Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationSun, 30 Dec 2012 10:08:08 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Dec/30/t1356880569cm0lv7fivzjfcn9.htm/, Retrieved Fri, 14 Jun 2024 20:18:32 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=204954, Retrieved Fri, 14 Jun 2024 20:18:32 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact176
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [Aantal nieuwe ins...] [2012-12-30 15:08:08] [5ebf8d45d440e2351c3182f635b9c69f] [Current]
Feedback Forum

Post a new message
Dataseries X:
41086
39690
43129
37863
35953
29133
24693
22205
21725
27192
21790
13253
37702
30364
32609
30212
29965
28352
25814
22414
20506
28806
22228
13971
36845
35338
35022
34777
26887
23970
22780
17351
21382
24561
17409
11514
31514
27071
29462
26105
22397
23843
21705
18089
20764
25316
17704
15548
28029
29383
36438
32034
22679
24319
18004
17537
20366
22782
19169
13807
29743
25591
29096
26482
22405
27044
17970
18730
19684
19785
18479
10698




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ fisher.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=204954&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ fisher.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=204954&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=204954&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.29901-2.51950.007002
2-0.125252-1.05540.147412
30.141091.18880.11923
4-0.134876-1.13650.129788
50.0392150.33040.371025
6-0.092414-0.77870.219375
7-0.070657-0.59540.276744
8-0.027595-0.23250.408401
90.0816890.68830.246746
10-0.124057-1.04530.14971
11-0.220857-1.8610.033444
120.6942595.84990
13-0.198323-1.67110.049552
14-0.098196-0.82740.205388
150.1315151.10820.135766
16-0.173331-1.46050.07428
170.0649480.54730.292959
18-0.061006-0.5140.304408
19-0.10727-0.90390.18456
200.0778460.65590.256989
210.0005460.00460.49817
22-0.132975-1.12050.133146
23-0.10805-0.91040.182834
240.5041354.24793.2e-05
25-0.158231-1.33330.093352
26-0.00396-0.03340.486739
270.017580.14810.441328
28-0.106521-0.89760.186225
290.1074130.90510.184242
30-0.115098-0.96980.167711
31-0.068804-0.57980.281959
320.0574630.48420.314869
330.0131230.11060.456133
34-0.075043-0.63230.264603
35-0.080564-0.67880.249721
360.3015132.54060.006627
37-0.097891-0.82480.206112
380.0225690.19020.424859
390.0114430.09640.461731
40-0.107815-0.90850.183352
410.1198721.01010.157949
42-0.127614-1.07530.142943
43-0.003439-0.0290.488481
440.0478510.40320.344005
45-0.051805-0.43650.331892
460.0150520.12680.449717
47-0.10213-0.86060.196187
480.2016931.69950.046802

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.29901 & -2.5195 & 0.007002 \tabularnewline
2 & -0.125252 & -1.0554 & 0.147412 \tabularnewline
3 & 0.14109 & 1.1888 & 0.11923 \tabularnewline
4 & -0.134876 & -1.1365 & 0.129788 \tabularnewline
5 & 0.039215 & 0.3304 & 0.371025 \tabularnewline
6 & -0.092414 & -0.7787 & 0.219375 \tabularnewline
7 & -0.070657 & -0.5954 & 0.276744 \tabularnewline
8 & -0.027595 & -0.2325 & 0.408401 \tabularnewline
9 & 0.081689 & 0.6883 & 0.246746 \tabularnewline
10 & -0.124057 & -1.0453 & 0.14971 \tabularnewline
11 & -0.220857 & -1.861 & 0.033444 \tabularnewline
12 & 0.694259 & 5.8499 & 0 \tabularnewline
13 & -0.198323 & -1.6711 & 0.049552 \tabularnewline
14 & -0.098196 & -0.8274 & 0.205388 \tabularnewline
15 & 0.131515 & 1.1082 & 0.135766 \tabularnewline
16 & -0.173331 & -1.4605 & 0.07428 \tabularnewline
17 & 0.064948 & 0.5473 & 0.292959 \tabularnewline
18 & -0.061006 & -0.514 & 0.304408 \tabularnewline
19 & -0.10727 & -0.9039 & 0.18456 \tabularnewline
20 & 0.077846 & 0.6559 & 0.256989 \tabularnewline
21 & 0.000546 & 0.0046 & 0.49817 \tabularnewline
22 & -0.132975 & -1.1205 & 0.133146 \tabularnewline
23 & -0.10805 & -0.9104 & 0.182834 \tabularnewline
24 & 0.504135 & 4.2479 & 3.2e-05 \tabularnewline
25 & -0.158231 & -1.3333 & 0.093352 \tabularnewline
26 & -0.00396 & -0.0334 & 0.486739 \tabularnewline
27 & 0.01758 & 0.1481 & 0.441328 \tabularnewline
28 & -0.106521 & -0.8976 & 0.186225 \tabularnewline
29 & 0.107413 & 0.9051 & 0.184242 \tabularnewline
30 & -0.115098 & -0.9698 & 0.167711 \tabularnewline
31 & -0.068804 & -0.5798 & 0.281959 \tabularnewline
32 & 0.057463 & 0.4842 & 0.314869 \tabularnewline
33 & 0.013123 & 0.1106 & 0.456133 \tabularnewline
34 & -0.075043 & -0.6323 & 0.264603 \tabularnewline
35 & -0.080564 & -0.6788 & 0.249721 \tabularnewline
36 & 0.301513 & 2.5406 & 0.006627 \tabularnewline
37 & -0.097891 & -0.8248 & 0.206112 \tabularnewline
38 & 0.022569 & 0.1902 & 0.424859 \tabularnewline
39 & 0.011443 & 0.0964 & 0.461731 \tabularnewline
40 & -0.107815 & -0.9085 & 0.183352 \tabularnewline
41 & 0.119872 & 1.0101 & 0.157949 \tabularnewline
42 & -0.127614 & -1.0753 & 0.142943 \tabularnewline
43 & -0.003439 & -0.029 & 0.488481 \tabularnewline
44 & 0.047851 & 0.4032 & 0.344005 \tabularnewline
45 & -0.051805 & -0.4365 & 0.331892 \tabularnewline
46 & 0.015052 & 0.1268 & 0.449717 \tabularnewline
47 & -0.10213 & -0.8606 & 0.196187 \tabularnewline
48 & 0.201693 & 1.6995 & 0.046802 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=204954&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.29901[/C][C]-2.5195[/C][C]0.007002[/C][/ROW]
[ROW][C]2[/C][C]-0.125252[/C][C]-1.0554[/C][C]0.147412[/C][/ROW]
[ROW][C]3[/C][C]0.14109[/C][C]1.1888[/C][C]0.11923[/C][/ROW]
[ROW][C]4[/C][C]-0.134876[/C][C]-1.1365[/C][C]0.129788[/C][/ROW]
[ROW][C]5[/C][C]0.039215[/C][C]0.3304[/C][C]0.371025[/C][/ROW]
[ROW][C]6[/C][C]-0.092414[/C][C]-0.7787[/C][C]0.219375[/C][/ROW]
[ROW][C]7[/C][C]-0.070657[/C][C]-0.5954[/C][C]0.276744[/C][/ROW]
[ROW][C]8[/C][C]-0.027595[/C][C]-0.2325[/C][C]0.408401[/C][/ROW]
[ROW][C]9[/C][C]0.081689[/C][C]0.6883[/C][C]0.246746[/C][/ROW]
[ROW][C]10[/C][C]-0.124057[/C][C]-1.0453[/C][C]0.14971[/C][/ROW]
[ROW][C]11[/C][C]-0.220857[/C][C]-1.861[/C][C]0.033444[/C][/ROW]
[ROW][C]12[/C][C]0.694259[/C][C]5.8499[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]-0.198323[/C][C]-1.6711[/C][C]0.049552[/C][/ROW]
[ROW][C]14[/C][C]-0.098196[/C][C]-0.8274[/C][C]0.205388[/C][/ROW]
[ROW][C]15[/C][C]0.131515[/C][C]1.1082[/C][C]0.135766[/C][/ROW]
[ROW][C]16[/C][C]-0.173331[/C][C]-1.4605[/C][C]0.07428[/C][/ROW]
[ROW][C]17[/C][C]0.064948[/C][C]0.5473[/C][C]0.292959[/C][/ROW]
[ROW][C]18[/C][C]-0.061006[/C][C]-0.514[/C][C]0.304408[/C][/ROW]
[ROW][C]19[/C][C]-0.10727[/C][C]-0.9039[/C][C]0.18456[/C][/ROW]
[ROW][C]20[/C][C]0.077846[/C][C]0.6559[/C][C]0.256989[/C][/ROW]
[ROW][C]21[/C][C]0.000546[/C][C]0.0046[/C][C]0.49817[/C][/ROW]
[ROW][C]22[/C][C]-0.132975[/C][C]-1.1205[/C][C]0.133146[/C][/ROW]
[ROW][C]23[/C][C]-0.10805[/C][C]-0.9104[/C][C]0.182834[/C][/ROW]
[ROW][C]24[/C][C]0.504135[/C][C]4.2479[/C][C]3.2e-05[/C][/ROW]
[ROW][C]25[/C][C]-0.158231[/C][C]-1.3333[/C][C]0.093352[/C][/ROW]
[ROW][C]26[/C][C]-0.00396[/C][C]-0.0334[/C][C]0.486739[/C][/ROW]
[ROW][C]27[/C][C]0.01758[/C][C]0.1481[/C][C]0.441328[/C][/ROW]
[ROW][C]28[/C][C]-0.106521[/C][C]-0.8976[/C][C]0.186225[/C][/ROW]
[ROW][C]29[/C][C]0.107413[/C][C]0.9051[/C][C]0.184242[/C][/ROW]
[ROW][C]30[/C][C]-0.115098[/C][C]-0.9698[/C][C]0.167711[/C][/ROW]
[ROW][C]31[/C][C]-0.068804[/C][C]-0.5798[/C][C]0.281959[/C][/ROW]
[ROW][C]32[/C][C]0.057463[/C][C]0.4842[/C][C]0.314869[/C][/ROW]
[ROW][C]33[/C][C]0.013123[/C][C]0.1106[/C][C]0.456133[/C][/ROW]
[ROW][C]34[/C][C]-0.075043[/C][C]-0.6323[/C][C]0.264603[/C][/ROW]
[ROW][C]35[/C][C]-0.080564[/C][C]-0.6788[/C][C]0.249721[/C][/ROW]
[ROW][C]36[/C][C]0.301513[/C][C]2.5406[/C][C]0.006627[/C][/ROW]
[ROW][C]37[/C][C]-0.097891[/C][C]-0.8248[/C][C]0.206112[/C][/ROW]
[ROW][C]38[/C][C]0.022569[/C][C]0.1902[/C][C]0.424859[/C][/ROW]
[ROW][C]39[/C][C]0.011443[/C][C]0.0964[/C][C]0.461731[/C][/ROW]
[ROW][C]40[/C][C]-0.107815[/C][C]-0.9085[/C][C]0.183352[/C][/ROW]
[ROW][C]41[/C][C]0.119872[/C][C]1.0101[/C][C]0.157949[/C][/ROW]
[ROW][C]42[/C][C]-0.127614[/C][C]-1.0753[/C][C]0.142943[/C][/ROW]
[ROW][C]43[/C][C]-0.003439[/C][C]-0.029[/C][C]0.488481[/C][/ROW]
[ROW][C]44[/C][C]0.047851[/C][C]0.4032[/C][C]0.344005[/C][/ROW]
[ROW][C]45[/C][C]-0.051805[/C][C]-0.4365[/C][C]0.331892[/C][/ROW]
[ROW][C]46[/C][C]0.015052[/C][C]0.1268[/C][C]0.449717[/C][/ROW]
[ROW][C]47[/C][C]-0.10213[/C][C]-0.8606[/C][C]0.196187[/C][/ROW]
[ROW][C]48[/C][C]0.201693[/C][C]1.6995[/C][C]0.046802[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=204954&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=204954&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.29901-2.51950.007002
2-0.125252-1.05540.147412
30.141091.18880.11923
4-0.134876-1.13650.129788
50.0392150.33040.371025
6-0.092414-0.77870.219375
7-0.070657-0.59540.276744
8-0.027595-0.23250.408401
90.0816890.68830.246746
10-0.124057-1.04530.14971
11-0.220857-1.8610.033444
120.6942595.84990
13-0.198323-1.67110.049552
14-0.098196-0.82740.205388
150.1315151.10820.135766
16-0.173331-1.46050.07428
170.0649480.54730.292959
18-0.061006-0.5140.304408
19-0.10727-0.90390.18456
200.0778460.65590.256989
210.0005460.00460.49817
22-0.132975-1.12050.133146
23-0.10805-0.91040.182834
240.5041354.24793.2e-05
25-0.158231-1.33330.093352
26-0.00396-0.03340.486739
270.017580.14810.441328
28-0.106521-0.89760.186225
290.1074130.90510.184242
30-0.115098-0.96980.167711
31-0.068804-0.57980.281959
320.0574630.48420.314869
330.0131230.11060.456133
34-0.075043-0.63230.264603
35-0.080564-0.67880.249721
360.3015132.54060.006627
37-0.097891-0.82480.206112
380.0225690.19020.424859
390.0114430.09640.461731
40-0.107815-0.90850.183352
410.1198721.01010.157949
42-0.127614-1.07530.142943
43-0.003439-0.0290.488481
440.0478510.40320.344005
45-0.051805-0.43650.331892
460.0150520.12680.449717
47-0.10213-0.86060.196187
480.2016931.69950.046802







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.29901-2.51950.007002
2-0.235736-1.98630.025428
30.0282830.23830.406162
4-0.120382-1.01440.156929
5-0.013668-0.11520.454318
6-0.152886-1.28820.100922
7-0.154438-1.30130.098678
8-0.196303-1.65410.051263
9-0.02271-0.19140.424396
10-0.196904-1.65910.050749
11-0.448937-3.78280.00016
120.5206094.38672e-05
130.1388321.16980.122993
140.0415340.350.363696
15-0.041634-0.35080.363384
16-0.060008-0.50560.307339
17-0.121125-1.02060.15545
18-0.059157-0.49850.30985
19-0.010749-0.09060.464044
200.08540.71960.237068
21-0.060382-0.50880.306239
22-0.111788-0.94190.174707
23-0.023929-0.20160.420392
240.0780420.65760.256463
25-0.044485-0.37480.354451
260.1262361.06370.145539
27-0.143154-1.20620.115865
280.0314980.26540.395732
290.0380830.32090.374618
30-0.038024-0.32040.374803
310.0221410.18660.426267
32-0.132996-1.12060.133108
330.0345980.29150.385747
340.1111930.93690.175986
350.0568810.47930.316603
36-0.135844-1.14460.128101
37-0.060346-0.50850.306344
38-0.127665-1.07570.142845
390.0816970.68840.246726
40-0.005407-0.04560.481894
410.0119570.10080.460016
42-0.027509-0.23180.408682
430.0283520.23890.405937
44-0.018327-0.15440.438857
45-0.025789-0.21730.414299
46-0.015715-0.13240.447516
47-0.065201-0.54940.29223
48-0.033106-0.2790.390543

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.29901 & -2.5195 & 0.007002 \tabularnewline
2 & -0.235736 & -1.9863 & 0.025428 \tabularnewline
3 & 0.028283 & 0.2383 & 0.406162 \tabularnewline
4 & -0.120382 & -1.0144 & 0.156929 \tabularnewline
5 & -0.013668 & -0.1152 & 0.454318 \tabularnewline
6 & -0.152886 & -1.2882 & 0.100922 \tabularnewline
7 & -0.154438 & -1.3013 & 0.098678 \tabularnewline
8 & -0.196303 & -1.6541 & 0.051263 \tabularnewline
9 & -0.02271 & -0.1914 & 0.424396 \tabularnewline
10 & -0.196904 & -1.6591 & 0.050749 \tabularnewline
11 & -0.448937 & -3.7828 & 0.00016 \tabularnewline
12 & 0.520609 & 4.3867 & 2e-05 \tabularnewline
13 & 0.138832 & 1.1698 & 0.122993 \tabularnewline
14 & 0.041534 & 0.35 & 0.363696 \tabularnewline
15 & -0.041634 & -0.3508 & 0.363384 \tabularnewline
16 & -0.060008 & -0.5056 & 0.307339 \tabularnewline
17 & -0.121125 & -1.0206 & 0.15545 \tabularnewline
18 & -0.059157 & -0.4985 & 0.30985 \tabularnewline
19 & -0.010749 & -0.0906 & 0.464044 \tabularnewline
20 & 0.0854 & 0.7196 & 0.237068 \tabularnewline
21 & -0.060382 & -0.5088 & 0.306239 \tabularnewline
22 & -0.111788 & -0.9419 & 0.174707 \tabularnewline
23 & -0.023929 & -0.2016 & 0.420392 \tabularnewline
24 & 0.078042 & 0.6576 & 0.256463 \tabularnewline
25 & -0.044485 & -0.3748 & 0.354451 \tabularnewline
26 & 0.126236 & 1.0637 & 0.145539 \tabularnewline
27 & -0.143154 & -1.2062 & 0.115865 \tabularnewline
28 & 0.031498 & 0.2654 & 0.395732 \tabularnewline
29 & 0.038083 & 0.3209 & 0.374618 \tabularnewline
30 & -0.038024 & -0.3204 & 0.374803 \tabularnewline
31 & 0.022141 & 0.1866 & 0.426267 \tabularnewline
32 & -0.132996 & -1.1206 & 0.133108 \tabularnewline
33 & 0.034598 & 0.2915 & 0.385747 \tabularnewline
34 & 0.111193 & 0.9369 & 0.175986 \tabularnewline
35 & 0.056881 & 0.4793 & 0.316603 \tabularnewline
36 & -0.135844 & -1.1446 & 0.128101 \tabularnewline
37 & -0.060346 & -0.5085 & 0.306344 \tabularnewline
38 & -0.127665 & -1.0757 & 0.142845 \tabularnewline
39 & 0.081697 & 0.6884 & 0.246726 \tabularnewline
40 & -0.005407 & -0.0456 & 0.481894 \tabularnewline
41 & 0.011957 & 0.1008 & 0.460016 \tabularnewline
42 & -0.027509 & -0.2318 & 0.408682 \tabularnewline
43 & 0.028352 & 0.2389 & 0.405937 \tabularnewline
44 & -0.018327 & -0.1544 & 0.438857 \tabularnewline
45 & -0.025789 & -0.2173 & 0.414299 \tabularnewline
46 & -0.015715 & -0.1324 & 0.447516 \tabularnewline
47 & -0.065201 & -0.5494 & 0.29223 \tabularnewline
48 & -0.033106 & -0.279 & 0.390543 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=204954&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.29901[/C][C]-2.5195[/C][C]0.007002[/C][/ROW]
[ROW][C]2[/C][C]-0.235736[/C][C]-1.9863[/C][C]0.025428[/C][/ROW]
[ROW][C]3[/C][C]0.028283[/C][C]0.2383[/C][C]0.406162[/C][/ROW]
[ROW][C]4[/C][C]-0.120382[/C][C]-1.0144[/C][C]0.156929[/C][/ROW]
[ROW][C]5[/C][C]-0.013668[/C][C]-0.1152[/C][C]0.454318[/C][/ROW]
[ROW][C]6[/C][C]-0.152886[/C][C]-1.2882[/C][C]0.100922[/C][/ROW]
[ROW][C]7[/C][C]-0.154438[/C][C]-1.3013[/C][C]0.098678[/C][/ROW]
[ROW][C]8[/C][C]-0.196303[/C][C]-1.6541[/C][C]0.051263[/C][/ROW]
[ROW][C]9[/C][C]-0.02271[/C][C]-0.1914[/C][C]0.424396[/C][/ROW]
[ROW][C]10[/C][C]-0.196904[/C][C]-1.6591[/C][C]0.050749[/C][/ROW]
[ROW][C]11[/C][C]-0.448937[/C][C]-3.7828[/C][C]0.00016[/C][/ROW]
[ROW][C]12[/C][C]0.520609[/C][C]4.3867[/C][C]2e-05[/C][/ROW]
[ROW][C]13[/C][C]0.138832[/C][C]1.1698[/C][C]0.122993[/C][/ROW]
[ROW][C]14[/C][C]0.041534[/C][C]0.35[/C][C]0.363696[/C][/ROW]
[ROW][C]15[/C][C]-0.041634[/C][C]-0.3508[/C][C]0.363384[/C][/ROW]
[ROW][C]16[/C][C]-0.060008[/C][C]-0.5056[/C][C]0.307339[/C][/ROW]
[ROW][C]17[/C][C]-0.121125[/C][C]-1.0206[/C][C]0.15545[/C][/ROW]
[ROW][C]18[/C][C]-0.059157[/C][C]-0.4985[/C][C]0.30985[/C][/ROW]
[ROW][C]19[/C][C]-0.010749[/C][C]-0.0906[/C][C]0.464044[/C][/ROW]
[ROW][C]20[/C][C]0.0854[/C][C]0.7196[/C][C]0.237068[/C][/ROW]
[ROW][C]21[/C][C]-0.060382[/C][C]-0.5088[/C][C]0.306239[/C][/ROW]
[ROW][C]22[/C][C]-0.111788[/C][C]-0.9419[/C][C]0.174707[/C][/ROW]
[ROW][C]23[/C][C]-0.023929[/C][C]-0.2016[/C][C]0.420392[/C][/ROW]
[ROW][C]24[/C][C]0.078042[/C][C]0.6576[/C][C]0.256463[/C][/ROW]
[ROW][C]25[/C][C]-0.044485[/C][C]-0.3748[/C][C]0.354451[/C][/ROW]
[ROW][C]26[/C][C]0.126236[/C][C]1.0637[/C][C]0.145539[/C][/ROW]
[ROW][C]27[/C][C]-0.143154[/C][C]-1.2062[/C][C]0.115865[/C][/ROW]
[ROW][C]28[/C][C]0.031498[/C][C]0.2654[/C][C]0.395732[/C][/ROW]
[ROW][C]29[/C][C]0.038083[/C][C]0.3209[/C][C]0.374618[/C][/ROW]
[ROW][C]30[/C][C]-0.038024[/C][C]-0.3204[/C][C]0.374803[/C][/ROW]
[ROW][C]31[/C][C]0.022141[/C][C]0.1866[/C][C]0.426267[/C][/ROW]
[ROW][C]32[/C][C]-0.132996[/C][C]-1.1206[/C][C]0.133108[/C][/ROW]
[ROW][C]33[/C][C]0.034598[/C][C]0.2915[/C][C]0.385747[/C][/ROW]
[ROW][C]34[/C][C]0.111193[/C][C]0.9369[/C][C]0.175986[/C][/ROW]
[ROW][C]35[/C][C]0.056881[/C][C]0.4793[/C][C]0.316603[/C][/ROW]
[ROW][C]36[/C][C]-0.135844[/C][C]-1.1446[/C][C]0.128101[/C][/ROW]
[ROW][C]37[/C][C]-0.060346[/C][C]-0.5085[/C][C]0.306344[/C][/ROW]
[ROW][C]38[/C][C]-0.127665[/C][C]-1.0757[/C][C]0.142845[/C][/ROW]
[ROW][C]39[/C][C]0.081697[/C][C]0.6884[/C][C]0.246726[/C][/ROW]
[ROW][C]40[/C][C]-0.005407[/C][C]-0.0456[/C][C]0.481894[/C][/ROW]
[ROW][C]41[/C][C]0.011957[/C][C]0.1008[/C][C]0.460016[/C][/ROW]
[ROW][C]42[/C][C]-0.027509[/C][C]-0.2318[/C][C]0.408682[/C][/ROW]
[ROW][C]43[/C][C]0.028352[/C][C]0.2389[/C][C]0.405937[/C][/ROW]
[ROW][C]44[/C][C]-0.018327[/C][C]-0.1544[/C][C]0.438857[/C][/ROW]
[ROW][C]45[/C][C]-0.025789[/C][C]-0.2173[/C][C]0.414299[/C][/ROW]
[ROW][C]46[/C][C]-0.015715[/C][C]-0.1324[/C][C]0.447516[/C][/ROW]
[ROW][C]47[/C][C]-0.065201[/C][C]-0.5494[/C][C]0.29223[/C][/ROW]
[ROW][C]48[/C][C]-0.033106[/C][C]-0.279[/C][C]0.390543[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=204954&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=204954&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.29901-2.51950.007002
2-0.235736-1.98630.025428
30.0282830.23830.406162
4-0.120382-1.01440.156929
5-0.013668-0.11520.454318
6-0.152886-1.28820.100922
7-0.154438-1.30130.098678
8-0.196303-1.65410.051263
9-0.02271-0.19140.424396
10-0.196904-1.65910.050749
11-0.448937-3.78280.00016
120.5206094.38672e-05
130.1388321.16980.122993
140.0415340.350.363696
15-0.041634-0.35080.363384
16-0.060008-0.50560.307339
17-0.121125-1.02060.15545
18-0.059157-0.49850.30985
19-0.010749-0.09060.464044
200.08540.71960.237068
21-0.060382-0.50880.306239
22-0.111788-0.94190.174707
23-0.023929-0.20160.420392
240.0780420.65760.256463
25-0.044485-0.37480.354451
260.1262361.06370.145539
27-0.143154-1.20620.115865
280.0314980.26540.395732
290.0380830.32090.374618
30-0.038024-0.32040.374803
310.0221410.18660.426267
32-0.132996-1.12060.133108
330.0345980.29150.385747
340.1111930.93690.175986
350.0568810.47930.316603
36-0.135844-1.14460.128101
37-0.060346-0.50850.306344
38-0.127665-1.07570.142845
390.0816970.68840.246726
40-0.005407-0.04560.481894
410.0119570.10080.460016
42-0.027509-0.23180.408682
430.0283520.23890.405937
44-0.018327-0.15440.438857
45-0.025789-0.21730.414299
46-0.015715-0.13240.447516
47-0.065201-0.54940.29223
48-0.033106-0.2790.390543



Parameters (Session):
par1 = 48 ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = 48 ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')