Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 10 May 2019 04:00:48 +0200
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2019/May/10/t1557453905fzfq8zeeqh2x63f.htm/, Retrieved Mon, 06 May 2024 06:34:24 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=318806, Retrieved Mon, 06 May 2024 06:34:24 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact112
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [regresion] [2019-05-10 02:00:48] [d41d8cd98f00b204e9800998ecf8427e] [Current]
Feedback Forum

Post a new message
Dataseries X:
94.1	78.17	10
101.9	80.24	10
88.65	74.03	11
115.5	86.31	2
87.5	75.22	5
72	65.54	4
91.5	72.43	17
113.9	85.61	13
69.34	60.8	6
96.9	81.88	5
96	79.11	7
61.9	59.93	4
93	75.27	11
109.5	85.88	10
93.75	76.64	17
106.7	84.36	12
81.5	72.94	5
94.5	76.5	14
69	66.28	1
96.9	79.74	3
86.5	72.78	14
97.9	77.9	12
83	74.31	11
97.3	79.85	12
100.8	84.78	2
97.9	81.61	6
90.5	74.92	12
97	79.98	4
92	77.96	9
95.9	79.07	12




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=318806&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=318806&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=318806&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
a[t] = -44.9882 + 1.7506b[t] + 0.367952c[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
a[t] =  -44.9882 +  1.7506b[t] +  0.367952c[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=318806&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]a[t] =  -44.9882 +  1.7506b[t] +  0.367952c[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=318806&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=318806&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
a[t] = -44.9882 + 1.7506b[t] + 0.367952c[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-44.99 6.553-6.8660e+00 2.241e-07 1.12e-07
b+1.751 0.08576+2.0410e+01 6.058e-18 3.029e-18
c+0.3679 0.128+2.8730e+00 0.007818 0.003909

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -44.99 &  6.553 & -6.8660e+00 &  2.241e-07 &  1.12e-07 \tabularnewline
b & +1.751 &  0.08576 & +2.0410e+01 &  6.058e-18 &  3.029e-18 \tabularnewline
c & +0.3679 &  0.128 & +2.8730e+00 &  0.007818 &  0.003909 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=318806&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-44.99[/C][C] 6.553[/C][C]-6.8660e+00[/C][C] 2.241e-07[/C][C] 1.12e-07[/C][/ROW]
[ROW][C]b[/C][C]+1.751[/C][C] 0.08576[/C][C]+2.0410e+01[/C][C] 6.058e-18[/C][C] 3.029e-18[/C][/ROW]
[ROW][C]c[/C][C]+0.3679[/C][C] 0.128[/C][C]+2.8730e+00[/C][C] 0.007818[/C][C] 0.003909[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=318806&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=318806&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-44.99 6.553-6.8660e+00 2.241e-07 1.12e-07
b+1.751 0.08576+2.0410e+01 6.058e-18 3.029e-18
c+0.3679 0.128+2.8730e+00 0.007818 0.003909







Multiple Linear Regression - Regression Statistics
Multiple R 0.9711
R-squared 0.943
Adjusted R-squared 0.9388
F-TEST (value) 223.5
F-TEST (DF numerator)2
F-TEST (DF denominator)27
p-value 0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 3.097
Sum Squared Residuals 258.9

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.9711 \tabularnewline
R-squared &  0.943 \tabularnewline
Adjusted R-squared &  0.9388 \tabularnewline
F-TEST (value) &  223.5 \tabularnewline
F-TEST (DF numerator) & 2 \tabularnewline
F-TEST (DF denominator) & 27 \tabularnewline
p-value &  0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  3.097 \tabularnewline
Sum Squared Residuals &  258.9 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=318806&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.9711[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.943[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.9388[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 223.5[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]2[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]27[/C][/ROW]
[ROW][C]p-value[/C][C] 0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 3.097[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 258.9[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=318806&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=318806&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.9711
R-squared 0.943
Adjusted R-squared 0.9388
F-TEST (value) 223.5
F-TEST (DF numerator)2
F-TEST (DF denominator)27
p-value 0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 3.097
Sum Squared Residuals 258.9







Menu of Residual Diagnostics
DescriptionLink
HistogramCompute
Central TendencyCompute
QQ PlotCompute
Kernel Density PlotCompute
Skewness/Kurtosis TestCompute
Skewness-Kurtosis PlotCompute
Harrell-Davis PlotCompute
Bootstrap Plot -- Central TendencyCompute
Blocked Bootstrap Plot -- Central TendencyCompute
(Partial) Autocorrelation PlotCompute
Spectral AnalysisCompute
Tukey lambda PPCC PlotCompute
Box-Cox Normality PlotCompute
Summary StatisticsCompute

\begin{tabular}{lllllllll}
\hline
Menu of Residual Diagnostics \tabularnewline
Description & Link \tabularnewline
Histogram & Compute \tabularnewline
Central Tendency & Compute \tabularnewline
QQ Plot & Compute \tabularnewline
Kernel Density Plot & Compute \tabularnewline
Skewness/Kurtosis Test & Compute \tabularnewline
Skewness-Kurtosis Plot & Compute \tabularnewline
Harrell-Davis Plot & Compute \tabularnewline
Bootstrap Plot -- Central Tendency & Compute \tabularnewline
Blocked Bootstrap Plot -- Central Tendency & Compute \tabularnewline
(Partial) Autocorrelation Plot & Compute \tabularnewline
Spectral Analysis & Compute \tabularnewline
Tukey lambda PPCC Plot & Compute \tabularnewline
Box-Cox Normality Plot & Compute \tabularnewline
Summary Statistics & Compute \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=318806&T=4

[TABLE]
[ROW][C]Menu of Residual Diagnostics[/C][/ROW]
[ROW][C]Description[/C][C]Link[/C][/ROW]
[ROW][C]Histogram[/C][C]Compute[/C][/ROW]
[ROW][C]Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C]QQ Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Kernel Density Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Skewness/Kurtosis Test[/C][C]Compute[/C][/ROW]
[ROW][C]Skewness-Kurtosis Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Harrell-Davis Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Bootstrap Plot -- Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C]Blocked Bootstrap Plot -- Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C](Partial) Autocorrelation Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Spectral Analysis[/C][C]Compute[/C][/ROW]
[ROW][C]Tukey lambda PPCC Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Box-Cox Normality Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Summary Statistics[/C][C]Compute[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=318806&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=318806&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Menu of Residual Diagnostics
DescriptionLink
HistogramCompute
Central TendencyCompute
QQ PlotCompute
Kernel Density PlotCompute
Skewness/Kurtosis TestCompute
Skewness-Kurtosis PlotCompute
Harrell-Davis PlotCompute
Bootstrap Plot -- Central TendencyCompute
Blocked Bootstrap Plot -- Central TendencyCompute
(Partial) Autocorrelation PlotCompute
Spectral AnalysisCompute
Tukey lambda PPCC PlotCompute
Box-Cox Normality PlotCompute
Summary StatisticsCompute







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 94.1 95.54-1.436
2 101.9 99.16 2.741
3 88.65 88.66-0.006204
4 115.5 106.8 8.658
5 87.5 88.53-1.032
6 72 71.22 0.7821
7 91.5 88.06 3.437
8 113.9 109.7 4.236
9 69.34 63.66 5.684
10 96.9 100.2-3.291
11 96 96.08-0.07745
12 61.9 61.4 0.5029
13 93 90.83 2.173
14 109.5 109 0.4671
15 93.75 95.43-1.683
16 106.7 107.1-0.4079
17 81.5 84.54-3.04
18 94.5 94.08 0.416
19 69 71.41-2.41
20 96.9 95.71 1.191
21 86.5 87.57-1.072
22 97.9 95.8 2.101
23 83 89.15-6.146
24 97.3 99.21-1.913
25 100.8 104.2-3.364
26 97.9 100.1-2.186
27 90.5 90.58-0.08219
28 97 96.5 0.5034
29 92 94.8-2.8
30 95.9 97.85-1.947

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  94.1 &  95.54 & -1.436 \tabularnewline
2 &  101.9 &  99.16 &  2.741 \tabularnewline
3 &  88.65 &  88.66 & -0.006204 \tabularnewline
4 &  115.5 &  106.8 &  8.658 \tabularnewline
5 &  87.5 &  88.53 & -1.032 \tabularnewline
6 &  72 &  71.22 &  0.7821 \tabularnewline
7 &  91.5 &  88.06 &  3.437 \tabularnewline
8 &  113.9 &  109.7 &  4.236 \tabularnewline
9 &  69.34 &  63.66 &  5.684 \tabularnewline
10 &  96.9 &  100.2 & -3.291 \tabularnewline
11 &  96 &  96.08 & -0.07745 \tabularnewline
12 &  61.9 &  61.4 &  0.5029 \tabularnewline
13 &  93 &  90.83 &  2.173 \tabularnewline
14 &  109.5 &  109 &  0.4671 \tabularnewline
15 &  93.75 &  95.43 & -1.683 \tabularnewline
16 &  106.7 &  107.1 & -0.4079 \tabularnewline
17 &  81.5 &  84.54 & -3.04 \tabularnewline
18 &  94.5 &  94.08 &  0.416 \tabularnewline
19 &  69 &  71.41 & -2.41 \tabularnewline
20 &  96.9 &  95.71 &  1.191 \tabularnewline
21 &  86.5 &  87.57 & -1.072 \tabularnewline
22 &  97.9 &  95.8 &  2.101 \tabularnewline
23 &  83 &  89.15 & -6.146 \tabularnewline
24 &  97.3 &  99.21 & -1.913 \tabularnewline
25 &  100.8 &  104.2 & -3.364 \tabularnewline
26 &  97.9 &  100.1 & -2.186 \tabularnewline
27 &  90.5 &  90.58 & -0.08219 \tabularnewline
28 &  97 &  96.5 &  0.5034 \tabularnewline
29 &  92 &  94.8 & -2.8 \tabularnewline
30 &  95.9 &  97.85 & -1.947 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=318806&T=5

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 94.1[/C][C] 95.54[/C][C]-1.436[/C][/ROW]
[ROW][C]2[/C][C] 101.9[/C][C] 99.16[/C][C] 2.741[/C][/ROW]
[ROW][C]3[/C][C] 88.65[/C][C] 88.66[/C][C]-0.006204[/C][/ROW]
[ROW][C]4[/C][C] 115.5[/C][C] 106.8[/C][C] 8.658[/C][/ROW]
[ROW][C]5[/C][C] 87.5[/C][C] 88.53[/C][C]-1.032[/C][/ROW]
[ROW][C]6[/C][C] 72[/C][C] 71.22[/C][C] 0.7821[/C][/ROW]
[ROW][C]7[/C][C] 91.5[/C][C] 88.06[/C][C] 3.437[/C][/ROW]
[ROW][C]8[/C][C] 113.9[/C][C] 109.7[/C][C] 4.236[/C][/ROW]
[ROW][C]9[/C][C] 69.34[/C][C] 63.66[/C][C] 5.684[/C][/ROW]
[ROW][C]10[/C][C] 96.9[/C][C] 100.2[/C][C]-3.291[/C][/ROW]
[ROW][C]11[/C][C] 96[/C][C] 96.08[/C][C]-0.07745[/C][/ROW]
[ROW][C]12[/C][C] 61.9[/C][C] 61.4[/C][C] 0.5029[/C][/ROW]
[ROW][C]13[/C][C] 93[/C][C] 90.83[/C][C] 2.173[/C][/ROW]
[ROW][C]14[/C][C] 109.5[/C][C] 109[/C][C] 0.4671[/C][/ROW]
[ROW][C]15[/C][C] 93.75[/C][C] 95.43[/C][C]-1.683[/C][/ROW]
[ROW][C]16[/C][C] 106.7[/C][C] 107.1[/C][C]-0.4079[/C][/ROW]
[ROW][C]17[/C][C] 81.5[/C][C] 84.54[/C][C]-3.04[/C][/ROW]
[ROW][C]18[/C][C] 94.5[/C][C] 94.08[/C][C] 0.416[/C][/ROW]
[ROW][C]19[/C][C] 69[/C][C] 71.41[/C][C]-2.41[/C][/ROW]
[ROW][C]20[/C][C] 96.9[/C][C] 95.71[/C][C] 1.191[/C][/ROW]
[ROW][C]21[/C][C] 86.5[/C][C] 87.57[/C][C]-1.072[/C][/ROW]
[ROW][C]22[/C][C] 97.9[/C][C] 95.8[/C][C] 2.101[/C][/ROW]
[ROW][C]23[/C][C] 83[/C][C] 89.15[/C][C]-6.146[/C][/ROW]
[ROW][C]24[/C][C] 97.3[/C][C] 99.21[/C][C]-1.913[/C][/ROW]
[ROW][C]25[/C][C] 100.8[/C][C] 104.2[/C][C]-3.364[/C][/ROW]
[ROW][C]26[/C][C] 97.9[/C][C] 100.1[/C][C]-2.186[/C][/ROW]
[ROW][C]27[/C][C] 90.5[/C][C] 90.58[/C][C]-0.08219[/C][/ROW]
[ROW][C]28[/C][C] 97[/C][C] 96.5[/C][C] 0.5034[/C][/ROW]
[ROW][C]29[/C][C] 92[/C][C] 94.8[/C][C]-2.8[/C][/ROW]
[ROW][C]30[/C][C] 95.9[/C][C] 97.85[/C][C]-1.947[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=318806&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=318806&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 94.1 95.54-1.436
2 101.9 99.16 2.741
3 88.65 88.66-0.006204
4 115.5 106.8 8.658
5 87.5 88.53-1.032
6 72 71.22 0.7821
7 91.5 88.06 3.437
8 113.9 109.7 4.236
9 69.34 63.66 5.684
10 96.9 100.2-3.291
11 96 96.08-0.07745
12 61.9 61.4 0.5029
13 93 90.83 2.173
14 109.5 109 0.4671
15 93.75 95.43-1.683
16 106.7 107.1-0.4079
17 81.5 84.54-3.04
18 94.5 94.08 0.416
19 69 71.41-2.41
20 96.9 95.71 1.191
21 86.5 87.57-1.072
22 97.9 95.8 2.101
23 83 89.15-6.146
24 97.3 99.21-1.913
25 100.8 104.2-3.364
26 97.9 100.1-2.186
27 90.5 90.58-0.08219
28 97 96.5 0.5034
29 92 94.8-2.8
30 95.9 97.85-1.947







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
6 0.582 0.836 0.418
7 0.8032 0.3937 0.1968
8 0.7906 0.4189 0.2094
9 0.9636 0.07286 0.03643
10 0.9862 0.02751 0.01375
11 0.9758 0.04839 0.02419
12 0.9653 0.06936 0.03468
13 0.9663 0.06732 0.03366
14 0.9436 0.1128 0.05639
15 0.9186 0.1629 0.08144
16 0.8693 0.2614 0.1307
17 0.8572 0.2857 0.1428
18 0.7987 0.4026 0.2013
19 0.734 0.532 0.266
20 0.7138 0.5724 0.2862
21 0.6008 0.7983 0.3992
22 0.6782 0.6435 0.3218
23 0.9658 0.06841 0.03421
24 0.9202 0.1596 0.0798

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
6 &  0.582 &  0.836 &  0.418 \tabularnewline
7 &  0.8032 &  0.3937 &  0.1968 \tabularnewline
8 &  0.7906 &  0.4189 &  0.2094 \tabularnewline
9 &  0.9636 &  0.07286 &  0.03643 \tabularnewline
10 &  0.9862 &  0.02751 &  0.01375 \tabularnewline
11 &  0.9758 &  0.04839 &  0.02419 \tabularnewline
12 &  0.9653 &  0.06936 &  0.03468 \tabularnewline
13 &  0.9663 &  0.06732 &  0.03366 \tabularnewline
14 &  0.9436 &  0.1128 &  0.05639 \tabularnewline
15 &  0.9186 &  0.1629 &  0.08144 \tabularnewline
16 &  0.8693 &  0.2614 &  0.1307 \tabularnewline
17 &  0.8572 &  0.2857 &  0.1428 \tabularnewline
18 &  0.7987 &  0.4026 &  0.2013 \tabularnewline
19 &  0.734 &  0.532 &  0.266 \tabularnewline
20 &  0.7138 &  0.5724 &  0.2862 \tabularnewline
21 &  0.6008 &  0.7983 &  0.3992 \tabularnewline
22 &  0.6782 &  0.6435 &  0.3218 \tabularnewline
23 &  0.9658 &  0.06841 &  0.03421 \tabularnewline
24 &  0.9202 &  0.1596 &  0.0798 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=318806&T=6

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]6[/C][C] 0.582[/C][C] 0.836[/C][C] 0.418[/C][/ROW]
[ROW][C]7[/C][C] 0.8032[/C][C] 0.3937[/C][C] 0.1968[/C][/ROW]
[ROW][C]8[/C][C] 0.7906[/C][C] 0.4189[/C][C] 0.2094[/C][/ROW]
[ROW][C]9[/C][C] 0.9636[/C][C] 0.07286[/C][C] 0.03643[/C][/ROW]
[ROW][C]10[/C][C] 0.9862[/C][C] 0.02751[/C][C] 0.01375[/C][/ROW]
[ROW][C]11[/C][C] 0.9758[/C][C] 0.04839[/C][C] 0.02419[/C][/ROW]
[ROW][C]12[/C][C] 0.9653[/C][C] 0.06936[/C][C] 0.03468[/C][/ROW]
[ROW][C]13[/C][C] 0.9663[/C][C] 0.06732[/C][C] 0.03366[/C][/ROW]
[ROW][C]14[/C][C] 0.9436[/C][C] 0.1128[/C][C] 0.05639[/C][/ROW]
[ROW][C]15[/C][C] 0.9186[/C][C] 0.1629[/C][C] 0.08144[/C][/ROW]
[ROW][C]16[/C][C] 0.8693[/C][C] 0.2614[/C][C] 0.1307[/C][/ROW]
[ROW][C]17[/C][C] 0.8572[/C][C] 0.2857[/C][C] 0.1428[/C][/ROW]
[ROW][C]18[/C][C] 0.7987[/C][C] 0.4026[/C][C] 0.2013[/C][/ROW]
[ROW][C]19[/C][C] 0.734[/C][C] 0.532[/C][C] 0.266[/C][/ROW]
[ROW][C]20[/C][C] 0.7138[/C][C] 0.5724[/C][C] 0.2862[/C][/ROW]
[ROW][C]21[/C][C] 0.6008[/C][C] 0.7983[/C][C] 0.3992[/C][/ROW]
[ROW][C]22[/C][C] 0.6782[/C][C] 0.6435[/C][C] 0.3218[/C][/ROW]
[ROW][C]23[/C][C] 0.9658[/C][C] 0.06841[/C][C] 0.03421[/C][/ROW]
[ROW][C]24[/C][C] 0.9202[/C][C] 0.1596[/C][C] 0.0798[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=318806&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=318806&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
6 0.582 0.836 0.418
7 0.8032 0.3937 0.1968
8 0.7906 0.4189 0.2094
9 0.9636 0.07286 0.03643
10 0.9862 0.02751 0.01375
11 0.9758 0.04839 0.02419
12 0.9653 0.06936 0.03468
13 0.9663 0.06732 0.03366
14 0.9436 0.1128 0.05639
15 0.9186 0.1629 0.08144
16 0.8693 0.2614 0.1307
17 0.8572 0.2857 0.1428
18 0.7987 0.4026 0.2013
19 0.734 0.532 0.266
20 0.7138 0.5724 0.2862
21 0.6008 0.7983 0.3992
22 0.6782 0.6435 0.3218
23 0.9658 0.06841 0.03421
24 0.9202 0.1596 0.0798







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level20.105263NOK
10% type I error level60.315789NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 2 & 0.105263 & NOK \tabularnewline
10% type I error level & 6 & 0.315789 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=318806&T=7

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]2[/C][C]0.105263[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]6[/C][C]0.315789[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=318806&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=318806&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level20.105263NOK
10% type I error level60.315789NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.7863, df1 = 2, df2 = 25, p-value = 0.08083
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.9404, df1 = 4, df2 = 23, p-value = 0.1377
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 3.0801, df1 = 2, df2 = 25, p-value = 0.06371

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.7863, df1 = 2, df2 = 25, p-value = 0.08083
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.9404, df1 = 4, df2 = 23, p-value = 0.1377
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 3.0801, df1 = 2, df2 = 25, p-value = 0.06371
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=318806&T=8

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.7863, df1 = 2, df2 = 25, p-value = 0.08083
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.9404, df1 = 4, df2 = 23, p-value = 0.1377
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 3.0801, df1 = 2, df2 = 25, p-value = 0.06371
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=318806&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=318806&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.7863, df1 = 2, df2 = 25, p-value = 0.08083
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.9404, df1 = 4, df2 = 23, p-value = 0.1377
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 3.0801, df1 = 2, df2 = 25, p-value = 0.06371







Variance Inflation Factors (Multicollinearity)
> vif
       b        c 
1.016201 1.016201 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
       b        c 
1.016201 1.016201 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=318806&T=9

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
       b        c 
1.016201 1.016201 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=318806&T=9

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=318806&T=9

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
       b        c 
1.016201 1.016201 



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ; par6 = 12 ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ; par6 = 12 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par6 <- as.numeric(par6)
if(is.na(par6)) {
par6 <- 12
mywarning = 'Warning: you did not specify the seasonality. The seasonal period was set to s = 12.'
}
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (!is.numeric(par4)) par4 <- 0
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
if (!is.numeric(par5)) par5 <- 0
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s)'){
(n <- n - par6)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-Bs)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+par6,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - par6)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-Bs)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+par6,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*par6,par5), dimnames=list(1:(n-par5*par6), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*par6)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*par6-j*par6,par1]
}
}
x <- cbind(x[(par5*par6+1):n,], x2)
n <- n - par5*par6
}
if (par2 == 'Include Seasonal Dummies'){
x2 <- array(0, dim=c(n,par6-1), dimnames=list(1:n, paste('M', seq(1:(par6-1)), sep ='')))
for (i in 1:(par6-1)){
x2[seq(i,n,par6),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
a <-table.start()
a <- table.row.start(a)
a <- table.element(a,'Menu of Residual Diagnostics',2,TRUE)
a <- table.row.end(a)
a <- table.row.start(a)
a <- table.element(a,'Description',1,TRUE)
a <- table.element(a,'Link',1,TRUE)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Histogram',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_histogram.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_centraltendency.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'QQ Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_fitdistrnorm.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Kernel Density Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_density.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Skewness/Kurtosis Test',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_skewness_kurtosis.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Skewness-Kurtosis Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_skewness_kurtosis_plot.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Harrell-Davis Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_harrell_davis.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Bootstrap Plot -- Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_bootstrapplot1.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Blocked Bootstrap Plot -- Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_bootstrapplot.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'(Partial) Autocorrelation Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_autocorrelation.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Spectral Analysis',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_spectrum.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Tukey lambda PPCC Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_tukeylambda.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Box-Cox Normality Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_boxcoxnorm.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <- table.element(a,'Summary Statistics',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_summary1.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable7.tab')
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')