Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 25 Jan 2017 09:23:17 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2017/Jan/25/t1485332655swkutb8ldv54zon.htm/, Retrieved Tue, 14 May 2024 19:08:21 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=305449, Retrieved Tue, 14 May 2024 19:08:21 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact104
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Two-Way ANOVA] [Vraag 2] [2017-01-25 08:10:20] [5ab812aadfba19649a69119ed73d52ef]
- RMPD  [Multiple Regression] [Vraag 3] [2017-01-25 08:19:00] [5ab812aadfba19649a69119ed73d52ef]
- R PD      [Multiple Regression] [Vraag 4] [2017-01-25 08:23:17] [7546ab6ff44acab40e0f0266f12c41bc] [Current]
Feedback Forum

Post a new message
Dataseries X:
6 1 0 0 0 3.2 10.24 3.2
7 0 1 0 1 3.3 10.89 0
2 0 1 1 1 3 9 3
11 0 1 0 1 3.5 12.25 0
13 0 1 0 0 3.7 13.69 3.7
3 1 0 0 0 2.7 7.29 0
17 0 1 1 1 3.6 12.96 3.6
10 0 1 0 1 3.5 12.25 0
4 1 0 0 0 3.8 14.44 3.8
12 0 1 0 0 3.4 11.56 0
7 0 0 0 1 3.7 13.69 3.7
11 0 1 0 0 3.5 12.25 0
3 0 0 1 0 2.8 7.84 2.8
5 1 0 1 0 3.8 14.44 0
1 0 1 0 0 4.3 18.49 4.3
12 0 0 0 1 3.3 10.89 0
18 0 0 0 0 3.6 12.96 3.6
8 1 0 1 0 3.6 12.96 0
6 1 1 0 0 3.3 10.89 3.3
1 0 0 0 0 2.8 7.84 0




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time6 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=305449&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]6 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=305449&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=305449&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
Inter[t] = + 20.8793 + 0.0288278Score[t] -0.0871059X1[t] -0.0675935X2[t] + 0.320434X3[t] -0.199692X4[t] -13.0364X5[t] + 2.13484X6[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Inter[t] =  +  20.8793 +  0.0288278Score[t] -0.0871059X1[t] -0.0675935X2[t] +  0.320434X3[t] -0.199692X4[t] -13.0364X5[t] +  2.13484X6[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=305449&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Inter[t] =  +  20.8793 +  0.0288278Score[t] -0.0871059X1[t] -0.0675935X2[t] +  0.320434X3[t] -0.199692X4[t] -13.0364X5[t] +  2.13484X6[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=305449&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=305449&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Inter[t] = + 20.8793 + 0.0288278Score[t] -0.0871059X1[t] -0.0675935X2[t] + 0.320434X3[t] -0.199692X4[t] -13.0364X5[t] + 2.13484X6[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+20.88 43.02+4.8540e-01 0.6361 0.3181
Score+0.02883 0.1581+1.8230e-01 0.8584 0.4292
X1-0.08711 1.487-5.8590e-02 0.9542 0.4771
X2-0.06759 1.097-6.1620e-02 0.9519 0.4759
X3+0.3204 1.107+2.8950e-01 0.7771 0.3886
X4-0.1997 1.28-1.5600e-01 0.8786 0.4393
X5-13.04 25.88-5.0370e-01 0.6236 0.3118
X6+2.135 3.732+5.7200e-01 0.5779 0.2889

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +20.88 &  43.02 & +4.8540e-01 &  0.6361 &  0.3181 \tabularnewline
Score & +0.02883 &  0.1581 & +1.8230e-01 &  0.8584 &  0.4292 \tabularnewline
X1 & -0.08711 &  1.487 & -5.8590e-02 &  0.9542 &  0.4771 \tabularnewline
X2 & -0.06759 &  1.097 & -6.1620e-02 &  0.9519 &  0.4759 \tabularnewline
X3 & +0.3204 &  1.107 & +2.8950e-01 &  0.7771 &  0.3886 \tabularnewline
X4 & -0.1997 &  1.28 & -1.5600e-01 &  0.8786 &  0.4393 \tabularnewline
X5 & -13.04 &  25.88 & -5.0370e-01 &  0.6236 &  0.3118 \tabularnewline
X6 & +2.135 &  3.732 & +5.7200e-01 &  0.5779 &  0.2889 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=305449&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+20.88[/C][C] 43.02[/C][C]+4.8540e-01[/C][C] 0.6361[/C][C] 0.3181[/C][/ROW]
[ROW][C]Score[/C][C]+0.02883[/C][C] 0.1581[/C][C]+1.8230e-01[/C][C] 0.8584[/C][C] 0.4292[/C][/ROW]
[ROW][C]X1[/C][C]-0.08711[/C][C] 1.487[/C][C]-5.8590e-02[/C][C] 0.9542[/C][C] 0.4771[/C][/ROW]
[ROW][C]X2[/C][C]-0.06759[/C][C] 1.097[/C][C]-6.1620e-02[/C][C] 0.9519[/C][C] 0.4759[/C][/ROW]
[ROW][C]X3[/C][C]+0.3204[/C][C] 1.107[/C][C]+2.8950e-01[/C][C] 0.7771[/C][C] 0.3886[/C][/ROW]
[ROW][C]X4[/C][C]-0.1997[/C][C] 1.28[/C][C]-1.5600e-01[/C][C] 0.8786[/C][C] 0.4393[/C][/ROW]
[ROW][C]X5[/C][C]-13.04[/C][C] 25.88[/C][C]-5.0370e-01[/C][C] 0.6236[/C][C] 0.3118[/C][/ROW]
[ROW][C]X6[/C][C]+2.135[/C][C] 3.732[/C][C]+5.7200e-01[/C][C] 0.5779[/C][C] 0.2889[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=305449&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=305449&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+20.88 43.02+4.8540e-01 0.6361 0.3181
Score+0.02883 0.1581+1.8230e-01 0.8584 0.4292
X1-0.08711 1.487-5.8590e-02 0.9542 0.4771
X2-0.06759 1.097-6.1620e-02 0.9519 0.4759
X3+0.3204 1.107+2.8950e-01 0.7771 0.3886
X4-0.1997 1.28-1.5600e-01 0.8786 0.4393
X5-13.04 25.88-5.0370e-01 0.6236 0.3118
X6+2.135 3.732+5.7200e-01 0.5779 0.2889







Multiple Linear Regression - Regression Statistics
Multiple R 0.4114
R-squared 0.1692
Adjusted R-squared-0.3154
F-TEST (value) 0.3492
F-TEST (DF numerator)7
F-TEST (DF denominator)12
p-value 0.9148
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.088
Sum Squared Residuals 52.3

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.4114 \tabularnewline
R-squared &  0.1692 \tabularnewline
Adjusted R-squared & -0.3154 \tabularnewline
F-TEST (value) &  0.3492 \tabularnewline
F-TEST (DF numerator) & 7 \tabularnewline
F-TEST (DF denominator) & 12 \tabularnewline
p-value &  0.9148 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  2.088 \tabularnewline
Sum Squared Residuals &  52.3 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=305449&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.4114[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.1692[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.3154[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 0.3492[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]7[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]12[/C][/ROW]
[ROW][C]p-value[/C][C] 0.9148[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 2.088[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 52.3[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=305449&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=305449&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.4114
R-squared 0.1692
Adjusted R-squared-0.3154
F-TEST (value) 0.3492
F-TEST (DF numerator)7
F-TEST (DF denominator)12
p-value 0.9148
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.088
Sum Squared Residuals 52.3







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 3.2 1.109 2.091
2 0 1.042-1.042
3 3 1.094 1.906
4 0 1.453-1.453
5 3.7 2.178 1.522
6 0 1.243-1.243
7 3.6 2.159 1.441
8 0 1.425-1.425
9 3.8 2.196 1.604
10 0 1.513-1.513
11 3.7 1.873 1.827
12 0 1.653-1.653
13 2.8 1.521 1.279
14 0 2.545-2.545
15 4.3 4.257 0.04285
16 0 1.254-1.254
17 3.6 2.135 1.465
18 0 2.08-2.08
19 3.3 1.126 2.174
20 0 1.143-1.143

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  3.2 &  1.109 &  2.091 \tabularnewline
2 &  0 &  1.042 & -1.042 \tabularnewline
3 &  3 &  1.094 &  1.906 \tabularnewline
4 &  0 &  1.453 & -1.453 \tabularnewline
5 &  3.7 &  2.178 &  1.522 \tabularnewline
6 &  0 &  1.243 & -1.243 \tabularnewline
7 &  3.6 &  2.159 &  1.441 \tabularnewline
8 &  0 &  1.425 & -1.425 \tabularnewline
9 &  3.8 &  2.196 &  1.604 \tabularnewline
10 &  0 &  1.513 & -1.513 \tabularnewline
11 &  3.7 &  1.873 &  1.827 \tabularnewline
12 &  0 &  1.653 & -1.653 \tabularnewline
13 &  2.8 &  1.521 &  1.279 \tabularnewline
14 &  0 &  2.545 & -2.545 \tabularnewline
15 &  4.3 &  4.257 &  0.04285 \tabularnewline
16 &  0 &  1.254 & -1.254 \tabularnewline
17 &  3.6 &  2.135 &  1.465 \tabularnewline
18 &  0 &  2.08 & -2.08 \tabularnewline
19 &  3.3 &  1.126 &  2.174 \tabularnewline
20 &  0 &  1.143 & -1.143 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=305449&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 3.2[/C][C] 1.109[/C][C] 2.091[/C][/ROW]
[ROW][C]2[/C][C] 0[/C][C] 1.042[/C][C]-1.042[/C][/ROW]
[ROW][C]3[/C][C] 3[/C][C] 1.094[/C][C] 1.906[/C][/ROW]
[ROW][C]4[/C][C] 0[/C][C] 1.453[/C][C]-1.453[/C][/ROW]
[ROW][C]5[/C][C] 3.7[/C][C] 2.178[/C][C] 1.522[/C][/ROW]
[ROW][C]6[/C][C] 0[/C][C] 1.243[/C][C]-1.243[/C][/ROW]
[ROW][C]7[/C][C] 3.6[/C][C] 2.159[/C][C] 1.441[/C][/ROW]
[ROW][C]8[/C][C] 0[/C][C] 1.425[/C][C]-1.425[/C][/ROW]
[ROW][C]9[/C][C] 3.8[/C][C] 2.196[/C][C] 1.604[/C][/ROW]
[ROW][C]10[/C][C] 0[/C][C] 1.513[/C][C]-1.513[/C][/ROW]
[ROW][C]11[/C][C] 3.7[/C][C] 1.873[/C][C] 1.827[/C][/ROW]
[ROW][C]12[/C][C] 0[/C][C] 1.653[/C][C]-1.653[/C][/ROW]
[ROW][C]13[/C][C] 2.8[/C][C] 1.521[/C][C] 1.279[/C][/ROW]
[ROW][C]14[/C][C] 0[/C][C] 2.545[/C][C]-2.545[/C][/ROW]
[ROW][C]15[/C][C] 4.3[/C][C] 4.257[/C][C] 0.04285[/C][/ROW]
[ROW][C]16[/C][C] 0[/C][C] 1.254[/C][C]-1.254[/C][/ROW]
[ROW][C]17[/C][C] 3.6[/C][C] 2.135[/C][C] 1.465[/C][/ROW]
[ROW][C]18[/C][C] 0[/C][C] 2.08[/C][C]-2.08[/C][/ROW]
[ROW][C]19[/C][C] 3.3[/C][C] 1.126[/C][C] 2.174[/C][/ROW]
[ROW][C]20[/C][C] 0[/C][C] 1.143[/C][C]-1.143[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=305449&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=305449&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 3.2 1.109 2.091
2 0 1.042-1.042
3 3 1.094 1.906
4 0 1.453-1.453
5 3.7 2.178 1.522
6 0 1.243-1.243
7 3.6 2.159 1.441
8 0 1.425-1.425
9 3.8 2.196 1.604
10 0 1.513-1.513
11 3.7 1.873 1.827
12 0 1.653-1.653
13 2.8 1.521 1.279
14 0 2.545-2.545
15 4.3 4.257 0.04285
16 0 1.254-1.254
17 3.6 2.135 1.465
18 0 2.08-2.08
19 3.3 1.126 2.174
20 0 1.143-1.143







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.063215, df1 = 2, df2 = 10, p-value = 0.9391
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = -0.48952, df1 = 14, df2 = -2, p-value = NA
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.8642, df1 = 2, df2 = 10, p-value = 0.1039

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.063215, df1 = 2, df2 = 10, p-value = 0.9391
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = -0.48952, df1 = 14, df2 = -2, p-value = NA
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.8642, df1 = 2, df2 = 10, p-value = 0.1039
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=305449&T=5

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.063215, df1 = 2, df2 = 10, p-value = 0.9391
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = -0.48952, df1 = 14, df2 = -2, p-value = NA
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.8642, df1 = 2, df2 = 10, p-value = 0.1039
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=305449&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=305449&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.063215, df1 = 2, df2 = 10, p-value = 0.9391
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = -0.48952, df1 = 14, df2 = -2, p-value = NA
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.8642, df1 = 2, df2 = 10, p-value = 0.1039







Variance Inflation Factors (Multicollinearity)
> vif
     Score         X1         X2         X3         X4         X5         X6 
  2.744852   2.130420   1.380689   1.054165   1.711337 444.499222 431.428971 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
     Score         X1         X2         X3         X4         X5         X6 
  2.744852   2.130420   1.380689   1.054165   1.711337 444.499222 431.428971 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=305449&T=6

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
     Score         X1         X2         X3         X4         X5         X6 
  2.744852   2.130420   1.380689   1.054165   1.711337 444.499222 431.428971 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=305449&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=305449&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
     Score         X1         X2         X3         X4         X5         X6 
  2.744852   2.130420   1.380689   1.054165   1.711337 444.499222 431.428971 



Parameters (Session):
par1 = 8 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 8 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = ; par5 = ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')