Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 25 Jan 2017 09:24:58 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2017/Jan/25/t1485332757qms10t2vkqr09gz.htm/, Retrieved Mon, 13 May 2024 23:12:31 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=305477, Retrieved Mon, 13 May 2024 23:12:31 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact74
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [vraag 4] [2017-01-25 08:24:58] [19882785965d9f6b632c4812c61d51b6] [Current]
Feedback Forum

Post a new message
Dataseries X:
6 1 0 0 0 3.2 10.24 0.7923
7 0 1 0 1 3.3 10.89 -2.468
2 0 1 1 1 3 9 -2.996
11 0 1 0 1 3.5 12.25 3.119
13 0 1 0 0 3.7 13.69 0.04315
3 1 0 0 0 2.7 7.29 0.731
17 0 1 1 1 3.6 12.96 2.45
10 0 1 0 1 3.5 12.25 2.119
4 1 0 0 0 3.8 14.44 -1.429
12 0 1 0 0 3.4 11.56 -1.644
7 0 0 0 1 3.7 13.69 -3.065
11 0 1 0 0 3.5 12.25 -1.461
3 0 0 1 0 2.8 7.84 1.141
5 1 0 1 0 3.8 14.44 1.329
1 0 1 0 0 4.3 18.49 0.3396
12 0 0 0 1 3.3 10.89 0.8429
18 0 0 0 0 3.6 12.96 2.225
8 1 0 1 0 3.6 12.96 -1.924
6 1 1 0 0 3.3 10.89 0.4999
1 0 0 0 0 2.8 7.84 -0.6433




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time7 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=305477&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]7 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=305477&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=305477&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
Score[t] = -204.315 -4.77976X1[t] -0.632959X2[t] + 0.00877029X3[t] -2.21547X4[t] + 124.32X5[t] -17.7759X6[t] + 1.02468Alter[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Score[t] =  -204.315 -4.77976X1[t] -0.632959X2[t] +  0.00877029X3[t] -2.21547X4[t] +  124.32X5[t] -17.7759X6[t] +  1.02468Alter[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=305477&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Score[t] =  -204.315 -4.77976X1[t] -0.632959X2[t] +  0.00877029X3[t] -2.21547X4[t] +  124.32X5[t] -17.7759X6[t] +  1.02468Alter[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=305477&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=305477&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Score[t] = -204.315 -4.77976X1[t] -0.632959X2[t] + 0.00877029X3[t] -2.21547X4[t] + 124.32X5[t] -17.7759X6[t] + 1.02468Alter[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-204.3 40.97-4.9870e+00 0.0003159 0.0001579
X1-4.78 1.82-2.6260e+00 0.02212 0.01106
X2-0.633 1.55-4.0850e-01 0.6901 0.3451
X3+0.00877 1.571+5.5830e-03 0.9956 0.4978
X4-2.216 1.752-1.2640e+00 0.2301 0.115
X5+124.3 24.36+5.1030e+00 0.0002604 0.0001302
X6-17.78 3.561-4.9910e+00 0.0003139 0.0001569
Alter+1.025 0.3654+2.8040e+00 0.01592 0.007962

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -204.3 &  40.97 & -4.9870e+00 &  0.0003159 &  0.0001579 \tabularnewline
X1 & -4.78 &  1.82 & -2.6260e+00 &  0.02212 &  0.01106 \tabularnewline
X2 & -0.633 &  1.55 & -4.0850e-01 &  0.6901 &  0.3451 \tabularnewline
X3 & +0.00877 &  1.571 & +5.5830e-03 &  0.9956 &  0.4978 \tabularnewline
X4 & -2.216 &  1.752 & -1.2640e+00 &  0.2301 &  0.115 \tabularnewline
X5 & +124.3 &  24.36 & +5.1030e+00 &  0.0002604 &  0.0001302 \tabularnewline
X6 & -17.78 &  3.561 & -4.9910e+00 &  0.0003139 &  0.0001569 \tabularnewline
Alter & +1.025 &  0.3654 & +2.8040e+00 &  0.01592 &  0.007962 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=305477&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-204.3[/C][C] 40.97[/C][C]-4.9870e+00[/C][C] 0.0003159[/C][C] 0.0001579[/C][/ROW]
[ROW][C]X1[/C][C]-4.78[/C][C] 1.82[/C][C]-2.6260e+00[/C][C] 0.02212[/C][C] 0.01106[/C][/ROW]
[ROW][C]X2[/C][C]-0.633[/C][C] 1.55[/C][C]-4.0850e-01[/C][C] 0.6901[/C][C] 0.3451[/C][/ROW]
[ROW][C]X3[/C][C]+0.00877[/C][C] 1.571[/C][C]+5.5830e-03[/C][C] 0.9956[/C][C] 0.4978[/C][/ROW]
[ROW][C]X4[/C][C]-2.216[/C][C] 1.752[/C][C]-1.2640e+00[/C][C] 0.2301[/C][C] 0.115[/C][/ROW]
[ROW][C]X5[/C][C]+124.3[/C][C] 24.36[/C][C]+5.1030e+00[/C][C] 0.0002604[/C][C] 0.0001302[/C][/ROW]
[ROW][C]X6[/C][C]-17.78[/C][C] 3.561[/C][C]-4.9910e+00[/C][C] 0.0003139[/C][C] 0.0001569[/C][/ROW]
[ROW][C]Alter[/C][C]+1.025[/C][C] 0.3654[/C][C]+2.8040e+00[/C][C] 0.01592[/C][C] 0.007962[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=305477&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=305477&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-204.3 40.97-4.9870e+00 0.0003159 0.0001579
X1-4.78 1.82-2.6260e+00 0.02212 0.01106
X2-0.633 1.55-4.0850e-01 0.6901 0.3451
X3+0.00877 1.571+5.5830e-03 0.9956 0.4978
X4-2.216 1.752-1.2640e+00 0.2301 0.115
X5+124.3 24.36+5.1030e+00 0.0002604 0.0001302
X6-17.78 3.561-4.9910e+00 0.0003139 0.0001569
Alter+1.025 0.3654+2.8040e+00 0.01592 0.007962







Multiple Linear Regression - Regression Statistics
Multiple R 0.8831
R-squared 0.7799
Adjusted R-squared 0.6515
F-TEST (value) 6.074
F-TEST (DF numerator)7
F-TEST (DF denominator)12
p-value 0.003368
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.963
Sum Squared Residuals 105.3

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.8831 \tabularnewline
R-squared &  0.7799 \tabularnewline
Adjusted R-squared &  0.6515 \tabularnewline
F-TEST (value) &  6.074 \tabularnewline
F-TEST (DF numerator) & 7 \tabularnewline
F-TEST (DF denominator) & 12 \tabularnewline
p-value &  0.003368 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  2.963 \tabularnewline
Sum Squared Residuals &  105.3 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=305477&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.8831[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.7799[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.6515[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 6.074[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]7[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]12[/C][/ROW]
[ROW][C]p-value[/C][C] 0.003368[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 2.963[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 105.3[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=305477&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=305477&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.8831
R-squared 0.7799
Adjusted R-squared 0.6515
F-TEST (value) 6.074
F-TEST (DF numerator)7
F-TEST (DF denominator)12
p-value 0.003368
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.963
Sum Squared Residuals 105.3







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 6 7.515-1.515
2 7 6.983 0.01728
3 2 2.751-0.751
4 11 13.4-2.396
5 13 11.73 1.273
6 3-2.269 5.269
7 17 12.53 4.469
8 10 12.37-2.372
9 4 5.171-1.171
10 12 10.56 1.435
11 7 6.959 0.04071
12 11 10.92 0.08124
13 3 5.595-2.595
14 5 8.006-3.006
15 1 1.298-0.2979
16 12 11.01 0.9917
17 18 15.14 2.86
18 8 6.117 1.883
19 6 7.46-1.46
20 1 3.758-2.758

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  6 &  7.515 & -1.515 \tabularnewline
2 &  7 &  6.983 &  0.01728 \tabularnewline
3 &  2 &  2.751 & -0.751 \tabularnewline
4 &  11 &  13.4 & -2.396 \tabularnewline
5 &  13 &  11.73 &  1.273 \tabularnewline
6 &  3 & -2.269 &  5.269 \tabularnewline
7 &  17 &  12.53 &  4.469 \tabularnewline
8 &  10 &  12.37 & -2.372 \tabularnewline
9 &  4 &  5.171 & -1.171 \tabularnewline
10 &  12 &  10.56 &  1.435 \tabularnewline
11 &  7 &  6.959 &  0.04071 \tabularnewline
12 &  11 &  10.92 &  0.08124 \tabularnewline
13 &  3 &  5.595 & -2.595 \tabularnewline
14 &  5 &  8.006 & -3.006 \tabularnewline
15 &  1 &  1.298 & -0.2979 \tabularnewline
16 &  12 &  11.01 &  0.9917 \tabularnewline
17 &  18 &  15.14 &  2.86 \tabularnewline
18 &  8 &  6.117 &  1.883 \tabularnewline
19 &  6 &  7.46 & -1.46 \tabularnewline
20 &  1 &  3.758 & -2.758 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=305477&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 6[/C][C] 7.515[/C][C]-1.515[/C][/ROW]
[ROW][C]2[/C][C] 7[/C][C] 6.983[/C][C] 0.01728[/C][/ROW]
[ROW][C]3[/C][C] 2[/C][C] 2.751[/C][C]-0.751[/C][/ROW]
[ROW][C]4[/C][C] 11[/C][C] 13.4[/C][C]-2.396[/C][/ROW]
[ROW][C]5[/C][C] 13[/C][C] 11.73[/C][C] 1.273[/C][/ROW]
[ROW][C]6[/C][C] 3[/C][C]-2.269[/C][C] 5.269[/C][/ROW]
[ROW][C]7[/C][C] 17[/C][C] 12.53[/C][C] 4.469[/C][/ROW]
[ROW][C]8[/C][C] 10[/C][C] 12.37[/C][C]-2.372[/C][/ROW]
[ROW][C]9[/C][C] 4[/C][C] 5.171[/C][C]-1.171[/C][/ROW]
[ROW][C]10[/C][C] 12[/C][C] 10.56[/C][C] 1.435[/C][/ROW]
[ROW][C]11[/C][C] 7[/C][C] 6.959[/C][C] 0.04071[/C][/ROW]
[ROW][C]12[/C][C] 11[/C][C] 10.92[/C][C] 0.08124[/C][/ROW]
[ROW][C]13[/C][C] 3[/C][C] 5.595[/C][C]-2.595[/C][/ROW]
[ROW][C]14[/C][C] 5[/C][C] 8.006[/C][C]-3.006[/C][/ROW]
[ROW][C]15[/C][C] 1[/C][C] 1.298[/C][C]-0.2979[/C][/ROW]
[ROW][C]16[/C][C] 12[/C][C] 11.01[/C][C] 0.9917[/C][/ROW]
[ROW][C]17[/C][C] 18[/C][C] 15.14[/C][C] 2.86[/C][/ROW]
[ROW][C]18[/C][C] 8[/C][C] 6.117[/C][C] 1.883[/C][/ROW]
[ROW][C]19[/C][C] 6[/C][C] 7.46[/C][C]-1.46[/C][/ROW]
[ROW][C]20[/C][C] 1[/C][C] 3.758[/C][C]-2.758[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=305477&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=305477&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 6 7.515-1.515
2 7 6.983 0.01728
3 2 2.751-0.751
4 11 13.4-2.396
5 13 11.73 1.273
6 3-2.269 5.269
7 17 12.53 4.469
8 10 12.37-2.372
9 4 5.171-1.171
10 12 10.56 1.435
11 7 6.959 0.04071
12 11 10.92 0.08124
13 3 5.595-2.595
14 5 8.006-3.006
15 1 1.298-0.2979
16 12 11.01 0.9917
17 18 15.14 2.86
18 8 6.117 1.883
19 6 7.46-1.46
20 1 3.758-2.758







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 9.6683, df1 = 2, df2 = 10, p-value = 0.004602
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = -0.17872, df1 = 14, df2 = -2, p-value = NA
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.52008, df1 = 2, df2 = 10, p-value = 0.6097

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 9.6683, df1 = 2, df2 = 10, p-value = 0.004602
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = -0.17872, df1 = 14, df2 = -2, p-value = NA
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.52008, df1 = 2, df2 = 10, p-value = 0.6097
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=305477&T=5

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 9.6683, df1 = 2, df2 = 10, p-value = 0.004602
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = -0.17872, df1 = 14, df2 = -2, p-value = NA
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.52008, df1 = 2, df2 = 10, p-value = 0.6097
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=305477&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=305477&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 9.6683, df1 = 2, df2 = 10, p-value = 0.004602
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = -0.17872, df1 = 14, df2 = -2, p-value = NA
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.52008, df1 = 2, df2 = 10, p-value = 0.6097







Variance Inflation Factors (Multicollinearity)
> vif
        X1         X2         X3         X4         X5         X6      Alter 
  1.584843   1.367955   1.054162   1.591285 195.524997 195.038394   1.003112 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
        X1         X2         X3         X4         X5         X6      Alter 
  1.584843   1.367955   1.054162   1.591285 195.524997 195.038394   1.003112 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=305477&T=6

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
        X1         X2         X3         X4         X5         X6      Alter 
  1.584843   1.367955   1.054162   1.591285 195.524997 195.038394   1.003112 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=305477&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=305477&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
        X1         X2         X3         X4         X5         X6      Alter 
  1.584843   1.367955   1.054162   1.591285 195.524997 195.038394   1.003112 



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = ; par5 = ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')