Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 31 Aug 2016 09:31:11 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Aug/31/t147263235521rrgmm5op6mklm.htm/, Retrieved Sun, 05 May 2024 19:01:30 +0200
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=, Retrieved Sun, 05 May 2024 19:01:30 +0200
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact0
Dataseries X:
6 1 1 0 0 3.2 3.2
7 0 0 1 1 3.3 0
2 1 0 1 1 3 3
11 0 0 1 1 3.5 0
13 1 0 1 0 3.7 3.7
3 0 1 0 0 2.7 0
17 1 0 1 1 3.6 3.6
10 0 0 1 1 3.5 0
4 1 1 0 0 3.8 3.8
12 0 0 1 0 3.4 0
7 1 0 0 1 3.7 3.7
11 0 0 1 0 3.5 0
3 1 0 0 0 2.8 2.8
5 0 1 0 0 3.8 0
1 1 0 1 0 4.3 4.3
12 0 0 0 1 3.3 0
18 1 0 0 0 3.6 3.6
8 0 1 0 0 3.6 0
6 1 1 1 0 3.3 3.3
1 0 0 0 0 2.8 0




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ wold.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ wold.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net







Multiple Linear Regression - Estimated Regression Equation
Numeracy[t] = -13.6327 + 16.3117Geslacht[t] -3.36748Drugs[t] -0.0252995Fruit[t] + 0.575631Alcohol[t] + 6.71419Gebgewicht[t] -5.03669Inter[t] + e[t]
Warning: you did not specify the column number of the endogenous series! The first column was selected by default.

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Numeracy[t] =  -13.6327 +  16.3117Geslacht[t] -3.36748Drugs[t] -0.0252995Fruit[t] +  0.575631Alcohol[t] +  6.71419Gebgewicht[t] -5.03669Inter[t]  + e[t] \tabularnewline
Warning: you did not specify the column number of the endogenous series! The first column was selected by default. \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Numeracy[t] =  -13.6327 +  16.3117Geslacht[t] -3.36748Drugs[t] -0.0252995Fruit[t] +  0.575631Alcohol[t] +  6.71419Gebgewicht[t] -5.03669Inter[t]  + e[t][/C][/ROW]
[ROW][C]Warning: you did not specify the column number of the endogenous series! The first column was selected by default.[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Numeracy[t] = -13.6327 + 16.3117Geslacht[t] -3.36748Drugs[t] -0.0252995Fruit[t] + 0.575631Alcohol[t] + 6.71419Gebgewicht[t] -5.03669Inter[t] + e[t]
Warning: you did not specify the column number of the endogenous series! The first column was selected by default.







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-13.63 17.57-7.7580e-01 0.4518 0.2259
Geslacht+16.31 23.09+7.0640e-01 0.4924 0.2462
Drugs-3.368 3.22-1.0460e+00 0.3147 0.1574
Fruit-0.0253 2.78-9.1020e-03 0.9929 0.4964
Alcohol+0.5756 2.941+1.9570e-01 0.8479 0.4239
Gebgewicht+6.714 5.386+1.2470e+00 0.2345 0.1173
Inter-5.037 6.769-7.4410e-01 0.47 0.235

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -13.63 &  17.57 & -7.7580e-01 &  0.4518 &  0.2259 \tabularnewline
Geslacht & +16.31 &  23.09 & +7.0640e-01 &  0.4924 &  0.2462 \tabularnewline
Drugs & -3.368 &  3.22 & -1.0460e+00 &  0.3147 &  0.1574 \tabularnewline
Fruit & -0.0253 &  2.78 & -9.1020e-03 &  0.9929 &  0.4964 \tabularnewline
Alcohol & +0.5756 &  2.941 & +1.9570e-01 &  0.8479 &  0.4239 \tabularnewline
Gebgewicht & +6.714 &  5.386 & +1.2470e+00 &  0.2345 &  0.1173 \tabularnewline
Inter & -5.037 &  6.769 & -7.4410e-01 &  0.47 &  0.235 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-13.63[/C][C] 17.57[/C][C]-7.7580e-01[/C][C] 0.4518[/C][C] 0.2259[/C][/ROW]
[ROW][C]Geslacht[/C][C]+16.31[/C][C] 23.09[/C][C]+7.0640e-01[/C][C] 0.4924[/C][C] 0.2462[/C][/ROW]
[ROW][C]Drugs[/C][C]-3.368[/C][C] 3.22[/C][C]-1.0460e+00[/C][C] 0.3147[/C][C] 0.1574[/C][/ROW]
[ROW][C]Fruit[/C][C]-0.0253[/C][C] 2.78[/C][C]-9.1020e-03[/C][C] 0.9929[/C][C] 0.4964[/C][/ROW]
[ROW][C]Alcohol[/C][C]+0.5756[/C][C] 2.941[/C][C]+1.9570e-01[/C][C] 0.8479[/C][C] 0.4239[/C][/ROW]
[ROW][C]Gebgewicht[/C][C]+6.714[/C][C] 5.386[/C][C]+1.2470e+00[/C][C] 0.2345[/C][C] 0.1173[/C][/ROW]
[ROW][C]Inter[/C][C]-5.037[/C][C] 6.769[/C][C]-7.4410e-01[/C][C] 0.47[/C][C] 0.235[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-13.63 17.57-7.7580e-01 0.4518 0.2259
Geslacht+16.31 23.09+7.0640e-01 0.4924 0.2462
Drugs-3.368 3.22-1.0460e+00 0.3147 0.1574
Fruit-0.0253 2.78-9.1020e-03 0.9929 0.4964
Alcohol+0.5756 2.941+1.9570e-01 0.8479 0.4239
Gebgewicht+6.714 5.386+1.2470e+00 0.2345 0.1173
Inter-5.037 6.769-7.4410e-01 0.47 0.235







Multiple Linear Regression - Regression Statistics
Multiple R 0.4794
R-squared 0.2298
Adjusted R-squared-0.1256
F-TEST (value) 0.6466
F-TEST (DF numerator)6
F-TEST (DF denominator)13
p-value 0.6926
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 5.325
Sum Squared Residuals 368.6

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.4794 \tabularnewline
R-squared &  0.2298 \tabularnewline
Adjusted R-squared & -0.1256 \tabularnewline
F-TEST (value) &  0.6466 \tabularnewline
F-TEST (DF numerator) & 6 \tabularnewline
F-TEST (DF denominator) & 13 \tabularnewline
p-value &  0.6926 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  5.325 \tabularnewline
Sum Squared Residuals &  368.6 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.4794[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.2298[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.1256[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 0.6466[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]6[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]13[/C][/ROW]
[ROW][C]p-value[/C][C] 0.6926[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 5.325[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 368.6[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.4794
R-squared 0.2298
Adjusted R-squared-0.1256
F-TEST (value) 0.6466
F-TEST (DF numerator)6
F-TEST (DF denominator)13
p-value 0.6926
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 5.325
Sum Squared Residuals 368.6







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 6 4.679 1.321
2 7 9.074-2.074
3 2 8.262-6.262
4 11 10.42 0.5828
5 13 8.86 4.14
6 3 1.128 1.872
7 17 9.268 7.732
8 10 10.42-0.4172
9 4 5.686-1.686
10 12 9.17 2.83
11 7 9.461-2.461
12 11 9.842 1.158
13 3 7.376-4.376
14 5 8.514-3.514
15 1 9.867-8.867
16 12 9.1 2.9
17 18 8.718 9.282
18 8 7.171 0.8291
19 6 4.822 1.178
20 1 5.167-4.167

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  6 &  4.679 &  1.321 \tabularnewline
2 &  7 &  9.074 & -2.074 \tabularnewline
3 &  2 &  8.262 & -6.262 \tabularnewline
4 &  11 &  10.42 &  0.5828 \tabularnewline
5 &  13 &  8.86 &  4.14 \tabularnewline
6 &  3 &  1.128 &  1.872 \tabularnewline
7 &  17 &  9.268 &  7.732 \tabularnewline
8 &  10 &  10.42 & -0.4172 \tabularnewline
9 &  4 &  5.686 & -1.686 \tabularnewline
10 &  12 &  9.17 &  2.83 \tabularnewline
11 &  7 &  9.461 & -2.461 \tabularnewline
12 &  11 &  9.842 &  1.158 \tabularnewline
13 &  3 &  7.376 & -4.376 \tabularnewline
14 &  5 &  8.514 & -3.514 \tabularnewline
15 &  1 &  9.867 & -8.867 \tabularnewline
16 &  12 &  9.1 &  2.9 \tabularnewline
17 &  18 &  8.718 &  9.282 \tabularnewline
18 &  8 &  7.171 &  0.8291 \tabularnewline
19 &  6 &  4.822 &  1.178 \tabularnewline
20 &  1 &  5.167 & -4.167 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 6[/C][C] 4.679[/C][C] 1.321[/C][/ROW]
[ROW][C]2[/C][C] 7[/C][C] 9.074[/C][C]-2.074[/C][/ROW]
[ROW][C]3[/C][C] 2[/C][C] 8.262[/C][C]-6.262[/C][/ROW]
[ROW][C]4[/C][C] 11[/C][C] 10.42[/C][C] 0.5828[/C][/ROW]
[ROW][C]5[/C][C] 13[/C][C] 8.86[/C][C] 4.14[/C][/ROW]
[ROW][C]6[/C][C] 3[/C][C] 1.128[/C][C] 1.872[/C][/ROW]
[ROW][C]7[/C][C] 17[/C][C] 9.268[/C][C] 7.732[/C][/ROW]
[ROW][C]8[/C][C] 10[/C][C] 10.42[/C][C]-0.4172[/C][/ROW]
[ROW][C]9[/C][C] 4[/C][C] 5.686[/C][C]-1.686[/C][/ROW]
[ROW][C]10[/C][C] 12[/C][C] 9.17[/C][C] 2.83[/C][/ROW]
[ROW][C]11[/C][C] 7[/C][C] 9.461[/C][C]-2.461[/C][/ROW]
[ROW][C]12[/C][C] 11[/C][C] 9.842[/C][C] 1.158[/C][/ROW]
[ROW][C]13[/C][C] 3[/C][C] 7.376[/C][C]-4.376[/C][/ROW]
[ROW][C]14[/C][C] 5[/C][C] 8.514[/C][C]-3.514[/C][/ROW]
[ROW][C]15[/C][C] 1[/C][C] 9.867[/C][C]-8.867[/C][/ROW]
[ROW][C]16[/C][C] 12[/C][C] 9.1[/C][C] 2.9[/C][/ROW]
[ROW][C]17[/C][C] 18[/C][C] 8.718[/C][C] 9.282[/C][/ROW]
[ROW][C]18[/C][C] 8[/C][C] 7.171[/C][C] 0.8291[/C][/ROW]
[ROW][C]19[/C][C] 6[/C][C] 4.822[/C][C] 1.178[/C][/ROW]
[ROW][C]20[/C][C] 1[/C][C] 5.167[/C][C]-4.167[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 6 4.679 1.321
2 7 9.074-2.074
3 2 8.262-6.262
4 11 10.42 0.5828
5 13 8.86 4.14
6 3 1.128 1.872
7 17 9.268 7.732
8 10 10.42-0.4172
9 4 5.686-1.686
10 12 9.17 2.83
11 7 9.461-2.461
12 11 9.842 1.158
13 3 7.376-4.376
14 5 8.514-3.514
15 1 9.867-8.867
16 12 9.1 2.9
17 18 8.718 9.282
18 8 7.171 0.8291
19 6 4.822 1.178
20 1 5.167-4.167



Parameters (Session):
Parameters (R input):
par1 = ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = ; par5 = ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}