Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_variability.wasp
Title produced by softwareVariability
Date of computationSun, 22 Dec 2013 14:09:26 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2013/Dec/22/t13877394173prnmz33f75w28y.htm/, Retrieved Sun, 05 Dec 2021 17:30:56 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=232562, Retrieved Sun, 05 Dec 2021 17:30:56 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact73
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Notched Boxplots] [werkloosheidscijf...] [2013-10-08 18:26:09] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD  [Harrell-Davis Quantiles] [consumtieprijs va...] [2013-12-21 15:50:38] [6a1a05b03d1c87a66b915fc3d5866cc8]
-   PD    [Harrell-Davis Quantiles] [] [2013-12-21 16:11:56] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD      [(Partial) Autocorrelation Function] [] [2013-12-21 18:23:11] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD          [Variability] [] [2013-12-22 19:09:26] [4a7f7842fc88d649abcd00dd10ef7b6c] [Current]
Feedback Forum

Post a new message
Dataseries X:
125
123
117
114
111
112
144
150
149
134
123
116
117
111
105
102
95
93
124
130
124
115
106
105
105
101
95
93
84
87
116
120
117
109
105
107
109
109
108
107
99
103
131
137
135
124
118
121
121
118
113
107
100
102
130
136
133
120
112
109
110
106
102
98
92
92
120
127
124
114
108
106
111
110
104
100
96
98
122
134
133
125
118
116




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=232562&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=232562&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=232562&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Variability - Ungrouped Data
Absolute range66
Relative range (unbiased)4.76835753923946
Relative range (biased)4.79699658075562
Variance (unbiased)191.580034423408
Variance (biased)189.299319727891
Standard Deviation (unbiased)13.841243962282
Standard Deviation (biased)13.7586089314251
Coefficient of Variation (unbiased)0.121719482080369
Coefficient of Variation (biased)0.120992792110522
Mean Squared Error (MSE versus 0)13120.2380952381
Mean Squared Error (MSE versus Mean)189.299319727891
Mean Absolute Deviation from Mean (MAD Mean)11.1054421768707
Mean Absolute Deviation from Median (MAD Median)11.047619047619
Median Absolute Deviation from Mean9
Median Absolute Deviation from Median9
Mean Squared Deviation from Mean189.299319727891
Mean Squared Deviation from Median192.238095238095
Interquartile Difference (Weighted Average at Xnp)18
Interquartile Difference (Weighted Average at X(n+1)p)18
Interquartile Difference (Empirical Distribution Function)18
Interquartile Difference (Empirical Distribution Function - Averaging)18
Interquartile Difference (Empirical Distribution Function - Interpolation)18
Interquartile Difference (Closest Observation)18
Interquartile Difference (True Basic - Statistics Graphics Toolkit)18
Interquartile Difference (MS Excel (old versions))18
Semi Interquartile Difference (Weighted Average at Xnp)9
Semi Interquartile Difference (Weighted Average at X(n+1)p)9
Semi Interquartile Difference (Empirical Distribution Function)9
Semi Interquartile Difference (Empirical Distribution Function - Averaging)9
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)9
Semi Interquartile Difference (Closest Observation)9
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)9
Semi Interquartile Difference (MS Excel (old versions))9
Coefficient of Quartile Variation (Weighted Average at Xnp)0.0789473684210526
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.0789473684210526
Coefficient of Quartile Variation (Empirical Distribution Function)0.0789473684210526
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.0789473684210526
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.0789473684210526
Coefficient of Quartile Variation (Closest Observation)0.0789473684210526
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.0789473684210526
Coefficient of Quartile Variation (MS Excel (old versions))0.0789473684210526
Number of all Pairs of Observations3486
Squared Differences between all Pairs of Observations383.160068846816
Mean Absolute Differences between all Pairs of Observations15.6844520940906
Gini Mean Difference15.6844520940906
Leik Measure of Dispersion0.511460414522411
Index of Diversity0.987920961241158
Index of Qualitative Variation0.999823623424787
Coefficient of Dispersion0.0991557337220603
Observations84

\begin{tabular}{lllllllll}
\hline
Variability - Ungrouped Data \tabularnewline
Absolute range & 66 \tabularnewline
Relative range (unbiased) & 4.76835753923946 \tabularnewline
Relative range (biased) & 4.79699658075562 \tabularnewline
Variance (unbiased) & 191.580034423408 \tabularnewline
Variance (biased) & 189.299319727891 \tabularnewline
Standard Deviation (unbiased) & 13.841243962282 \tabularnewline
Standard Deviation (biased) & 13.7586089314251 \tabularnewline
Coefficient of Variation (unbiased) & 0.121719482080369 \tabularnewline
Coefficient of Variation (biased) & 0.120992792110522 \tabularnewline
Mean Squared Error (MSE versus 0) & 13120.2380952381 \tabularnewline
Mean Squared Error (MSE versus Mean) & 189.299319727891 \tabularnewline
Mean Absolute Deviation from Mean (MAD Mean) & 11.1054421768707 \tabularnewline
Mean Absolute Deviation from Median (MAD Median) & 11.047619047619 \tabularnewline
Median Absolute Deviation from Mean & 9 \tabularnewline
Median Absolute Deviation from Median & 9 \tabularnewline
Mean Squared Deviation from Mean & 189.299319727891 \tabularnewline
Mean Squared Deviation from Median & 192.238095238095 \tabularnewline
Interquartile Difference (Weighted Average at Xnp) & 18 \tabularnewline
Interquartile Difference (Weighted Average at X(n+1)p) & 18 \tabularnewline
Interquartile Difference (Empirical Distribution Function) & 18 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Averaging) & 18 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Interpolation) & 18 \tabularnewline
Interquartile Difference (Closest Observation) & 18 \tabularnewline
Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 18 \tabularnewline
Interquartile Difference (MS Excel (old versions)) & 18 \tabularnewline
Semi Interquartile Difference (Weighted Average at Xnp) & 9 \tabularnewline
Semi Interquartile Difference (Weighted Average at X(n+1)p) & 9 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function) & 9 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Averaging) & 9 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Interpolation) & 9 \tabularnewline
Semi Interquartile Difference (Closest Observation) & 9 \tabularnewline
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 9 \tabularnewline
Semi Interquartile Difference (MS Excel (old versions)) & 9 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at Xnp) & 0.0789473684210526 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at X(n+1)p) & 0.0789473684210526 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function) & 0.0789473684210526 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging) & 0.0789473684210526 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation) & 0.0789473684210526 \tabularnewline
Coefficient of Quartile Variation (Closest Observation) & 0.0789473684210526 \tabularnewline
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit) & 0.0789473684210526 \tabularnewline
Coefficient of Quartile Variation (MS Excel (old versions)) & 0.0789473684210526 \tabularnewline
Number of all Pairs of Observations & 3486 \tabularnewline
Squared Differences between all Pairs of Observations & 383.160068846816 \tabularnewline
Mean Absolute Differences between all Pairs of Observations & 15.6844520940906 \tabularnewline
Gini Mean Difference & 15.6844520940906 \tabularnewline
Leik Measure of Dispersion & 0.511460414522411 \tabularnewline
Index of Diversity & 0.987920961241158 \tabularnewline
Index of Qualitative Variation & 0.999823623424787 \tabularnewline
Coefficient of Dispersion & 0.0991557337220603 \tabularnewline
Observations & 84 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=232562&T=1

[TABLE]
[ROW][C]Variability - Ungrouped Data[/C][/ROW]
[ROW][C]Absolute range[/C][C]66[/C][/ROW]
[ROW][C]Relative range (unbiased)[/C][C]4.76835753923946[/C][/ROW]
[ROW][C]Relative range (biased)[/C][C]4.79699658075562[/C][/ROW]
[ROW][C]Variance (unbiased)[/C][C]191.580034423408[/C][/ROW]
[ROW][C]Variance (biased)[/C][C]189.299319727891[/C][/ROW]
[ROW][C]Standard Deviation (unbiased)[/C][C]13.841243962282[/C][/ROW]
[ROW][C]Standard Deviation (biased)[/C][C]13.7586089314251[/C][/ROW]
[ROW][C]Coefficient of Variation (unbiased)[/C][C]0.121719482080369[/C][/ROW]
[ROW][C]Coefficient of Variation (biased)[/C][C]0.120992792110522[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus 0)[/C][C]13120.2380952381[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus Mean)[/C][C]189.299319727891[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Mean (MAD Mean)[/C][C]11.1054421768707[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Median (MAD Median)[/C][C]11.047619047619[/C][/ROW]
[ROW][C]Median Absolute Deviation from Mean[/C][C]9[/C][/ROW]
[ROW][C]Median Absolute Deviation from Median[/C][C]9[/C][/ROW]
[ROW][C]Mean Squared Deviation from Mean[/C][C]189.299319727891[/C][/ROW]
[ROW][C]Mean Squared Deviation from Median[/C][C]192.238095238095[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at Xnp)[/C][C]18[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]18[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function)[/C][C]18[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]18[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]18[/C][/ROW]
[ROW][C]Interquartile Difference (Closest Observation)[/C][C]18[/C][/ROW]
[ROW][C]Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]18[/C][/ROW]
[ROW][C]Interquartile Difference (MS Excel (old versions))[/C][C]18[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at Xnp)[/C][C]9[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]9[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function)[/C][C]9[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]9[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]9[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Closest Observation)[/C][C]9[/C][/ROW]
[ROW][C]Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]9[/C][/ROW]
[ROW][C]Semi Interquartile Difference (MS Excel (old versions))[/C][C]9[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at Xnp)[/C][C]0.0789473684210526[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at X(n+1)p)[/C][C]0.0789473684210526[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function)[/C][C]0.0789473684210526[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)[/C][C]0.0789473684210526[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)[/C][C]0.0789473684210526[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Closest Observation)[/C][C]0.0789473684210526[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)[/C][C]0.0789473684210526[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (MS Excel (old versions))[/C][C]0.0789473684210526[/C][/ROW]
[ROW][C]Number of all Pairs of Observations[/C][C]3486[/C][/ROW]
[ROW][C]Squared Differences between all Pairs of Observations[/C][C]383.160068846816[/C][/ROW]
[ROW][C]Mean Absolute Differences between all Pairs of Observations[/C][C]15.6844520940906[/C][/ROW]
[ROW][C]Gini Mean Difference[/C][C]15.6844520940906[/C][/ROW]
[ROW][C]Leik Measure of Dispersion[/C][C]0.511460414522411[/C][/ROW]
[ROW][C]Index of Diversity[/C][C]0.987920961241158[/C][/ROW]
[ROW][C]Index of Qualitative Variation[/C][C]0.999823623424787[/C][/ROW]
[ROW][C]Coefficient of Dispersion[/C][C]0.0991557337220603[/C][/ROW]
[ROW][C]Observations[/C][C]84[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=232562&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=232562&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variability - Ungrouped Data
Absolute range66
Relative range (unbiased)4.76835753923946
Relative range (biased)4.79699658075562
Variance (unbiased)191.580034423408
Variance (biased)189.299319727891
Standard Deviation (unbiased)13.841243962282
Standard Deviation (biased)13.7586089314251
Coefficient of Variation (unbiased)0.121719482080369
Coefficient of Variation (biased)0.120992792110522
Mean Squared Error (MSE versus 0)13120.2380952381
Mean Squared Error (MSE versus Mean)189.299319727891
Mean Absolute Deviation from Mean (MAD Mean)11.1054421768707
Mean Absolute Deviation from Median (MAD Median)11.047619047619
Median Absolute Deviation from Mean9
Median Absolute Deviation from Median9
Mean Squared Deviation from Mean189.299319727891
Mean Squared Deviation from Median192.238095238095
Interquartile Difference (Weighted Average at Xnp)18
Interquartile Difference (Weighted Average at X(n+1)p)18
Interquartile Difference (Empirical Distribution Function)18
Interquartile Difference (Empirical Distribution Function - Averaging)18
Interquartile Difference (Empirical Distribution Function - Interpolation)18
Interquartile Difference (Closest Observation)18
Interquartile Difference (True Basic - Statistics Graphics Toolkit)18
Interquartile Difference (MS Excel (old versions))18
Semi Interquartile Difference (Weighted Average at Xnp)9
Semi Interquartile Difference (Weighted Average at X(n+1)p)9
Semi Interquartile Difference (Empirical Distribution Function)9
Semi Interquartile Difference (Empirical Distribution Function - Averaging)9
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)9
Semi Interquartile Difference (Closest Observation)9
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)9
Semi Interquartile Difference (MS Excel (old versions))9
Coefficient of Quartile Variation (Weighted Average at Xnp)0.0789473684210526
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.0789473684210526
Coefficient of Quartile Variation (Empirical Distribution Function)0.0789473684210526
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.0789473684210526
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.0789473684210526
Coefficient of Quartile Variation (Closest Observation)0.0789473684210526
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.0789473684210526
Coefficient of Quartile Variation (MS Excel (old versions))0.0789473684210526
Number of all Pairs of Observations3486
Squared Differences between all Pairs of Observations383.160068846816
Mean Absolute Differences between all Pairs of Observations15.6844520940906
Gini Mean Difference15.6844520940906
Leik Measure of Dispersion0.511460414522411
Index of Diversity0.987920961241158
Index of Qualitative Variation0.999823623424787
Coefficient of Dispersion0.0991557337220603
Observations84



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
num <- 50
res <- array(NA,dim=c(num,3))
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
iqd <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
iqdiff <- qvalue3 - qvalue1
return(c(iqdiff,iqdiff/2,iqdiff/(qvalue3 + qvalue1)))
}
range <- max(x) - min(x)
lx <- length(x)
biasf <- (lx-1)/lx
varx <- var(x)
bvarx <- varx*biasf
sdx <- sqrt(varx)
mx <- mean(x)
bsdx <- sqrt(bvarx)
x2 <- x*x
mse0 <- sum(x2)/lx
xmm <- x-mx
xmm2 <- xmm*xmm
msem <- sum(xmm2)/lx
axmm <- abs(x - mx)
medx <- median(x)
axmmed <- abs(x - medx)
xmmed <- x - medx
xmmed2 <- xmmed*xmmed
msemed <- sum(xmmed2)/lx
qarr <- array(NA,dim=c(8,3))
for (j in 1:8) {
qarr[j,] <- iqd(x,j)
}
sdpo <- 0
adpo <- 0
for (i in 1:(lx-1)) {
for (j in (i+1):lx) {
ldi <- x[i]-x[j]
aldi <- abs(ldi)
sdpo = sdpo + ldi * ldi
adpo = adpo + aldi
}
}
denom <- (lx*(lx-1)/2)
sdpo = sdpo / denom
adpo = adpo / denom
gmd <- 0
for (i in 1:lx) {
for (j in 1:lx) {
ldi <- abs(x[i]-x[j])
gmd = gmd + ldi
}
}
gmd <- gmd / (lx*(lx-1))
sumx <- sum(x)
pk <- x / sumx
ck <- cumsum(pk)
dk <- array(NA,dim=lx)
for (i in 1:lx) {
if (ck[i] <= 0.5) dk[i] <- ck[i] else dk[i] <- 1 - ck[i]
}
bigd <- sum(dk) * 2 / (lx-1)
iod <- 1 - sum(pk*pk)
res[1,] <- c('Absolute range','absolute.htm', range)
res[2,] <- c('Relative range (unbiased)','relative.htm', range/sd(x))
res[3,] <- c('Relative range (biased)','relative.htm', range/sqrt(varx*biasf))
res[4,] <- c('Variance (unbiased)','unbiased.htm', varx)
res[5,] <- c('Variance (biased)','biased.htm', bvarx)
res[6,] <- c('Standard Deviation (unbiased)','unbiased1.htm', sdx)
res[7,] <- c('Standard Deviation (biased)','biased1.htm', bsdx)
res[8,] <- c('Coefficient of Variation (unbiased)','variation.htm', sdx/mx)
res[9,] <- c('Coefficient of Variation (biased)','variation.htm', bsdx/mx)
res[10,] <- c('Mean Squared Error (MSE versus 0)','mse.htm', mse0)
res[11,] <- c('Mean Squared Error (MSE versus Mean)','mse.htm', msem)
res[12,] <- c('Mean Absolute Deviation from Mean (MAD Mean)', 'mean2.htm', sum(axmm)/lx)
res[13,] <- c('Mean Absolute Deviation from Median (MAD Median)', 'median1.htm', sum(axmmed)/lx)
res[14,] <- c('Median Absolute Deviation from Mean', 'mean3.htm', median(axmm))
res[15,] <- c('Median Absolute Deviation from Median', 'median2.htm', median(axmmed))
res[16,] <- c('Mean Squared Deviation from Mean', 'mean1.htm', msem)
res[17,] <- c('Mean Squared Deviation from Median', 'median.htm', msemed)
load(file='createtable')
mylink1 <- hyperlink('difference.htm','Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[18,] <- c('', mylink2, qarr[1,1])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[19,] <- c('', mylink2, qarr[2,1])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[20,] <- c('', mylink2, qarr[3,1])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[21,] <- c('', mylink2, qarr[4,1])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[22,] <- c('', mylink2, qarr[5,1])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[23,] <- c('', mylink2, qarr[6,1])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[24,] <- c('', mylink2, qarr[7,1])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[25,] <- c('', mylink2, qarr[8,1])
mylink1 <- hyperlink('deviation.htm','Semi Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[26,] <- c('', mylink2, qarr[1,2])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[27,] <- c('', mylink2, qarr[2,2])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[28,] <- c('', mylink2, qarr[3,2])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[29,] <- c('', mylink2, qarr[4,2])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[30,] <- c('', mylink2, qarr[5,2])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[31,] <- c('', mylink2, qarr[6,2])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[32,] <- c('', mylink2, qarr[7,2])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[33,] <- c('', mylink2, qarr[8,2])
mylink1 <- hyperlink('variation1.htm','Coefficient of Quartile Variation','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[34,] <- c('', mylink2, qarr[1,3])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[35,] <- c('', mylink2, qarr[2,3])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[36,] <- c('', mylink2, qarr[3,3])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[37,] <- c('', mylink2, qarr[4,3])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[38,] <- c('', mylink2, qarr[5,3])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[39,] <- c('', mylink2, qarr[6,3])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[40,] <- c('', mylink2, qarr[7,3])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[41,] <- c('', mylink2, qarr[8,3])
res[42,] <- c('Number of all Pairs of Observations', 'pair_numbers.htm', lx*(lx-1)/2)
res[43,] <- c('Squared Differences between all Pairs of Observations', 'squared_differences.htm', sdpo)
res[44,] <- c('Mean Absolute Differences between all Pairs of Observations', 'mean_abs_differences.htm', adpo)
res[45,] <- c('Gini Mean Difference', 'gini_mean_difference.htm', gmd)
res[46,] <- c('Leik Measure of Dispersion', 'leiks_d.htm', bigd)
res[47,] <- c('Index of Diversity', 'diversity.htm', iod)
res[48,] <- c('Index of Qualitative Variation', 'qualitative_variation.htm', iod*lx/(lx-1))
res[49,] <- c('Coefficient of Dispersion', 'dispersion.htm', sum(axmm)/lx/medx)
res[50,] <- c('Observations', '', lx)
res
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variability - Ungrouped Data',2,TRUE)
a<-table.row.end(a)
for (i in 1:num) {
a<-table.row.start(a)
if (res[i,1] != '') {
a<-table.element(a,hyperlink(res[i,2],res[i,1],''),header=TRUE)
} else {
a<-table.element(a,res[i,2],header=TRUE)
}
a<-table.element(a,res[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')