Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationFri, 30 Dec 2011 14:32:36 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Dec/30/t1325273611rbbplxlgl6ta6be.htm/, Retrieved Wed, 11 Sep 2024 07:07:13 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=160898, Retrieved Wed, 11 Sep 2024 07:07:13 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsKDGP2W12
Estimated Impact237
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2011-12-30 19:32:36] [ded1bbd321fb25f4a0a8bacc8426c40e] [Current]
Feedback Forum

Post a new message
Dataseries X:
2,98
2,98
2,98
3,03
3,07
3,08
3,08
3,08
3,08
3,08
3,08
3,08
3,08
3,08
3,12
3,15
3,15
3,15
3,15
3,16
3,19
3,20
3,20
3,20
3,21
3,21
3,21
3,21
3,21
3,28
3,30
3,30
3,30
3,30
3,30
3,30
3,30
3,45
3,49
3,50
3,54
3,64
3,67
3,67
3,68
3,68
3,68
3,68
3,70
3,83
3,87
3,87
3,87
3,87
3,87
3,87
3,87
3,87
3,87
3,88
3,88
3,88
3,88
3,88
3,88
3,89
3,89
3,91
3,95
3,99
3,99
3,99
4,00
4,00
4,00
4,00
4,00
4,00
4,00
4,00
4,06
4,07
4,07
4,07
4,07
4,07
4,30
4,44
4,52
4,52
4,52
4,53
4,53
4,53
4,53
4,53
4,53
4,53
4,53
4,61
4,63
4,63
4,63
4,63
4,63
4,63
4,63
4,63
4,63
4,63
4,66
4,73
4,73
4,72
4,7
4,74
4,74
4,74
4,76
4,88
4,88
4,88
4,88
4,89
4,97
4,97
4,97
4,97
4,97
4,97
4,97
4,97




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'AstonUniversity' @ aston.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'AstonUniversity' @ aston.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=160898&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'AstonUniversity' @ aston.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=160898&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=160898&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'AstonUniversity' @ aston.wessa.net







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.3320013.62170.000216
20.1100621.20060.116139
3-0.02048-0.22340.411798
40.0034040.03710.485221
5-0.026793-0.29230.385291
6-0.029783-0.32490.372914
7-0.051424-0.5610.287938
80.080210.8750.191673
90.0667970.72870.233816
10-0.068964-0.75230.226676
11-0.151769-1.65560.050218
12-0.384895-4.19872.6e-05
13-0.131668-1.43630.076766
14-0.055198-0.60210.274115
15-0.050339-0.54910.29197
16-0.083909-0.91530.180933
170.0193770.21140.416479
180.0525730.57350.283692
190.0440010.480.316058
20-0.016782-0.18310.427526
21-0.111517-1.21650.1131

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.332001 & 3.6217 & 0.000216 \tabularnewline
2 & 0.110062 & 1.2006 & 0.116139 \tabularnewline
3 & -0.02048 & -0.2234 & 0.411798 \tabularnewline
4 & 0.003404 & 0.0371 & 0.485221 \tabularnewline
5 & -0.026793 & -0.2923 & 0.385291 \tabularnewline
6 & -0.029783 & -0.3249 & 0.372914 \tabularnewline
7 & -0.051424 & -0.561 & 0.287938 \tabularnewline
8 & 0.08021 & 0.875 & 0.191673 \tabularnewline
9 & 0.066797 & 0.7287 & 0.233816 \tabularnewline
10 & -0.068964 & -0.7523 & 0.226676 \tabularnewline
11 & -0.151769 & -1.6556 & 0.050218 \tabularnewline
12 & -0.384895 & -4.1987 & 2.6e-05 \tabularnewline
13 & -0.131668 & -1.4363 & 0.076766 \tabularnewline
14 & -0.055198 & -0.6021 & 0.274115 \tabularnewline
15 & -0.050339 & -0.5491 & 0.29197 \tabularnewline
16 & -0.083909 & -0.9153 & 0.180933 \tabularnewline
17 & 0.019377 & 0.2114 & 0.416479 \tabularnewline
18 & 0.052573 & 0.5735 & 0.283692 \tabularnewline
19 & 0.044001 & 0.48 & 0.316058 \tabularnewline
20 & -0.016782 & -0.1831 & 0.427526 \tabularnewline
21 & -0.111517 & -1.2165 & 0.1131 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=160898&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.332001[/C][C]3.6217[/C][C]0.000216[/C][/ROW]
[ROW][C]2[/C][C]0.110062[/C][C]1.2006[/C][C]0.116139[/C][/ROW]
[ROW][C]3[/C][C]-0.02048[/C][C]-0.2234[/C][C]0.411798[/C][/ROW]
[ROW][C]4[/C][C]0.003404[/C][C]0.0371[/C][C]0.485221[/C][/ROW]
[ROW][C]5[/C][C]-0.026793[/C][C]-0.2923[/C][C]0.385291[/C][/ROW]
[ROW][C]6[/C][C]-0.029783[/C][C]-0.3249[/C][C]0.372914[/C][/ROW]
[ROW][C]7[/C][C]-0.051424[/C][C]-0.561[/C][C]0.287938[/C][/ROW]
[ROW][C]8[/C][C]0.08021[/C][C]0.875[/C][C]0.191673[/C][/ROW]
[ROW][C]9[/C][C]0.066797[/C][C]0.7287[/C][C]0.233816[/C][/ROW]
[ROW][C]10[/C][C]-0.068964[/C][C]-0.7523[/C][C]0.226676[/C][/ROW]
[ROW][C]11[/C][C]-0.151769[/C][C]-1.6556[/C][C]0.050218[/C][/ROW]
[ROW][C]12[/C][C]-0.384895[/C][C]-4.1987[/C][C]2.6e-05[/C][/ROW]
[ROW][C]13[/C][C]-0.131668[/C][C]-1.4363[/C][C]0.076766[/C][/ROW]
[ROW][C]14[/C][C]-0.055198[/C][C]-0.6021[/C][C]0.274115[/C][/ROW]
[ROW][C]15[/C][C]-0.050339[/C][C]-0.5491[/C][C]0.29197[/C][/ROW]
[ROW][C]16[/C][C]-0.083909[/C][C]-0.9153[/C][C]0.180933[/C][/ROW]
[ROW][C]17[/C][C]0.019377[/C][C]0.2114[/C][C]0.416479[/C][/ROW]
[ROW][C]18[/C][C]0.052573[/C][C]0.5735[/C][C]0.283692[/C][/ROW]
[ROW][C]19[/C][C]0.044001[/C][C]0.48[/C][C]0.316058[/C][/ROW]
[ROW][C]20[/C][C]-0.016782[/C][C]-0.1831[/C][C]0.427526[/C][/ROW]
[ROW][C]21[/C][C]-0.111517[/C][C]-1.2165[/C][C]0.1131[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=160898&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=160898&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.3320013.62170.000216
20.1100621.20060.116139
3-0.02048-0.22340.411798
40.0034040.03710.485221
5-0.026793-0.29230.385291
6-0.029783-0.32490.372914
7-0.051424-0.5610.287938
80.080210.8750.191673
90.0667970.72870.233816
10-0.068964-0.75230.226676
11-0.151769-1.65560.050218
12-0.384895-4.19872.6e-05
13-0.131668-1.43630.076766
14-0.055198-0.60210.274115
15-0.050339-0.54910.29197
16-0.083909-0.91530.180933
170.0193770.21140.416479
180.0525730.57350.283692
190.0440010.480.316058
20-0.016782-0.18310.427526
21-0.111517-1.21650.1131







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.3320013.62170.000216
2-0.000183-0.0020.499206
3-0.064024-0.69840.243138
40.0328850.35870.360213
5-0.034098-0.3720.355289
6-0.018023-0.19660.422237
7-0.034751-0.37910.352648
80.1217351.3280.093365
90.0083560.09110.463764
10-0.130436-1.42290.078693
11-0.096899-1.0570.146316
12-0.34261-3.73740.000144
130.1184471.29210.099412
14-0.006258-0.06830.472845
15-0.066103-0.72110.236133
16-0.057306-0.62510.266542
170.0253540.27660.391293
180.0439910.47990.316094
19-0.019149-0.20890.417446
200.057630.62870.265385
21-0.136941-1.49380.068931

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.332001 & 3.6217 & 0.000216 \tabularnewline
2 & -0.000183 & -0.002 & 0.499206 \tabularnewline
3 & -0.064024 & -0.6984 & 0.243138 \tabularnewline
4 & 0.032885 & 0.3587 & 0.360213 \tabularnewline
5 & -0.034098 & -0.372 & 0.355289 \tabularnewline
6 & -0.018023 & -0.1966 & 0.422237 \tabularnewline
7 & -0.034751 & -0.3791 & 0.352648 \tabularnewline
8 & 0.121735 & 1.328 & 0.093365 \tabularnewline
9 & 0.008356 & 0.0911 & 0.463764 \tabularnewline
10 & -0.130436 & -1.4229 & 0.078693 \tabularnewline
11 & -0.096899 & -1.057 & 0.146316 \tabularnewline
12 & -0.34261 & -3.7374 & 0.000144 \tabularnewline
13 & 0.118447 & 1.2921 & 0.099412 \tabularnewline
14 & -0.006258 & -0.0683 & 0.472845 \tabularnewline
15 & -0.066103 & -0.7211 & 0.236133 \tabularnewline
16 & -0.057306 & -0.6251 & 0.266542 \tabularnewline
17 & 0.025354 & 0.2766 & 0.391293 \tabularnewline
18 & 0.043991 & 0.4799 & 0.316094 \tabularnewline
19 & -0.019149 & -0.2089 & 0.417446 \tabularnewline
20 & 0.05763 & 0.6287 & 0.265385 \tabularnewline
21 & -0.136941 & -1.4938 & 0.068931 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=160898&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.332001[/C][C]3.6217[/C][C]0.000216[/C][/ROW]
[ROW][C]2[/C][C]-0.000183[/C][C]-0.002[/C][C]0.499206[/C][/ROW]
[ROW][C]3[/C][C]-0.064024[/C][C]-0.6984[/C][C]0.243138[/C][/ROW]
[ROW][C]4[/C][C]0.032885[/C][C]0.3587[/C][C]0.360213[/C][/ROW]
[ROW][C]5[/C][C]-0.034098[/C][C]-0.372[/C][C]0.355289[/C][/ROW]
[ROW][C]6[/C][C]-0.018023[/C][C]-0.1966[/C][C]0.422237[/C][/ROW]
[ROW][C]7[/C][C]-0.034751[/C][C]-0.3791[/C][C]0.352648[/C][/ROW]
[ROW][C]8[/C][C]0.121735[/C][C]1.328[/C][C]0.093365[/C][/ROW]
[ROW][C]9[/C][C]0.008356[/C][C]0.0911[/C][C]0.463764[/C][/ROW]
[ROW][C]10[/C][C]-0.130436[/C][C]-1.4229[/C][C]0.078693[/C][/ROW]
[ROW][C]11[/C][C]-0.096899[/C][C]-1.057[/C][C]0.146316[/C][/ROW]
[ROW][C]12[/C][C]-0.34261[/C][C]-3.7374[/C][C]0.000144[/C][/ROW]
[ROW][C]13[/C][C]0.118447[/C][C]1.2921[/C][C]0.099412[/C][/ROW]
[ROW][C]14[/C][C]-0.006258[/C][C]-0.0683[/C][C]0.472845[/C][/ROW]
[ROW][C]15[/C][C]-0.066103[/C][C]-0.7211[/C][C]0.236133[/C][/ROW]
[ROW][C]16[/C][C]-0.057306[/C][C]-0.6251[/C][C]0.266542[/C][/ROW]
[ROW][C]17[/C][C]0.025354[/C][C]0.2766[/C][C]0.391293[/C][/ROW]
[ROW][C]18[/C][C]0.043991[/C][C]0.4799[/C][C]0.316094[/C][/ROW]
[ROW][C]19[/C][C]-0.019149[/C][C]-0.2089[/C][C]0.417446[/C][/ROW]
[ROW][C]20[/C][C]0.05763[/C][C]0.6287[/C][C]0.265385[/C][/ROW]
[ROW][C]21[/C][C]-0.136941[/C][C]-1.4938[/C][C]0.068931[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=160898&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=160898&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.3320013.62170.000216
2-0.000183-0.0020.499206
3-0.064024-0.69840.243138
40.0328850.35870.360213
5-0.034098-0.3720.355289
6-0.018023-0.19660.422237
7-0.034751-0.37910.352648
80.1217351.3280.093365
90.0083560.09110.463764
10-0.130436-1.42290.078693
11-0.096899-1.0570.146316
12-0.34261-3.73740.000144
130.1184471.29210.099412
14-0.006258-0.06830.472845
15-0.066103-0.72110.236133
16-0.057306-0.62510.266542
170.0253540.27660.391293
180.0439910.47990.316094
19-0.019149-0.20890.417446
200.057630.62870.265385
21-0.136941-1.49380.068931



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')