Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_One Factor ANOVA.wasp
Title produced by softwareOne-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)
Date of computationSat, 03 Nov 2012 11:48:22 -0400
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Nov/03/t1351957734ibxobew864mxfxg.htm/, Retrieved Wed, 17 Aug 2022 16:08:40 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=185750, Retrieved Wed, 17 Aug 2022 16:08:40 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact100
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Chi Square Measure of Association- Free Statistics Software (Calculator)] [One Way ANOVA wit...] [2009-11-29 13:09:19] [98fd0e87c3eb04e0cc2efde01dbafab6]
-   PD  [Chi Square Measure of Association- Free Statistics Software (Calculator)] [One Way ANOVA for...] [2009-12-01 13:05:10] [3fdd735c61ad38cbc9b3393dc997cdb7]
- R P     [Chi Square Measure of Association- Free Statistics Software (Calculator)] [CARE date with Tu...] [2009-12-01 18:33:48] [98fd0e87c3eb04e0cc2efde01dbafab6]
-   P       [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [CARE Data with Tu...] [2010-11-23 12:09:38] [3fdd735c61ad38cbc9b3393dc997cdb7]
- RM          [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [IQ and Mothers Age] [2011-11-21 16:34:08] [98fd0e87c3eb04e0cc2efde01dbafab6]
- R             [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [Exercise 1 ] [2012-11-01 13:20:10] [74be16979710d4c4e7c6647856088456]
-   PD            [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [Mothers IQ and of...] [2012-11-03 14:42:57] [74be16979710d4c4e7c6647856088456]
-    D              [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [Mothers IQ and of...] [2012-11-03 15:13:53] [74be16979710d4c4e7c6647856088456]
-    D                  [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [Mothers warmth an...] [2012-11-03 15:48:22] [d41d8cd98f00b204e9800998ecf8427e] [Current]
-    D                    [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [Mothers warmth an...] [2012-11-03 16:06:18] [74be16979710d4c4e7c6647856088456]
-    D                    [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [Mothers warmth an...] [2012-11-10 19:52:45] [74be16979710d4c4e7c6647856088456]
Feedback Forum

Post a new message
Dataseries X:
1	36
1	36
2	56
2	48
2	32
1	44
2	39
2	34
3	41
3	50
1	39
3	62
2	52
3	37
2	50
1	41
2	55
2	41
3	56
2	39
1	52
2	46
2	44
2	48
2	41
3	50
3	50
2	44
1	52
2	54
2	44
3	52
2	37
3	52
3	50
1	36
1	50
3	52
3	55
2	31
1	36
1	49
1	42
2	37
2	41
1	30
1	52
3	30
2	41
1	44
2	66
3	48
2	43
2	57
1	46
3	54
3	48
2	48
1	52
1	62
3	58
2	58
2	62
2	48
2	46
1	34
2	66
3	52
2	55
1	55
3	57
1	56
2	55
3	56
1	54
3	55
2	46
1	52
2	32
1	44
2	46
2	59
3	46
3	46
3	54
3	66
2	56
2	59
2	57
3	52
1	48
1	44
2	41
1	50
3	48
2	48
2	59
NA	34
2	46
2	54
2	55
3	54
2	59
2	44
3	54
3	52
3	66
2	44
2	57
1	39
3	60
2	45
2	41
2	50
2	39
2	43
1	48
2	37
2	58
1	46
1	43
2	44
3	34
1	30
3	50
1	39
2	37
1	55
3	48
NA	41
1	39
3	36
2	43
3	50
2	55
2	43
3	60
2	48
3	30
2	43
1	39
2	52
1	39
1	39
1	56
1	59
2	46
2	57
2	50
1	54
3	50
3	60
3	59
2	41
1	48
2	59
3	60
2	56
2	56
1	51




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=185750&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=185750&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=185750&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







ANOVA Model
MC30VRB ~ MWARM30
means45.5812.5165.581-8.081

\begin{tabular}{lllllllll}
\hline
ANOVA Model \tabularnewline
MC30VRB  ~  MWARM30 \tabularnewline
means & 45.581 & 2.516 & 5.581 & -8.081 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=185750&T=1

[TABLE]
[ROW][C]ANOVA Model[/C][/ROW]
[ROW][C]MC30VRB  ~  MWARM30[/C][/ROW]
[ROW][C]means[/C][C]45.581[/C][C]2.516[/C][C]5.581[/C][C]-8.081[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=185750&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=185750&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Model
MC30VRB ~ MWARM30
means45.5812.5165.581-8.081







ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
MWARM303900.83300.2774.4540.005
Residuals15610517.14567.418

\begin{tabular}{lllllllll}
\hline
ANOVA Statistics \tabularnewline
  & Df & Sum Sq & Mean Sq & F value & Pr(>F) \tabularnewline
MWARM30 & 3 & 900.83 & 300.277 & 4.454 & 0.005 \tabularnewline
Residuals & 156 & 10517.145 & 67.418 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=185750&T=2

[TABLE]
[ROW][C]ANOVA Statistics[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]Sum Sq[/C][C]Mean Sq[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]MWARM30[/C][C]3[/C][C]900.83[/C][C]300.277[/C][C]4.454[/C][C]0.005[/C][/ROW]
[ROW][C]Residuals[/C][C]156[/C][C]10517.145[/C][C]67.418[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=185750&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=185750&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
MWARM303900.83300.2774.4540.005
Residuals15610517.14567.418







Tukey Honest Significant Difference Comparisons
difflwruprp adj
2-12.516-1.5946.6250.387
3-15.5810.98310.180.01
NA-1-8.081-23.5067.3430.526
3-23.066-1.0447.1750.217
NA-2-10.597-25.8834.6880.277
NA-3-13.663-29.0871.7620.102

\begin{tabular}{lllllllll}
\hline
Tukey Honest Significant Difference Comparisons \tabularnewline
  & diff & lwr & upr & p adj \tabularnewline
2-1 & 2.516 & -1.594 & 6.625 & 0.387 \tabularnewline
3-1 & 5.581 & 0.983 & 10.18 & 0.01 \tabularnewline
NA-1 & -8.081 & -23.506 & 7.343 & 0.526 \tabularnewline
3-2 & 3.066 & -1.044 & 7.175 & 0.217 \tabularnewline
NA-2 & -10.597 & -25.883 & 4.688 & 0.277 \tabularnewline
NA-3 & -13.663 & -29.087 & 1.762 & 0.102 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=185750&T=3

[TABLE]
[ROW][C]Tukey Honest Significant Difference Comparisons[/C][/ROW]
[ROW][C] [/C][C]diff[/C][C]lwr[/C][C]upr[/C][C]p adj[/C][/ROW]
[ROW][C]2-1[/C][C]2.516[/C][C]-1.594[/C][C]6.625[/C][C]0.387[/C][/ROW]
[ROW][C]3-1[/C][C]5.581[/C][C]0.983[/C][C]10.18[/C][C]0.01[/C][/ROW]
[ROW][C]NA-1[/C][C]-8.081[/C][C]-23.506[/C][C]7.343[/C][C]0.526[/C][/ROW]
[ROW][C]3-2[/C][C]3.066[/C][C]-1.044[/C][C]7.175[/C][C]0.217[/C][/ROW]
[ROW][C]NA-2[/C][C]-10.597[/C][C]-25.883[/C][C]4.688[/C][C]0.277[/C][/ROW]
[ROW][C]NA-3[/C][C]-13.663[/C][C]-29.087[/C][C]1.762[/C][C]0.102[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=185750&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=185750&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Tukey Honest Significant Difference Comparisons
difflwruprp adj
2-12.516-1.5946.6250.387
3-15.5810.98310.180.01
NA-1-8.081-23.5067.3430.526
3-23.066-1.0447.1750.217
NA-2-10.597-25.8834.6880.277
NA-3-13.663-29.0871.7620.102







Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group30.6610.577
156

\begin{tabular}{lllllllll}
\hline
Levenes Test for Homogeneity of Variance \tabularnewline
  & Df & F value & Pr(>F) \tabularnewline
Group & 3 & 0.661 & 0.577 \tabularnewline
  & 156 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=185750&T=4

[TABLE]
[ROW][C]Levenes Test for Homogeneity of Variance[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]Group[/C][C]3[/C][C]0.661[/C][C]0.577[/C][/ROW]
[ROW][C] [/C][C]156[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=185750&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=185750&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group30.6610.577
156



Parameters (Session):
par1 = 2 ; par2 = 1 ; par3 = TRUE ;
Parameters (R input):
par1 = 2 ; par2 = 1 ; par3 = TRUE ;
R code (references can be found in the software module):
cat1 <- as.numeric(par1) #
cat2<- as.numeric(par2) #
intercept<-as.logical(par3)
x <- t(x)
x1<-as.numeric(x[,cat1])
f1<-as.character(x[,cat2])
xdf<-data.frame(x1,f1)
(V1<-dimnames(y)[[1]][cat1])
(V2<-dimnames(y)[[1]][cat2])
names(xdf)<-c('Response', 'Treatment')
if(intercept == FALSE) (lmxdf<-lm(Response ~ Treatment - 1, data = xdf) ) else (lmxdf<-lm(Response ~ Treatment, data = xdf) )
(aov.xdf<-aov(lmxdf) )
(anova.xdf<-anova(lmxdf) )
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Model', length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, paste(V1, ' ~ ', V2), length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'means',,TRUE)
for(i in 1:length(lmxdf$coefficients)){
a<-table.element(a, round(lmxdf$coefficients[i], digits=3),,FALSE)
}
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Statistics', 5+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',,TRUE)
a<-table.element(a, 'Df',,FALSE)
a<-table.element(a, 'Sum Sq',,FALSE)
a<-table.element(a, 'Mean Sq',,FALSE)
a<-table.element(a, 'F value',,FALSE)
a<-table.element(a, 'Pr(>F)',,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, V2,,TRUE)
a<-table.element(a, anova.xdf$Df[1],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'F value'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3),,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residuals',,TRUE)
a<-table.element(a, anova.xdf$Df[2],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3),,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
bitmap(file='anovaplot.png')
boxplot(Response ~ Treatment, data=xdf, xlab=V2, ylab=V1)
dev.off()
if(intercept==TRUE){
thsd<-TukeyHSD(aov.xdf)
bitmap(file='TukeyHSDPlot.png')
plot(thsd)
dev.off()
}
if(intercept==TRUE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Tukey Honest Significant Difference Comparisons', 5,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ', 1, TRUE)
for(i in 1:4){
a<-table.element(a,colnames(thsd[[1]])[i], 1, TRUE)
}
a<-table.row.end(a)
for(i in 1:length(rownames(thsd[[1]]))){
a<-table.row.start(a)
a<-table.element(a,rownames(thsd[[1]])[i], 1, TRUE)
for(j in 1:4){
a<-table.element(a,round(thsd[[1]][i,j], digits=3), 1, FALSE)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
if(intercept==FALSE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'TukeyHSD Message', 1,TRUE)
a<-table.row.end(a)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Must Include Intercept to use Tukey Test ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
library(car)
lt.lmxdf<-levene.test(lmxdf)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Levenes Test for Homogeneity of Variance', 4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
for (i in 1:3){
a<-table.element(a,names(lt.lmxdf)[i], 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Group', 1, TRUE)
for (i in 1:3){
a<-table.element(a,round(lt.lmxdf[[i]][1], digits=3), 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
a<-table.element(a,lt.lmxdf[[1]][2], 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')