Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationMon, 11 Jan 2016 08:28:26 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Jan/11/t1452500966z9jx348kcf1bv04.htm/, Retrieved Tue, 07 May 2024 07:49:17 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=288502, Retrieved Tue, 07 May 2024 07:49:17 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact65
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2016-01-11 08:28:26] [8d3a5c2d70288958e7d3e207bfd3aed8] [Current]
Feedback Forum

Post a new message
Dataseries X:
6 1 1 0 0 3.2 3.2
7 0 0 1 0 3.3 0
2 1 0 1 1 3.0 3
11 0 0 1 0 3.5 0
13 1 0 1 0 3.7 3.7
3 0 1 0 0 2.7 0
17 1 0 1 1 3.6 3.6
10 0 0 1 0 3.5 0
4 1 1 0 0 3.8 3.8
12 0 0 1 0 3.4 0
7 1 0 0 0 3.7 3.7
11 0 0 1 0 3.5 0
3 1 0 0 1 2.8 2.8
5 0 1 0 1 3.8 0
1 1 0 1 0 4.3 4.3
12 0 0 0 0 3.3 0
18 1 0 0 0 3.6 3.6
8 0 1 0 1 3.6 0
6 1 1 1 0 3.3 3.3
1 0 0 0 0 2.8 0




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ fisher.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=288502&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ fisher.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=288502&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=288502&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net







Multiple Linear Regression - Estimated Regression Equation
Numeracy[t] = -18.6723 + 27.6264Geslacht[t] -3.58556Drugs[t] -0.220777Fruit[t] -2.25114Sport[t] + 8.47561Gebgewicht[t] -8.30211Inter[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Numeracy[t] =  -18.6723 +  27.6264Geslacht[t] -3.58556Drugs[t] -0.220777Fruit[t] -2.25114Sport[t] +  8.47561Gebgewicht[t] -8.30211Inter[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=288502&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Numeracy[t] =  -18.6723 +  27.6264Geslacht[t] -3.58556Drugs[t] -0.220777Fruit[t] -2.25114Sport[t] +  8.47561Gebgewicht[t] -8.30211Inter[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=288502&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=288502&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Numeracy[t] = -18.6723 + 27.6264Geslacht[t] -3.58556Drugs[t] -0.220777Fruit[t] -2.25114Sport[t] + 8.47561Gebgewicht[t] -8.30211Inter[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-18.67 18.79-9.9370e-01 0.3385 0.1693
Geslacht+27.63 27.44+1.0070e+00 0.3324 0.1662
Drugs-3.586 2.877-1.2460e+00 0.2347 0.1174
Fruit-0.2208 2.745-8.0410e-02 0.9371 0.4686
Sport-2.251 3.365-6.6900e-01 0.5152 0.2576
Gebgewicht+8.476 5.812+1.4580e+00 0.1685 0.08426
Inter-8.302 7.973-1.0410e+00 0.3167 0.1584

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -18.67 &  18.79 & -9.9370e-01 &  0.3385 &  0.1693 \tabularnewline
Geslacht & +27.63 &  27.44 & +1.0070e+00 &  0.3324 &  0.1662 \tabularnewline
Drugs & -3.586 &  2.877 & -1.2460e+00 &  0.2347 &  0.1174 \tabularnewline
Fruit & -0.2208 &  2.745 & -8.0410e-02 &  0.9371 &  0.4686 \tabularnewline
Sport & -2.251 &  3.365 & -6.6900e-01 &  0.5152 &  0.2576 \tabularnewline
Gebgewicht & +8.476 &  5.812 & +1.4580e+00 &  0.1685 &  0.08426 \tabularnewline
Inter & -8.302 &  7.973 & -1.0410e+00 &  0.3167 &  0.1584 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=288502&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-18.67[/C][C] 18.79[/C][C]-9.9370e-01[/C][C] 0.3385[/C][C] 0.1693[/C][/ROW]
[ROW][C]Geslacht[/C][C]+27.63[/C][C] 27.44[/C][C]+1.0070e+00[/C][C] 0.3324[/C][C] 0.1662[/C][/ROW]
[ROW][C]Drugs[/C][C]-3.586[/C][C] 2.877[/C][C]-1.2460e+00[/C][C] 0.2347[/C][C] 0.1174[/C][/ROW]
[ROW][C]Fruit[/C][C]-0.2208[/C][C] 2.745[/C][C]-8.0410e-02[/C][C] 0.9371[/C][C] 0.4686[/C][/ROW]
[ROW][C]Sport[/C][C]-2.251[/C][C] 3.365[/C][C]-6.6900e-01[/C][C] 0.5152[/C][C] 0.2576[/C][/ROW]
[ROW][C]Gebgewicht[/C][C]+8.476[/C][C] 5.812[/C][C]+1.4580e+00[/C][C] 0.1685[/C][C] 0.08426[/C][/ROW]
[ROW][C]Inter[/C][C]-8.302[/C][C] 7.973[/C][C]-1.0410e+00[/C][C] 0.3167[/C][C] 0.1584[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=288502&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=288502&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-18.67 18.79-9.9370e-01 0.3385 0.1693
Geslacht+27.63 27.44+1.0070e+00 0.3324 0.1662
Drugs-3.586 2.877-1.2460e+00 0.2347 0.1174
Fruit-0.2208 2.745-8.0410e-02 0.9371 0.4686
Sport-2.251 3.365-6.6900e-01 0.5152 0.2576
Gebgewicht+8.476 5.812+1.4580e+00 0.1685 0.08426
Inter-8.302 7.973-1.0410e+00 0.3167 0.1584







Multiple Linear Regression - Regression Statistics
Multiple R 0.5033
R-squared 0.2533
Adjusted R-squared-0.09138
F-TEST (value) 0.7349
F-TEST (DF numerator)6
F-TEST (DF denominator)13
p-value 0.6307
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 5.243
Sum Squared Residuals 357.3

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.5033 \tabularnewline
R-squared &  0.2533 \tabularnewline
Adjusted R-squared & -0.09138 \tabularnewline
F-TEST (value) &  0.7349 \tabularnewline
F-TEST (DF numerator) & 6 \tabularnewline
F-TEST (DF denominator) & 13 \tabularnewline
p-value &  0.6307 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  5.243 \tabularnewline
Sum Squared Residuals &  357.3 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=288502&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.5033[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.2533[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.09138[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 0.7349[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]6[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]13[/C][/ROW]
[ROW][C]p-value[/C][C] 0.6307[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 5.243[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 357.3[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=288502&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=288502&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.5033
R-squared 0.2533
Adjusted R-squared-0.09138
F-TEST (value) 0.7349
F-TEST (DF numerator)6
F-TEST (DF denominator)13
p-value 0.6307
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 5.243
Sum Squared Residuals 357.3







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 6 5.924 0.07621
2 7 9.076-2.076
3 2 7.003-5.003
4 11 10.77 0.2284
5 13 9.375 3.625
6 3 0.6263 2.374
7 17 7.107 9.893
8 10 10.77-0.7716
9 4 6.028-2.028
10 12 9.924 2.076
11 7 9.596-2.596
12 11 10.77 0.2284
13 3 7.189-4.189
14 5 7.698-2.698
15 1 9.479-8.479
16 12 9.297 2.703
17 18 9.579 8.421
18 8 6.003 1.997
19 6 5.72 0.2796
20 1 5.059-4.059

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  6 &  5.924 &  0.07621 \tabularnewline
2 &  7 &  9.076 & -2.076 \tabularnewline
3 &  2 &  7.003 & -5.003 \tabularnewline
4 &  11 &  10.77 &  0.2284 \tabularnewline
5 &  13 &  9.375 &  3.625 \tabularnewline
6 &  3 &  0.6263 &  2.374 \tabularnewline
7 &  17 &  7.107 &  9.893 \tabularnewline
8 &  10 &  10.77 & -0.7716 \tabularnewline
9 &  4 &  6.028 & -2.028 \tabularnewline
10 &  12 &  9.924 &  2.076 \tabularnewline
11 &  7 &  9.596 & -2.596 \tabularnewline
12 &  11 &  10.77 &  0.2284 \tabularnewline
13 &  3 &  7.189 & -4.189 \tabularnewline
14 &  5 &  7.698 & -2.698 \tabularnewline
15 &  1 &  9.479 & -8.479 \tabularnewline
16 &  12 &  9.297 &  2.703 \tabularnewline
17 &  18 &  9.579 &  8.421 \tabularnewline
18 &  8 &  6.003 &  1.997 \tabularnewline
19 &  6 &  5.72 &  0.2796 \tabularnewline
20 &  1 &  5.059 & -4.059 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=288502&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 6[/C][C] 5.924[/C][C] 0.07621[/C][/ROW]
[ROW][C]2[/C][C] 7[/C][C] 9.076[/C][C]-2.076[/C][/ROW]
[ROW][C]3[/C][C] 2[/C][C] 7.003[/C][C]-5.003[/C][/ROW]
[ROW][C]4[/C][C] 11[/C][C] 10.77[/C][C] 0.2284[/C][/ROW]
[ROW][C]5[/C][C] 13[/C][C] 9.375[/C][C] 3.625[/C][/ROW]
[ROW][C]6[/C][C] 3[/C][C] 0.6263[/C][C] 2.374[/C][/ROW]
[ROW][C]7[/C][C] 17[/C][C] 7.107[/C][C] 9.893[/C][/ROW]
[ROW][C]8[/C][C] 10[/C][C] 10.77[/C][C]-0.7716[/C][/ROW]
[ROW][C]9[/C][C] 4[/C][C] 6.028[/C][C]-2.028[/C][/ROW]
[ROW][C]10[/C][C] 12[/C][C] 9.924[/C][C] 2.076[/C][/ROW]
[ROW][C]11[/C][C] 7[/C][C] 9.596[/C][C]-2.596[/C][/ROW]
[ROW][C]12[/C][C] 11[/C][C] 10.77[/C][C] 0.2284[/C][/ROW]
[ROW][C]13[/C][C] 3[/C][C] 7.189[/C][C]-4.189[/C][/ROW]
[ROW][C]14[/C][C] 5[/C][C] 7.698[/C][C]-2.698[/C][/ROW]
[ROW][C]15[/C][C] 1[/C][C] 9.479[/C][C]-8.479[/C][/ROW]
[ROW][C]16[/C][C] 12[/C][C] 9.297[/C][C] 2.703[/C][/ROW]
[ROW][C]17[/C][C] 18[/C][C] 9.579[/C][C] 8.421[/C][/ROW]
[ROW][C]18[/C][C] 8[/C][C] 6.003[/C][C] 1.997[/C][/ROW]
[ROW][C]19[/C][C] 6[/C][C] 5.72[/C][C] 0.2796[/C][/ROW]
[ROW][C]20[/C][C] 1[/C][C] 5.059[/C][C]-4.059[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=288502&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=288502&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 6 5.924 0.07621
2 7 9.076-2.076
3 2 7.003-5.003
4 11 10.77 0.2284
5 13 9.375 3.625
6 3 0.6263 2.374
7 17 7.107 9.893
8 10 10.77-0.7716
9 4 6.028-2.028
10 12 9.924 2.076
11 7 9.596-2.596
12 11 10.77 0.2284
13 3 7.189-4.189
14 5 7.698-2.698
15 1 9.479-8.479
16 12 9.297 2.703
17 18 9.579 8.421
18 8 6.003 1.997
19 6 5.72 0.2796
20 1 5.059-4.059



Parameters (Session):
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = ; par5 = ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}