315789487
3103.52103.640526315790-0.120526315789508
4103.53103.640526315790-0.110526315789503
5103.53103.640526315790-0.110526315789503
6103.53103.640526315790-0.110526315789503
7103.52103.640526315790-0.120526315789508
8103.54103.640526315790-0.100526315789498
9103.59103.640526315790-0.0505263157895004
10103.59103.640526315790-0.0505263157895004
11103.59103.640526315790-0.0505263157895004
12103.59103.640526315790-0.0505263157895004
13103.63103.640526315790-0.0105263157895084
14103.74103.6405263157900.099473684210491
15103.7103.6405263157900.059473684210499
16103.72103.6405263157900.079473684210495
17103.81103.6405263157900.169473684210498
18103.8103.6405263157900.159473684210493
19104.22103.6405263157900.579473684210495
20106.91111.417358490566-4.50735849056604
21107.06111.417358490566-4.35735849056604
22107.17111.417358490566-4.24735849056604
23107.25111.417358490566-4.16735849056604
24107.28111.417358490566-4.13735849056604
25107.24111.417358490566-4.17735849056604
26107.23111.417358490566-4.18735849056603
27107.34111.417358490566-4.07735849056603
28107.34111.417358490566-4.07735849056603
29107.3111.417358490566-4.11735849056604
30107.24111.417358490566-4.17735849056604
31107.3111.417358490566-4.11735849056604
32107.32111.417358490566-4.09735849056604
33107.28111.417358490566-4.13735849056604
34107.33111.417358490566-4.08735849056604
35107.33111.417358490566-4.08735849056604
36107.33111.417358490566-4.08735849056604
37107.28111.417358490566-4.13735849056604
38107.28111.417358490566-4.13735849056604
39107.29111.417358490566-4.12735849056603
40107.29111.417358490566-4.12735849056603
41107.23111.417358490566-4.18735849056603
42107.24111.417358490566-4.17735849056604
43107.24111.417358490566-4.17735849056604
44107.2111.417358490566-4.21735849056603
45107.23111.417358490566-4.18735849056603
46107.2111.417358490566-4.21735849056603
47107.21111.417358490566-4.20735849056604
48107.24111.417358490566-4.17735849056604
49107.21111.417358490566-4.20735849056604
50113.89111.4173584905662.47264150943396
51114.05111.4173584905662.63264150943396
52114.05111.4173584905662.63264150943396
53114.05111.4173584905662.63264150943396
54114.05111.4173584905662.63264150943396
55115.12111.4173584905663.70264150943397
56115.68111.4173584905664.26264150943397
57116.05111.4173584905664.63264150943396
58116.18111.4173584905664.76264150943397
59116.35111.4173584905664.93264150943396
60116.44111.4173584905665.02264150943396
61117111.4173584905665.58264150943396
62117.61111.4173584905666.19264150943396
63118.17111.4173584905666.75264150943396
64118.33111.4173584905666.91264150943396
65118.33111.4173584905666.91264150943396
66118.42111.4173584905667.00264150943396
67118.5111.4173584905667.08264150943396
68118.67111.4173584905667.25264150943396
69119.09111.4173584905667.67264150943397
70119.14111.4173584905667.72264150943396
71119.23111.4173584905667.81264150943397
72119.33111.4173584905667.91264150943396

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 103.52 & 103.640526315789 & -0.120526315788941 \tabularnewline
2 & 103.5 & 103.640526315789 & -0.140526315789487 \tabularnewline
3 & 103.52 & 103.640526315790 & -0.120526315789508 \tabularnewline
4 & 103.53 & 103.640526315790 & -0.110526315789503 \tabularnewline
5 & 103.53 & 103.640526315790 & -0.110526315789503 \tabularnewline
6 & 103.53 & 103.640526315790 & -0.110526315789503 \tabularnewline
7 & 103.52 & 103.640526315790 & -0.120526315789508 \tabularnewline
8 & 103.54 & 103.640526315790 & -0.100526315789498 \tabularnewline
9 & 103.59 & 103.640526315790 & -0.0505263157895004 \tabularnewline
10 & 103.59 & 103.640526315790 & -0.0505263157895004 \tabularnewline
11 & 103.59 & 103.640526315790 & -0.0505263157895004 \tabularnewline
12 & 103.59 & 103.640526315790 & -0.0505263157895004 \tabularnewline
13 & 103.63 & 103.640526315790 & -0.0105263157895084 \tabularnewline
14 & 103.74 & 103.640526315790 & 0.099473684210491 \tabularnewline
15 & 103.7 & 103.640526315790 & 0.059473684210499 \tabularnewline
16 & 103.72 & 103.640526315790 & 0.079473684210495 \tabularnewline
17 & 103.81 & 103.640526315790 & 0.169473684210498 \tabularnewline
18 & 103.8 & 103.640526315790 & 0.159473684210493 \tabularnewline
19 & 104.22 & 103.640526315790 & 0.579473684210495 \tabularnewline
20 & 106.91 & 111.417358490566 & -4.50735849056604 \tabularnewline
21 & 107.06 & 111.417358490566 & -4.35735849056604 \tabularnewline
22 & 107.17 & 111.417358490566 & -4.24735849056604 \tabularnewline
23 & 107.25 & 111.417358490566 & -4.16735849056604 \tabularnewline
24 & 107.28 & 111.417358490566 & -4.13735849056604 \tabularnewline
25 & 107.24 & 111.417358490566 & -4.17735849056604 \tabularnewline
26 & 107.23 & 111.417358490566 & -4.18735849056603 \tabularnewline
27 & 107.34 & 111.417358490566 & -4.07735849056603 \tabularnewline
28 & 107.34 & 111.417358490566 & -4.07735849056603 \tabularnewline
29 & 107.3 & 111.417358490566 & -4.11735849056604 \tabularnewline
30 & 107.24 & 111.417358490566 & -4.17735849056604 \tabularnewline
31 & 107.3 & 111.417358490566 & -4.11735849056604 \tabularnewline
32 & 107.32 & 111.417358490566 & -4.09735849056604 \tabularnewline
33 & 107.28 & 111.417358490566 & -4.13735849056604 \tabularnewline
34 & 107.33 & 111.417358490566 & -4.08735849056604 \tabularnewline
35 & 107.33 & 111.417358490566 & -4.08735849056604 \tabularnewline
36 & 107.33 & 111.417358490566 & -4.08735849056604 \tabularnewline
37 & 107.28 & 111.417358490566 & -4.13735849056604 \tabularnewline
38 & 107.28 & 111.417358490566 & -4.13735849056604 \tabularnewline
39 & 107.29 & 111.417358490566 & -4.12735849056603 \tabularnewline
40 & 107.29 & 111.417358490566 & -4.12735849056603 \tabularnewline
41 & 107.23 & 111.417358490566 & -4.18735849056603 \tabularnewline
42 & 107.24 & 111.417358490566 & -4.17735849056604 \tabularnewline
43 & 107.24 & 111.417358490566 & -4.17735849056604 \tabularnewline
44 & 107.2 & 111.417358490566 & -4.21735849056603 \tabularnewline
45 & 107.23 & 111.417358490566 & -4.18735849056603 \tabularnewline
46 & 107.2 & 111.417358490566 & -4.21735849056603 \tabularnewline
47 & 107.21 & 111.417358490566 & -4.20735849056604 \tabularnewline
48 & 107.24 & 111.417358490566 & -4.17735849056604 \tabularnewline
49 & 107.21 & 111.417358490566 & -4.20735849056604 \tabularnewline
50 & 113.89 & 111.417358490566 & 2.47264150943396 \tabularnewline
51 & 114.05 & 111.417358490566 & 2.63264150943396 \tabularnewline
52 & 114.05 & 111.417358490566 & 2.63264150943396 \tabularnewline
53 & 114.05 & 111.417358490566 & 2.63264150943396 \tabularnewline
54 & 114.05 & 111.417358490566 & 2.63264150943396 \tabularnewline
55 & 115.12 & 111.417358490566 & 3.70264150943397 \tabularnewline
56 & 115.68 & 111.417358490566 & 4.26264150943397 \tabularnewline
57 & 116.05 & 111.417358490566 & 4.63264150943396 \tabularnewline
58 & 116.18 & 111.417358490566 & 4.76264150943397 \tabularnewline
59 & 116.35 & 111.417358490566 & 4.93264150943396 \tabularnewline
60 & 116.44 & 111.417358490566 & 5.02264150943396 \tabularnewline
61 & 117 & 111.417358490566 & 5.58264150943396 \tabularnewline
62 & 117.61 & 111.417358490566 & 6.19264150943396 \tabularnewline
63 & 118.17 & 111.417358490566 & 6.75264150943396 \tabularnewline
64 & 118.33 & 111.417358490566 & 6.91264150943396 \tabularnewline
65 & 118.33 & 111.417358490566 & 6.91264150943396 \tabularnewline
66 & 118.42 & 111.417358490566 & 7.00264150943396 \tabularnewline
67 & 118.5 & 111.417358490566 & 7.08264150943396 \tabularnewline
68 & 118.67 & 111.417358490566 & 7.25264150943396 \tabularnewline
69 & 119.09 & 111.417358490566 & 7.67264150943397 \tabularnewline
70 & 119.14 & 111.417358490566 & 7.72264150943396 \tabularnewline
71 & 119.23 & 111.417358490566 & 7.81264150943397 \tabularnewline
72 & 119.33 & 111.417358490566 & 7.91264150943396 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58966&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]103.52[/C][C]103.640526315789[/C][C]-0.120526315788941[/C][/ROW]
[ROW][C]2[/C][C]103.5[/C][C]103.640526315789[/C][C]-0.140526315789487[/C][/ROW]
[ROW][C]3[/C][C]103.52[/C][C]103.640526315790[/C][C]-0.120526315789508[/C][/ROW]
[ROW][C]4[/C][C]103.53[/C][C]103.640526315790[/C][C]-0.110526315789503[/C][/ROW]
[ROW][C]5[/C][C]103.53[/C][C]103.640526315790[/C][C]-0.110526315789503[/C][/ROW]
[ROW][C]6[/C][C]103.53[/C][C]103.640526315790[/C][C]-0.110526315789503[/C][/ROW]
[ROW][C]7[/C][C]103.52[/C][C]103.640526315790[/C][C]-0.120526315789508[/C][/ROW]
[ROW][C]8[/C][C]103.54[/C][C]103.640526315790[/C][C]-0.100526315789498[/C][/ROW]
[ROW][C]9[/C][C]103.59[/C][C]103.640526315790[/C][C]-0.0505263157895004[/C][/ROW]
[ROW][C]10[/C][C]103.59[/C][C]103.640526315790[/C][C]-0.0505263157895004[/C][/ROW]
[ROW][C]11[/C][C]103.59[/C][C]103.640526315790[/C][C]-0.0505263157895004[/C][/ROW]
[ROW][C]12[/C][C]103.59[/C][C]103.640526315790[/C][C]-0.0505263157895004[/C][/ROW]
[ROW][C]13[/C][C]103.63[/C][C]103.640526315790[/C][C]-0.0105263157895084[/C][/ROW]
[ROW][C]14[/C][C]103.74[/C][C]103.640526315790[/C][C]0.099473684210491[/C][/ROW]
[ROW][C]15[/C][C]103.7[/C][C]103.640526315790[/C][C]0.059473684210499[/C][/ROW]
[ROW][C]16[/C][C]103.72[/C][C]103.640526315790[/C][C]0.079473684210495[/C][/ROW]
[ROW][C]17[/C][C]103.81[/C][C]103.640526315790[/C][C]0.169473684210498[/C][/ROW]
[ROW][C]18[/C][C]103.8[/C][C]103.640526315790[/C][C]0.159473684210493[/C][/ROW]
[ROW][C]19[/C][C]104.22[/C][C]103.640526315790[/C][C]0.579473684210495[/C][/ROW]
[ROW][C]20[/C][C]106.91[/C][C]111.417358490566[/C][C]-4.50735849056604[/C][/ROW]
[ROW][C]21[/C][C]107.06[/C][C]111.417358490566[/C][C]-4.35735849056604[/C][/ROW]
[ROW][C]22[/C][C]107.17[/C][C]111.417358490566[/C][C]-4.24735849056604[/C][/ROW]
[ROW][C]23[/C][C]107.25[/C][C]111.417358490566[/C][C]-4.16735849056604[/C][/ROW]
[ROW][C]24[/C][C]107.28[/C][C]111.417358490566[/C][C]-4.13735849056604[/C][/ROW]
[ROW][C]25[/C][C]107.24[/C][C]111.417358490566[/C][C]-4.17735849056604[/C][/ROW]
[ROW][C]26[/C][C]107.23[/C][C]111.417358490566[/C][C]-4.18735849056603[/C][/ROW]
[ROW][C]27[/C][C]107.34[/C][C]111.417358490566[/C][C]-4.07735849056603[/C][/ROW]
[ROW][C]28[/C][C]107.34[/C][C]111.417358490566[/C][C]-4.07735849056603[/C][/ROW]
[ROW][C]29[/C][C]107.3[/C][C]111.417358490566[/C][C]-4.11735849056604[/C][/ROW]
[ROW][C]30[/C][C]107.24[/C][C]111.417358490566[/C][C]-4.17735849056604[/C][/ROW]
[ROW][C]31[/C][C]107.3[/C][C]111.417358490566[/C][C]-4.11735849056604[/C][/ROW]
[ROW][C]32[/C][C]107.32[/C][C]111.417358490566[/C][C]-4.09735849056604[/C][/ROW]
[ROW][C]33[/C][C]107.28[/C][C]111.417358490566[/C][C]-4.13735849056604[/C][/ROW]
[ROW][C]34[/C][C]107.33[/C][C]111.417358490566[/C][C]-4.08735849056604[/C][/ROW]
[ROW][C]35[/C][C]107.33[/C][C]111.417358490566[/C][C]-4.08735849056604[/C][/ROW]
[ROW][C]36[/C][C]107.33[/C][C]111.417358490566[/C][C]-4.08735849056604[/C][/ROW]
[ROW][C]37[/C][C]107.28[/C][C]111.417358490566[/C][C]-4.13735849056604[/C][/ROW]
[ROW][C]38[/C][C]107.28[/C][C]111.417358490566[/C][C]-4.13735849056604[/C][/ROW]
[ROW][C]39[/C][C]107.29[/C][C]111.417358490566[/C][C]-4.12735849056603[/C][/ROW]
[ROW][C]40[/C][C]107.29[/C][C]111.417358490566[/C][C]-4.12735849056603[/C][/ROW]
[ROW][C]41[/C][C]107.23[/C][C]111.417358490566[/C][C]-4.18735849056603[/C][/ROW]
[ROW][C]42[/C][C]107.24[/C][C]111.417358490566[/C][C]-4.17735849056604[/C][/ROW]
[ROW][C]43[/C][C]107.24[/C][C]111.417358490566[/C][C]-4.17735849056604[/C][/ROW]
[ROW][C]44[/C][C]107.2[/C][C]111.417358490566[/C][C]-4.21735849056603[/C][/ROW]
[ROW][C]45[/C][C]107.23[/C][C]111.417358490566[/C][C]-4.18735849056603[/C][/ROW]
[ROW][C]46[/C][C]107.2[/C][C]111.417358490566[/C][C]-4.21735849056603[/C][/ROW]
[ROW][C]47[/C][C]107.21[/C][C]111.417358490566[/C][C]-4.20735849056604[/C][/ROW]
[ROW][C]48[/C][C]107.24[/C][C]111.417358490566[/C][C]-4.17735849056604[/C][/ROW]
[ROW][C]49[/C][C]107.21[/C][C]111.417358490566[/C][C]-4.20735849056604[/C][/ROW]
[ROW][C]50[/C][C]113.89[/C][C]111.417358490566[/C][C]2.47264150943396[/C][/ROW]
[ROW][C]51[/C][C]114.05[/C][C]111.417358490566[/C][C]2.63264150943396[/C][/ROW]
[ROW][C]52[/C][C]114.05[/C][C]111.417358490566[/C][C]2.63264150943396[/C][/ROW]
[ROW][C]53[/C][C]114.05[/C][C]111.417358490566[/C][C]2.63264150943396[/C][/ROW]
[ROW][C]54[/C][C]114.05[/C][C]111.417358490566[/C][C]2.63264150943396[/C][/ROW]
[ROW][C]55[/C][C]115.12[/C][C]111.417358490566[/C][C]3.70264150943397[/C][/ROW]
[ROW][C]56[/C][C]115.68[/C][C]111.417358490566[/C][C]4.26264150943397[/C][/ROW]
[ROW][C]57[/C][C]116.05[/C][C]111.417358490566[/C][C]4.63264150943396[/C][/ROW]
[ROW][C]58[/C][C]116.18[/C][C]111.417358490566[/C][C]4.76264150943397[/C][/ROW]
[ROW][C]59[/C][C]116.35[/C][C]111.417358490566[/C][C]4.93264150943396[/C][/ROW]
[ROW][C]60[/C][C]116.44[/C][C]111.417358490566[/C][C]5.02264150943396[/C][/ROW]
[ROW][C]61[/C][C]117[/C][C]111.417358490566[/C][C]5.58264150943396[/C][/ROW]
[ROW][C]62[/C][C]117.61[/C][C]111.417358490566[/C][C]6.19264150943396[/C][/ROW]
[ROW][C]63[/C][C]118.17[/C][C]111.417358490566[/C][C]6.75264150943396[/C][/ROW]
[ROW][C]64[/C][C]118.33[/C][C]111.417358490566[/C][C]6.91264150943396[/C][/ROW]
[ROW][C]65[/C][C]118.33[/C][C]111.417358490566[/C][C]6.91264150943396[/C][/ROW]
[ROW][C]66[/C][C]118.42[/C][C]111.417358490566[/C][C]7.00264150943396[/C][/ROW]
[ROW][C]67[/C][C]118.5[/C][C]111.417358490566[/C][C]7.08264150943396[/C][/ROW]
[ROW][C]68[/C][C]118.67[/C][C]111.417358490566[/C][C]7.25264150943396[/C][/ROW]
[ROW][C]69[/C][C]119.09[/C][C]111.417358490566[/C][C]7.67264150943397[/C][/ROW]
[ROW][C]70[/C][C]119.14[/C][C]111.417358490566[/C][C]7.72264150943396[/C][/ROW]
[ROW][C]71[/C][C]119.23[/C][C]111.417358490566[/C][C]7.81264150943397[/C][/ROW]
[ROW][C]72[/C][C]119.33[/C][C]111.417358490566[/C][C]7.91264150943396[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58966&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58966&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1103.52103.640526315789-0.120526315788941
2103.5103.640526315789-0.140526315789487
3103.52103.640526315790-0.120526315789508
4103.53103.640526315790-0.110526315789503
5103.53103.640526315790-0.110526315789503
6103.53103.640526315790-0.110526315789503
7103.52103.640526315790-0.120526315789508
8103.54103.640526315790-0.100526315789498
9103.59103.640526315790-0.0505263157895004
10103.59103.640526315790-0.0505263157895004
11103.59103.640526315790-0.0505263157895004
12103.59103.640526315790-0.0505263157895004
13103.63103.640526315790-0.0105263157895084
14103.74103.6405263157900.099473684210491
15103.7103.6405263157900.059473684210499
16103.72103.6405263157900.079473684210495
17103.81103.6405263157900.169473684210498
18103.8103.6405263157900.159473684210493
19104.22103.6405263157900.579473684210495
20106.91111.417358490566-4.50735849056604
21107.06111.417358490566-4.35735849056604
22107.17111.417358490566-4.24735849056604
23107.25111.417358490566-4.16735849056604
24107.28111.417358490566-4.13735849056604
25107.24111.417358490566-4.17735849056604
26107.23111.417358490566-4.18735849056603
27107.34111.417358490566-4.07735849056603
28107.34111.417358490566-4.07735849056603
29107.3111.417358490566-4.11735849056604
30107.24111.417358490566-4.17735849056604
31107.3111.417358490566-4.11735849056604
32107.32111.417358490566-4.09735849056604
33107.28111.417358490566-4.13735849056604
34107.33111.417358490566-4.08735849056604
35107.33111.417358490566-4.08735849056604
36107.33111.417358490566-4.08735849056604
37107.28111.417358490566-4.13735849056604
38107.28111.417358490566-4.13735849056604
39107.29111.417358490566-4.12735849056603
40107.29111.417358490566-4.12735849056603
41107.23111.417358490566-4.18735849056603
42107.24111.417358490566-4.17735849056604
43107.24111.417358490566-4.17735849056604
44107.2111.417358490566-4.21735849056603
45107.23111.417358490566-4.18735849056603
46107.2111.417358490566-4.21735849056603
47107.21111.417358490566-4.20735849056604
48107.24111.417358490566-4.17735849056604
49107.21111.417358490566-4.20735849056604
50113.89111.4173584905662.47264150943396
51114.05111.4173584905662.63264150943396
52114.05111.4173584905662.63264150943396
53114.05111.4173584905662.63264150943396
54114.05111.4173584905662.63264150943396
55115.12111.4173584905663.70264150943397
56115.68111.4173584905664.26264150943397
57116.05111.4173584905664.63264150943396
58116.18111.4173584905664.76264150943397
59116.35111.4173584905664.93264150943396
60116.44111.4173584905665.02264150943396
61117111.4173584905665.58264150943396
62117.61111.4173584905666.19264150943396
63118.17111.4173584905666.75264150943396
64118.33111.4173584905666.91264150943396
65118.33111.4173584905666.91264150943396
66118.42111.4173584905667.00264150943396
67118.5111.4173584905667.08264150943396
68118.67111.4173584905667.25264150943396
69119.09111.4173584905667.67264150943397
70119.14111.4173584905667.72264150943396
71119.23111.4173584905667.81264150943397
72119.33111.4173584905667.91264150943396







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
54.48941822190818e-088.97883644381637e-080.999999955105818
61.48936788031150e-102.97873576062301e-100.999999999851063
73.68370850672314e-137.36741701344627e-130.999999999999632
82.46720343835644e-154.93440687671288e-150.999999999999998
91.65570516334699e-153.31141032669399e-150.999999999999998
106.14831937223353e-171.22966387444671e-161
111.32168788705674e-182.64337577411347e-181
122.21773586180352e-204.43547172360704e-201
131.51734534586769e-213.03469069173538e-211
144.79506582668233e-219.59013165336467e-211
153.79285067676758e-227.58570135353516e-221
163.12960649708841e-236.25921299417682e-231
171.24035444243874e-232.48070888487748e-231
181.67278439035596e-243.34556878071192e-241
193.93552234610264e-227.87104469220529e-221
201.51178590861411e-233.02357181722822e-231
216.93285959542567e-251.38657191908513e-241
223.90331210525806e-267.80662421051611e-261
232.56502675287941e-275.13005350575881e-271
241.58403090376922e-283.16806180753845e-281
257.339093868117e-301.4678187736234e-291
263.19237540411187e-316.38475080822375e-311
272.12301415109164e-324.24602830218327e-321
281.29252148591915e-332.58504297183829e-331
296.3750245527402e-351.27500491054804e-341
302.78331940240981e-365.56663880481962e-361
311.39837264457149e-372.79674528914298e-371
327.62541544071102e-391.52508308814220e-381
333.81328475781301e-407.62656951562602e-401
342.29119597759008e-414.58239195518016e-411
351.43550210780219e-422.87100421560438e-421
369.52907316021083e-441.90581463204217e-431
376.1181707651741e-451.22363415303482e-441
384.37553446014350e-468.75106892028701e-461
393.61984423218559e-477.23968846437118e-471
403.53470727561178e-487.06941455122356e-481
414.32625188387039e-498.65250376774077e-491
426.88201314497856e-501.37640262899571e-491
431.57411786130581e-503.14823572261162e-501
446.51121154588855e-511.30224230917771e-501
454.95791005788827e-519.91582011577654e-511
461.16105013115708e-502.32210026231415e-501
471.41301114269706e-492.82602228539413e-491
483.6725639591611e-477.3451279183222e-471
493.84085774702536e-417.68171549405073e-411
503.24351135942703e-056.48702271885406e-050.999967564886406
510.03017197751853540.06034395503707090.969828022481465
520.2804190672775320.5608381345550630.719580932722468
530.6703842623745150.659231475250970.329615737625485
540.9228590343757040.1542819312485930.0771409656242964
550.9830976467778990.03380470644420210.0169023532221010
560.9956633638501630.008673272299673890.00433663614983694
570.9986119938181760.002776012363648490.00138800618182425
580.9995510982324750.0008978035350499330.000448901767524967
590.999866474236690.0002670515266201190.000133525763310059
600.999979354392314.12912153780045e-052.06456076890022e-05
610.999996118175327.7636493584692e-063.8818246792346e-06
620.9999979850288134.02994237350239e-062.01497118675119e-06
630.9999952354253089.52914938448087e-064.76457469224044e-06
640.9999833623383633.32753232733442e-051.66376616366721e-05
650.9999456719047820.0001086561904365535.43280952182767e-05
660.9998059128480850.0003881743038307060.000194087151915353
670.9993903691022240.001219261795552770.000609630897776385

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
5 & 4.48941822190818e-08 & 8.97883644381637e-08 & 0.999999955105818 \tabularnewline
6 & 1.48936788031150e-10 & 2.97873576062301e-10 & 0.999999999851063 \tabularnewline
7 & 3.68370850672314e-13 & 7.36741701344627e-13 & 0.999999999999632 \tabularnewline
8 & 2.46720343835644e-15 & 4.93440687671288e-15 & 0.999999999999998 \tabularnewline
9 & 1.65570516334699e-15 & 3.31141032669399e-15 & 0.999999999999998 \tabularnewline
10 & 6.14831937223353e-17 & 1.22966387444671e-16 & 1 \tabularnewline
11 & 1.32168788705674e-18 & 2.64337577411347e-18 & 1 \tabularnewline
12 & 2.21773586180352e-20 & 4.43547172360704e-20 & 1 \tabularnewline
13 & 1.51734534586769e-21 & 3.03469069173538e-21 & 1 \tabularnewline
14 & 4.79506582668233e-21 & 9.59013165336467e-21 & 1 \tabularnewline
15 & 3.79285067676758e-22 & 7.58570135353516e-22 & 1 \tabularnewline
16 & 3.12960649708841e-23 & 6.25921299417682e-23 & 1 \tabularnewline
17 & 1.24035444243874e-23 & 2.48070888487748e-23 & 1 \tabularnewline
18 & 1.67278439035596e-24 & 3.34556878071192e-24 & 1 \tabularnewline
19 & 3.93552234610264e-22 & 7.87104469220529e-22 & 1 \tabularnewline
20 & 1.51178590861411e-23 & 3.02357181722822e-23 & 1 \tabularnewline
21 & 6.93285959542567e-25 & 1.38657191908513e-24 & 1 \tabularnewline
22 & 3.90331210525806e-26 & 7.80662421051611e-26 & 1 \tabularnewline
23 & 2.56502675287941e-27 & 5.13005350575881e-27 & 1 \tabularnewline
24 & 1.58403090376922e-28 & 3.16806180753845e-28 & 1 \tabularnewline
25 & 7.339093868117e-30 & 1.4678187736234e-29 & 1 \tabularnewline
26 & 3.19237540411187e-31 & 6.38475080822375e-31 & 1 \tabularnewline
27 & 2.12301415109164e-32 & 4.24602830218327e-32 & 1 \tabularnewline
28 & 1.29252148591915e-33 & 2.58504297183829e-33 & 1 \tabularnewline
29 & 6.3750245527402e-35 & 1.27500491054804e-34 & 1 \tabularnewline
30 & 2.78331940240981e-36 & 5.56663880481962e-36 & 1 \tabularnewline
31 & 1.39837264457149e-37 & 2.79674528914298e-37 & 1 \tabularnewline
32 & 7.62541544071102e-39 & 1.52508308814220e-38 & 1 \tabularnewline
33 & 3.81328475781301e-40 & 7.62656951562602e-40 & 1 \tabularnewline
34 & 2.29119597759008e-41 & 4.58239195518016e-41 & 1 \tabularnewline
35 & 1.43550210780219e-42 & 2.87100421560438e-42 & 1 \tabularnewline
36 & 9.52907316021083e-44 & 1.90581463204217e-43 & 1 \tabularnewline
37 & 6.1181707651741e-45 & 1.22363415303482e-44 & 1 \tabularnewline
38 & 4.37553446014350e-46 & 8.75106892028701e-46 & 1 \tabularnewline
39 & 3.61984423218559e-47 & 7.23968846437118e-47 & 1 \tabularnewline
40 & 3.53470727561178e-48 & 7.06941455122356e-48 & 1 \tabularnewline
41 & 4.32625188387039e-49 & 8.65250376774077e-49 & 1 \tabularnewline
42 & 6.88201314497856e-50 & 1.37640262899571e-49 & 1 \tabularnewline
43 & 1.57411786130581e-50 & 3.14823572261162e-50 & 1 \tabularnewline
44 & 6.51121154588855e-51 & 1.30224230917771e-50 & 1 \tabularnewline
45 & 4.95791005788827e-51 & 9.91582011577654e-51 & 1 \tabularnewline
46 & 1.16105013115708e-50 & 2.32210026231415e-50 & 1 \tabularnewline
47 & 1.41301114269706e-49 & 2.82602228539413e-49 & 1 \tabularnewline
48 & 3.6725639591611e-47 & 7.3451279183222e-47 & 1 \tabularnewline
49 & 3.84085774702536e-41 & 7.68171549405073e-41 & 1 \tabularnewline
50 & 3.24351135942703e-05 & 6.48702271885406e-05 & 0.999967564886406 \tabularnewline
51 & 0.0301719775185354 & 0.0603439550370709 & 0.969828022481465 \tabularnewline
52 & 0.280419067277532 & 0.560838134555063 & 0.719580932722468 \tabularnewline
53 & 0.670384262374515 & 0.65923147525097 & 0.329615737625485 \tabularnewline
54 & 0.922859034375704 & 0.154281931248593 & 0.0771409656242964 \tabularnewline
55 & 0.983097646777899 & 0.0338047064442021 & 0.0169023532221010 \tabularnewline
56 & 0.995663363850163 & 0.00867327229967389 & 0.00433663614983694 \tabularnewline
57 & 0.998611993818176 & 0.00277601236364849 & 0.00138800618182425 \tabularnewline
58 & 0.999551098232475 & 0.000897803535049933 & 0.000448901767524967 \tabularnewline
59 & 0.99986647423669 & 0.000267051526620119 & 0.000133525763310059 \tabularnewline
60 & 0.99997935439231 & 4.12912153780045e-05 & 2.06456076890022e-05 \tabularnewline
61 & 0.99999611817532 & 7.7636493584692e-06 & 3.8818246792346e-06 \tabularnewline
62 & 0.999997985028813 & 4.02994237350239e-06 & 2.01497118675119e-06 \tabularnewline
63 & 0.999995235425308 & 9.52914938448087e-06 & 4.76457469224044e-06 \tabularnewline
64 & 0.999983362338363 & 3.32753232733442e-05 & 1.66376616366721e-05 \tabularnewline
65 & 0.999945671904782 & 0.000108656190436553 & 5.43280952182767e-05 \tabularnewline
66 & 0.999805912848085 & 0.000388174303830706 & 0.000194087151915353 \tabularnewline
67 & 0.999390369102224 & 0.00121926179555277 & 0.000609630897776385 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58966&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]5[/C][C]4.48941822190818e-08[/C][C]8.97883644381637e-08[/C][C]0.999999955105818[/C][/ROW]
[ROW][C]6[/C][C]1.48936788031150e-10[/C][C]2.97873576062301e-10[/C][C]0.999999999851063[/C][/ROW]
[ROW][C]7[/C][C]3.68370850672314e-13[/C][C]7.36741701344627e-13[/C][C]0.999999999999632[/C][/ROW]
[ROW][C]8[/C][C]2.46720343835644e-15[/C][C]4.93440687671288e-15[/C][C]0.999999999999998[/C][/ROW]
[ROW][C]9[/C][C]1.65570516334699e-15[/C][C]3.31141032669399e-15[/C][C]0.999999999999998[/C][/ROW]
[ROW][C]10[/C][C]6.14831937223353e-17[/C][C]1.22966387444671e-16[/C][C]1[/C][/ROW]
[ROW][C]11[/C][C]1.32168788705674e-18[/C][C]2.64337577411347e-18[/C][C]1[/C][/ROW]
[ROW][C]12[/C][C]2.21773586180352e-20[/C][C]4.43547172360704e-20[/C][C]1[/C][/ROW]
[ROW][C]13[/C][C]1.51734534586769e-21[/C][C]3.03469069173538e-21[/C][C]1[/C][/ROW]
[ROW][C]14[/C][C]4.79506582668233e-21[/C][C]9.59013165336467e-21[/C][C]1[/C][/ROW]
[ROW][C]15[/C][C]3.79285067676758e-22[/C][C]7.58570135353516e-22[/C][C]1[/C][/ROW]
[ROW][C]16[/C][C]3.12960649708841e-23[/C][C]6.25921299417682e-23[/C][C]1[/C][/ROW]
[ROW][C]17[/C][C]1.24035444243874e-23[/C][C]2.48070888487748e-23[/C][C]1[/C][/ROW]
[ROW][C]18[/C][C]1.67278439035596e-24[/C][C]3.34556878071192e-24[/C][C]1[/C][/ROW]
[ROW][C]19[/C][C]3.93552234610264e-22[/C][C]7.87104469220529e-22[/C][C]1[/C][/ROW]
[ROW][C]20[/C][C]1.51178590861411e-23[/C][C]3.02357181722822e-23[/C][C]1[/C][/ROW]
[ROW][C]21[/C][C]6.93285959542567e-25[/C][C]1.38657191908513e-24[/C][C]1[/C][/ROW]
[ROW][C]22[/C][C]3.90331210525806e-26[/C][C]7.80662421051611e-26[/C][C]1[/C][/ROW]
[ROW][C]23[/C][C]2.56502675287941e-27[/C][C]5.13005350575881e-27[/C][C]1[/C][/ROW]
[ROW][C]24[/C][C]1.58403090376922e-28[/C][C]3.16806180753845e-28[/C][C]1[/C][/ROW]
[ROW][C]25[/C][C]7.339093868117e-30[/C][C]1.4678187736234e-29[/C][C]1[/C][/ROW]
[ROW][C]26[/C][C]3.19237540411187e-31[/C][C]6.38475080822375e-31[/C][C]1[/C][/ROW]
[ROW][C]27[/C][C]2.12301415109164e-32[/C][C]4.24602830218327e-32[/C][C]1[/C][/ROW]
[ROW][C]28[/C][C]1.29252148591915e-33[/C][C]2.58504297183829e-33[/C][C]1[/C][/ROW]
[ROW][C]29[/C][C]6.3750245527402e-35[/C][C]1.27500491054804e-34[/C][C]1[/C][/ROW]
[ROW][C]30[/C][C]2.78331940240981e-36[/C][C]5.56663880481962e-36[/C][C]1[/C][/ROW]
[ROW][C]31[/C][C]1.39837264457149e-37[/C][C]2.79674528914298e-37[/C][C]1[/C][/ROW]
[ROW][C]32[/C][C]7.62541544071102e-39[/C][C]1.52508308814220e-38[/C][C]1[/C][/ROW]
[ROW][C]33[/C][C]3.81328475781301e-40[/C][C]7.62656951562602e-40[/C][C]1[/C][/ROW]
[ROW][C]34[/C][C]2.29119597759008e-41[/C][C]4.58239195518016e-41[/C][C]1[/C][/ROW]
[ROW][C]35[/C][C]1.43550210780219e-42[/C][C]2.87100421560438e-42[/C][C]1[/C][/ROW]
[ROW][C]36[/C][C]9.52907316021083e-44[/C][C]1.90581463204217e-43[/C][C]1[/C][/ROW]
[ROW][C]37[/C][C]6.1181707651741e-45[/C][C]1.22363415303482e-44[/C][C]1[/C][/ROW]
[ROW][C]38[/C][C]4.37553446014350e-46[/C][C]8.75106892028701e-46[/C][C]1[/C][/ROW]
[ROW][C]39[/C][C]3.61984423218559e-47[/C][C]7.23968846437118e-47[/C][C]1[/C][/ROW]
[ROW][C]40[/C][C]3.53470727561178e-48[/C][C]7.06941455122356e-48[/C][C]1[/C][/ROW]
[ROW][C]41[/C][C]4.32625188387039e-49[/C][C]8.65250376774077e-49[/C][C]1[/C][/ROW]
[ROW][C]42[/C][C]6.88201314497856e-50[/C][C]1.37640262899571e-49[/C][C]1[/C][/ROW]
[ROW][C]43[/C][C]1.57411786130581e-50[/C][C]3.14823572261162e-50[/C][C]1[/C][/ROW]
[ROW][C]44[/C][C]6.51121154588855e-51[/C][C]1.30224230917771e-50[/C][C]1[/C][/ROW]
[ROW][C]45[/C][C]4.95791005788827e-51[/C][C]9.91582011577654e-51[/C][C]1[/C][/ROW]
[ROW][C]46[/C][C]1.16105013115708e-50[/C][C]2.32210026231415e-50[/C][C]1[/C][/ROW]
[ROW][C]47[/C][C]1.41301114269706e-49[/C][C]2.82602228539413e-49[/C][C]1[/C][/ROW]
[ROW][C]48[/C][C]3.6725639591611e-47[/C][C]7.3451279183222e-47[/C][C]1[/C][/ROW]
[ROW][C]49[/C][C]3.84085774702536e-41[/C][C]7.68171549405073e-41[/C][C]1[/C][/ROW]
[ROW][C]50[/C][C]3.24351135942703e-05[/C][C]6.48702271885406e-05[/C][C]0.999967564886406[/C][/ROW]
[ROW][C]51[/C][C]0.0301719775185354[/C][C]0.0603439550370709[/C][C]0.969828022481465[/C][/ROW]
[ROW][C]52[/C][C]0.280419067277532[/C][C]0.560838134555063[/C][C]0.719580932722468[/C][/ROW]
[ROW][C]53[/C][C]0.670384262374515[/C][C]0.65923147525097[/C][C]0.329615737625485[/C][/ROW]
[ROW][C]54[/C][C]0.922859034375704[/C][C]0.154281931248593[/C][C]0.0771409656242964[/C][/ROW]
[ROW][C]55[/C][C]0.983097646777899[/C][C]0.0338047064442021[/C][C]0.0169023532221010[/C][/ROW]
[ROW][C]56[/C][C]0.995663363850163[/C][C]0.00867327229967389[/C][C]0.00433663614983694[/C][/ROW]
[ROW][C]57[/C][C]0.998611993818176[/C][C]0.00277601236364849[/C][C]0.00138800618182425[/C][/ROW]
[ROW][C]58[/C][C]0.999551098232475[/C][C]0.000897803535049933[/C][C]0.000448901767524967[/C][/ROW]
[ROW][C]59[/C][C]0.99986647423669[/C][C]0.000267051526620119[/C][C]0.000133525763310059[/C][/ROW]
[ROW][C]60[/C][C]0.99997935439231[/C][C]4.12912153780045e-05[/C][C]2.06456076890022e-05[/C][/ROW]
[ROW][C]61[/C][C]0.99999611817532[/C][C]7.7636493584692e-06[/C][C]3.8818246792346e-06[/C][/ROW]
[ROW][C]62[/C][C]0.999997985028813[/C][C]4.02994237350239e-06[/C][C]2.01497118675119e-06[/C][/ROW]
[ROW][C]63[/C][C]0.999995235425308[/C][C]9.52914938448087e-06[/C][C]4.76457469224044e-06[/C][/ROW]
[ROW][C]64[/C][C]0.999983362338363[/C][C]3.32753232733442e-05[/C][C]1.66376616366721e-05[/C][/ROW]
[ROW][C]65[/C][C]0.999945671904782[/C][C]0.000108656190436553[/C][C]5.43280952182767e-05[/C][/ROW]
[ROW][C]66[/C][C]0.999805912848085[/C][C]0.000388174303830706[/C][C]0.000194087151915353[/C][/ROW]
[ROW][C]67[/C][C]0.999390369102224[/C][C]0.00121926179555277[/C][C]0.000609630897776385[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58966&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58966&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
54.48941822190818e-088.97883644381637e-080.999999955105818
61.48936788031150e-102.97873576062301e-100.999999999851063
73.68370850672314e-137.36741701344627e-130.999999999999632
82.46720343835644e-154.93440687671288e-150.999999999999998
91.65570516334699e-153.31141032669399e-150.999999999999998
106.14831937223353e-171.22966387444671e-161
111.32168788705674e-182.64337577411347e-181
122.21773586180352e-204.43547172360704e-201
131.51734534586769e-213.03469069173538e-211
144.79506582668233e-219.59013165336467e-211
153.79285067676758e-227.58570135353516e-221
163.12960649708841e-236.25921299417682e-231
171.24035444243874e-232.48070888487748e-231
181.67278439035596e-243.34556878071192e-241
193.93552234610264e-227.87104469220529e-221
201.51178590861411e-233.02357181722822e-231
216.93285959542567e-251.38657191908513e-241
223.90331210525806e-267.80662421051611e-261
232.56502675287941e-275.13005350575881e-271
241.58403090376922e-283.16806180753845e-281
257.339093868117e-301.4678187736234e-291
263.19237540411187e-316.38475080822375e-311
272.12301415109164e-324.24602830218327e-321
281.29252148591915e-332.58504297183829e-331
296.3750245527402e-351.27500491054804e-341
302.78331940240981e-365.56663880481962e-361
311.39837264457149e-372.79674528914298e-371
327.62541544071102e-391.52508308814220e-381
333.81328475781301e-407.62656951562602e-401
342.29119597759008e-414.58239195518016e-411
351.43550210780219e-422.87100421560438e-421
369.52907316021083e-441.90581463204217e-431
376.1181707651741e-451.22363415303482e-441
384.37553446014350e-468.75106892028701e-461
393.61984423218559e-477.23968846437118e-471
403.53470727561178e-487.06941455122356e-481
414.32625188387039e-498.65250376774077e-491
426.88201314497856e-501.37640262899571e-491
431.57411786130581e-503.14823572261162e-501
446.51121154588855e-511.30224230917771e-501
454.95791005788827e-519.91582011577654e-511
461.16105013115708e-502.32210026231415e-501
471.41301114269706e-492.82602228539413e-491
483.6725639591611e-477.3451279183222e-471
493.84085774702536e-417.68171549405073e-411
503.24351135942703e-056.48702271885406e-050.999967564886406
510.03017197751853540.06034395503707090.969828022481465
520.2804190672775320.5608381345550630.719580932722468
530.6703842623745150.659231475250970.329615737625485
540.9228590343757040.1542819312485930.0771409656242964
550.9830976467778990.03380470644420210.0169023532221010
560.9956633638501630.008673272299673890.00433663614983694
570.9986119938181760.002776012363648490.00138800618182425
580.9995510982324750.0008978035350499330.000448901767524967
590.999866474236690.0002670515266201190.000133525763310059
600.999979354392314.12912153780045e-052.06456076890022e-05
610.999996118175327.7636493584692e-063.8818246792346e-06
620.9999979850288134.02994237350239e-062.01497118675119e-06
630.9999952354253089.52914938448087e-064.76457469224044e-06
640.9999833623383633.32753232733442e-051.66376616366721e-05
650.9999456719047820.0001086561904365535.43280952182767e-05
660.9998059128480850.0003881743038307060.000194087151915353
670.9993903691022240.001219261795552770.000609630897776385







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level580.92063492063492NOK
5% type I error level590.936507936507937NOK
10% type I error level600.952380952380952NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 58 & 0.92063492063492 & NOK \tabularnewline
5% type I error level & 59 & 0.936507936507937 & NOK \tabularnewline
10% type I error level & 60 & 0.952380952380952 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58966&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]58[/C][C]0.92063492063492[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]59[/C][C]0.936507936507937[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]60[/C][C]0.952380952380952[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58966&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58966&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level580.92063492063492NOK
5% type I error level590.936507936507937NOK
10% type I error level600.952380952380952NOK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}