Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 22 Jan 2016 08:43:03 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Jan/22/t1453452196l7tq50ah2e07xqd.htm/, Retrieved Tue, 07 May 2024 23:33:35 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=290410, Retrieved Tue, 07 May 2024 23:33:35 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact86
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2016-01-22 08:43:03] [60fe8c82fc27b8a1ae22563c57c4f789] [Current]
Feedback Forum

Post a new message
Dataseries X:
6 3.2 0 0 0 1
7 3.3 1 0 1 0
2 3 1 1 1 1
11 3.5 1 0 1 0
13 3.7 1 0 0 1
3 2.7 0 0 0 0
17 3.6 1 1 1 1
10 3.5 1 0 1 0
4 3.8 0 0 0 1
12 3.4 1 0 0 0
7 3.7 0 0 1 1
11 3.5 1 0 0 0
3 2.8 0 1 0 1
5 3.8 0 1 0 0
1 4.3 1 0 0 1
12 3.3 0 0 1 0
18 3.6 0 0 0 1
8 3.6 0 1 0 0
6 3.3 1 0 0 1
1 2.8 0 0 0 0




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ fisher.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=290410&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ fisher.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=290410&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=290410&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net







Multiple Linear Regression - Estimated Regression Equation
Numeracy[t] = -4.19754 + 3.29852Gebgewicht[t] + 0.990607Fruit[t] -0.807084Sport[t] + 2.11651Alcohol[t] -0.535404Geslacht[t] + e[t]
Warning: you did not specify the column number of the endogenous series! The first column was selected by default.

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Numeracy[t] =  -4.19754 +  3.29852Gebgewicht[t] +  0.990607Fruit[t] -0.807084Sport[t] +  2.11651Alcohol[t] -0.535404Geslacht[t]  + e[t] \tabularnewline
Warning: you did not specify the column number of the endogenous series! The first column was selected by default. \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=290410&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Numeracy[t] =  -4.19754 +  3.29852Gebgewicht[t] +  0.990607Fruit[t] -0.807084Sport[t] +  2.11651Alcohol[t] -0.535404Geslacht[t]  + e[t][/C][/ROW]
[ROW][C]Warning: you did not specify the column number of the endogenous series! The first column was selected by default.[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=290410&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=290410&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Numeracy[t] = -4.19754 + 3.29852Gebgewicht[t] + 0.990607Fruit[t] -0.807084Sport[t] + 2.11651Alcohol[t] -0.535404Geslacht[t] + e[t]
Warning: you did not specify the column number of the endogenous series! The first column was selected by default.







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-4.197 11.25-3.7300e-01 0.7148 0.3574
Gebgewicht+3.299 3.36+9.8180e-01 0.3429 0.1714
Fruit+0.9906 2.643+3.7480e-01 0.7134 0.3567
Sport-0.8071 2.849-2.8330e-01 0.7811 0.3906
Alcohol+2.116 2.7+7.8400e-01 0.4461 0.223
Geslacht-0.5354 2.504-2.1380e-01 0.8338 0.4169

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -4.197 &  11.25 & -3.7300e-01 &  0.7148 &  0.3574 \tabularnewline
Gebgewicht & +3.299 &  3.36 & +9.8180e-01 &  0.3429 &  0.1714 \tabularnewline
Fruit & +0.9906 &  2.643 & +3.7480e-01 &  0.7134 &  0.3567 \tabularnewline
Sport & -0.8071 &  2.849 & -2.8330e-01 &  0.7811 &  0.3906 \tabularnewline
Alcohol & +2.116 &  2.7 & +7.8400e-01 &  0.4461 &  0.223 \tabularnewline
Geslacht & -0.5354 &  2.504 & -2.1380e-01 &  0.8338 &  0.4169 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=290410&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-4.197[/C][C] 11.25[/C][C]-3.7300e-01[/C][C] 0.7148[/C][C] 0.3574[/C][/ROW]
[ROW][C]Gebgewicht[/C][C]+3.299[/C][C] 3.36[/C][C]+9.8180e-01[/C][C] 0.3429[/C][C] 0.1714[/C][/ROW]
[ROW][C]Fruit[/C][C]+0.9906[/C][C] 2.643[/C][C]+3.7480e-01[/C][C] 0.7134[/C][C] 0.3567[/C][/ROW]
[ROW][C]Sport[/C][C]-0.8071[/C][C] 2.849[/C][C]-2.8330e-01[/C][C] 0.7811[/C][C] 0.3906[/C][/ROW]
[ROW][C]Alcohol[/C][C]+2.116[/C][C] 2.7[/C][C]+7.8400e-01[/C][C] 0.4461[/C][C] 0.223[/C][/ROW]
[ROW][C]Geslacht[/C][C]-0.5354[/C][C] 2.504[/C][C]-2.1380e-01[/C][C] 0.8338[/C][C] 0.4169[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=290410&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=290410&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-4.197 11.25-3.7300e-01 0.7148 0.3574
Gebgewicht+3.299 3.36+9.8180e-01 0.3429 0.1714
Fruit+0.9906 2.643+3.7480e-01 0.7134 0.3567
Sport-0.8071 2.849-2.8330e-01 0.7811 0.3906
Alcohol+2.116 2.7+7.8400e-01 0.4461 0.223
Geslacht-0.5354 2.504-2.1380e-01 0.8338 0.4169







Multiple Linear Regression - Regression Statistics
Multiple R 0.3893
R-squared 0.1516
Adjusted R-squared-0.1515
F-TEST (value) 0.5001
F-TEST (DF numerator)5
F-TEST (DF denominator)14
p-value 0.7713
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 5.385
Sum Squared Residuals 406

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.3893 \tabularnewline
R-squared &  0.1516 \tabularnewline
Adjusted R-squared & -0.1515 \tabularnewline
F-TEST (value) &  0.5001 \tabularnewline
F-TEST (DF numerator) & 5 \tabularnewline
F-TEST (DF denominator) & 14 \tabularnewline
p-value &  0.7713 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  5.385 \tabularnewline
Sum Squared Residuals &  406 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=290410&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.3893[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.1516[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.1515[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 0.5001[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]5[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]14[/C][/ROW]
[ROW][C]p-value[/C][C] 0.7713[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 5.385[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 406[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=290410&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=290410&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.3893
R-squared 0.1516
Adjusted R-squared-0.1515
F-TEST (value) 0.5001
F-TEST (DF numerator)5
F-TEST (DF denominator)14
p-value 0.7713
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 5.385
Sum Squared Residuals 406







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 6 5.822 0.1777
2 7 9.795-2.795
3 2 7.463-5.463
4 11 10.45 0.5456
5 13 8.462 4.538
6 3 4.708-1.708
7 17 9.442 7.558
8 10 10.45-0.4544
9 4 7.801-3.801
10 12 8.008 3.992
11 7 9.588-2.588
12 11 8.338 2.662
13 3 3.696-0.6958
14 5 7.53-2.53
15 1 10.44-9.441
16 12 8.804 3.196
17 18 7.142 10.86
18 8 6.87 1.13
19 6 7.143-1.143
20 1 5.038-4.038

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  6 &  5.822 &  0.1777 \tabularnewline
2 &  7 &  9.795 & -2.795 \tabularnewline
3 &  2 &  7.463 & -5.463 \tabularnewline
4 &  11 &  10.45 &  0.5456 \tabularnewline
5 &  13 &  8.462 &  4.538 \tabularnewline
6 &  3 &  4.708 & -1.708 \tabularnewline
7 &  17 &  9.442 &  7.558 \tabularnewline
8 &  10 &  10.45 & -0.4544 \tabularnewline
9 &  4 &  7.801 & -3.801 \tabularnewline
10 &  12 &  8.008 &  3.992 \tabularnewline
11 &  7 &  9.588 & -2.588 \tabularnewline
12 &  11 &  8.338 &  2.662 \tabularnewline
13 &  3 &  3.696 & -0.6958 \tabularnewline
14 &  5 &  7.53 & -2.53 \tabularnewline
15 &  1 &  10.44 & -9.441 \tabularnewline
16 &  12 &  8.804 &  3.196 \tabularnewline
17 &  18 &  7.142 &  10.86 \tabularnewline
18 &  8 &  6.87 &  1.13 \tabularnewline
19 &  6 &  7.143 & -1.143 \tabularnewline
20 &  1 &  5.038 & -4.038 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=290410&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 6[/C][C] 5.822[/C][C] 0.1777[/C][/ROW]
[ROW][C]2[/C][C] 7[/C][C] 9.795[/C][C]-2.795[/C][/ROW]
[ROW][C]3[/C][C] 2[/C][C] 7.463[/C][C]-5.463[/C][/ROW]
[ROW][C]4[/C][C] 11[/C][C] 10.45[/C][C] 0.5456[/C][/ROW]
[ROW][C]5[/C][C] 13[/C][C] 8.462[/C][C] 4.538[/C][/ROW]
[ROW][C]6[/C][C] 3[/C][C] 4.708[/C][C]-1.708[/C][/ROW]
[ROW][C]7[/C][C] 17[/C][C] 9.442[/C][C] 7.558[/C][/ROW]
[ROW][C]8[/C][C] 10[/C][C] 10.45[/C][C]-0.4544[/C][/ROW]
[ROW][C]9[/C][C] 4[/C][C] 7.801[/C][C]-3.801[/C][/ROW]
[ROW][C]10[/C][C] 12[/C][C] 8.008[/C][C] 3.992[/C][/ROW]
[ROW][C]11[/C][C] 7[/C][C] 9.588[/C][C]-2.588[/C][/ROW]
[ROW][C]12[/C][C] 11[/C][C] 8.338[/C][C] 2.662[/C][/ROW]
[ROW][C]13[/C][C] 3[/C][C] 3.696[/C][C]-0.6958[/C][/ROW]
[ROW][C]14[/C][C] 5[/C][C] 7.53[/C][C]-2.53[/C][/ROW]
[ROW][C]15[/C][C] 1[/C][C] 10.44[/C][C]-9.441[/C][/ROW]
[ROW][C]16[/C][C] 12[/C][C] 8.804[/C][C] 3.196[/C][/ROW]
[ROW][C]17[/C][C] 18[/C][C] 7.142[/C][C] 10.86[/C][/ROW]
[ROW][C]18[/C][C] 8[/C][C] 6.87[/C][C] 1.13[/C][/ROW]
[ROW][C]19[/C][C] 6[/C][C] 7.143[/C][C]-1.143[/C][/ROW]
[ROW][C]20[/C][C] 1[/C][C] 5.038[/C][C]-4.038[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=290410&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=290410&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 6 5.822 0.1777
2 7 9.795-2.795
3 2 7.463-5.463
4 11 10.45 0.5456
5 13 8.462 4.538
6 3 4.708-1.708
7 17 9.442 7.558
8 10 10.45-0.4544
9 4 7.801-3.801
10 12 8.008 3.992
11 7 9.588-2.588
12 11 8.338 2.662
13 3 3.696-0.6958
14 5 7.53-2.53
15 1 10.44-9.441
16 12 8.804 3.196
17 18 7.142 10.86
18 8 6.87 1.13
19 6 7.143-1.143
20 1 5.038-4.038



Parameters (Session):
Parameters (R input):
par1 = ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = ; par5 = ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}